
DESERT 

DESERT 
Online at http://jdesert.ut.ac.ir 

 
DESERT 15 (2010) 151-158 

 
 

Predicting the distribution of plant species using logistic 
regression (Case study: Garizat rangelands of Yazd province) 

 
M.A. Zare Chahoukia*, A. Zare Chahoukib 

 
a Assistant Professor, Faculty of Natural Resources, University of Tehran, Iran 

b MSc.Graduate, Faculty of Natural Resources, University of Tehran, Iran  
 

Received: 29 November 2009; Received in revised form: 17 October 2010; Accepted: 10 November 2010 

 
 
Abstract 
 
     The aim of this research was to study the relationships between presence of plant species and environmental 
factors in Garizat rangelands of Yazd province and providing their predictive habitat models. After delimitation of the 
study area, sampling was performed using randomized-systematic method. Accordingly, vegetation data including 
presence and cover percentage were determined in each quadrate. The topographic conditions were recorded in plot 
locations. Soil samples were taken at depths of 0-30 and 30-80 cm in each plot. The measured soil variables included 
texture, lime, saturation moisture, gypsum, acidity (pH), ECe and soluble inos (Na+, K+, Mg2+, Cl-, Co3

2-, HCo3
- and 

So4
2-). Logistic regression technique was used to analyze the collected data. The results showed that the vegetation 

distribution is mainly related to soil characteristics such as texture, gravel, EC, gypsum, lime and OM. The presence 
of Artemisia sieberi- Zygophyllum eurypterum has relation with gravel, lime, available water and pH. Ephedra 
strobilaceae-Zygophyllum eurypterum has positive relation with gypsum. Rheum ribes-Artemisia sieberi has relation 
with clay and OM. Cornulaca monacantha has also relation with elevation above sea, gravel and gypsum. The 
presence of Seidlitzia rosmarinus has relation with lime.  Electrical conductivity is the most factors effect on presence 
of Tamarix ramosissima.  
 
Keywords: Logistic regression; Environmental factors; Artemisia sieberi; Tamarix ramosissima; Ephedra 
strobilacea; Zygopyllum eurypterum; Rheum ribes 
 
 
1. Introduction 
 
     Predictive modeling of plant species’ 
distributions based on their relationship with 
environmental variables is important for a range 
of management activities. Examples include 
management of threatened species and 
communities, risk assessment of non-native 
species in new environments, and the estimation 
of the magnitude of biological responses to 
environmental changes (Ferrier, 2002; Barry 
and Elith, 2006). 
     The analysis of species–environment 
relationship has always been a central issue in 
ecology. The importance of climate to explain 
plant distribution was reported earlier on  
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 (Humboldt and Bonpland, 1807; de Candolle, 
1855). Climate in combination with other 
environmental factors has been much used to 
explain the main vegetation patterns around the 
world (e.g. Salisbury, 1926; Cain, 1944; Good, 
1953; McArthur, 1972; Box, 1981; Stott, 1981; 
Walter, 1985; Woodward, 1987; Ellenberg, 
1988). The quantification of such species–
environment relationships represents the core of 
predictive geographical modeling in ecology. 
These models are generally based on various 
hypotheses as to how environmental factors 
control the distribution of species and 
communities (Austin, 2002). 
     Numerous methods have been developed for 
building predictive species habitat models. 
Guisan and Zimmermann (2000) presented a 
comprehensive review and classified the 
methods into two categories: (1) regression-
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based methods; and (2) environmental envelope 
methods. Regression methods relate species 
response to single or multiple environmental 
predictors. These methods include frequently 
used approaches such as logistic regression (LR; 
Hosmer and Lemeshow, 1989), generalized 
additive modeling (GAM; Hastie and 
Tibshirani, 1990), and classification and 
regression tree (CART; Breiman et al., 1984). 
     Logistic regression is a frequently used 
regression method for modelling species 
distributions (Guisan and Zimmermann, 2000; 
Rushton et al., 2004). This is a particular case of 
Generalised Linear Models (GLM, McCullagh 
and Nelder, 1983). GLM has been recognized in 
ecology for some time as having great 
advantages for dealing with data with different 
error structures particularly presence/absence 
data that is the common type of data available 
for spatial modelling of species distributions 
(Nicholls, 1989, 1991; Rushton et al., 2004). In 
the other hands, logistic regression is one of the 
methods that can predict the probability of 
occurrence of each plant species related to site 
condition factors.  
     Ecologists believe that the relationships 
between plant species and environmental factors 
is non-linear (McCune, 2004). Function of 
logistic regression is a sigmoid curve. This 
method has been used by Wu and Huffer 
(1998), Bio et al., 2002; Austin et al., 1990; 
Carter et al., 2006; Lassueur et al., 2006 for 
predictive species modeling. In this paper, we 
examined the relationship between occurrence 
of plant species with environmental factors in 
Garizat rangelands of Yazd province. Then, 
provided prediction maps for species using LR 
models.  
 
2. Material and methods 
 
2.1. Study area 
 
     This research was conducted in Garizat 
rangelands. The study area was 94130 ha. 
Garizat rangelands are located in the southern of 
Garizat region of the Yazd province in center of 
Iran (31º 04´ 53´´N, 53º 40´ 04´´E to 31º 21´ 
26´´N, 54º 14´ 58´´E) (Fig. 1). The maximum 
elevation of 2100 m and the minimum elevation 
is 1400 m. Average annual precipitation ranges 
from 200 mm to 45 mm (Zare Chahouki, 2006). 
 
2.2. Data collection  
 
     Sampling was done in homogeneous units 
resulted from overlaying of hypsometric, aspect, 

slope and geologic maps. Within each unit 3-5 
parallel transects with 300-500 m length, each 
containing 30-50 quadrates (according to 
vegetation variations) were established and the 
sampling procedure was randomized–
systematic. The quadrate size was determined 
for each vegetation type using the minimal area 
method; hence suitable quadrate size for 
different species ranged from 1*2m to 10*10m 
(2-100 m2). Floristic list, density and canopy 
cover percentage were determined in each 
quadrate. Soil samples were taken from 0-30 
and 30-80 cm in starting and ending points of 
each transect.  
     These samples were air-dried, thoroughly 
mixed, and passed through a 2mm sieve to get 
rid of gravel and boulders. The weight of gravel 
in each sample plot was determined and 
expressed as a percentage of the total weight of 
the soil sample. The portion finer than 2mm was 
kept for physical and chemical analysis 
according to Jackson (1967) and Allen and 
Stainer (1974). Soil texture was determined by 
the hydrometer analysis (Bouyoucos, 1962), 
saturation moisture (weighting method), organic 
carbon (determined using Walkely and Black 
rapid titration, Black, 1979), pH in saturation 
extract (determined by pH meter), electrical 
conductivity (ECe) (determined by conductivity 
meter), lime (determined using 1N HCl, 
Jackson, 1967), soluble calcium and magnesium 
(determined by titration with solution EDTA 
method), soluble chlorine (determined by 
titration with AgNO3), soluble carbonate and 
bicarbonate (determined by titration with H2SO4 
using methylorange and phenolphthalein, 
respectively) and soluble sodium and potassium 
(determined by flame photometry method).  
 
2.3. Data Analysis 
 
     Logistic regression (LR) is a kind of 
generalized linear model (GLM) suitable for 
analysis when response data are binary. It uses a 
logit link to describe the relationship between 
the response and the linear sum of the predictor 
variables (Miller and Franklin, 2002). This is 
accomplished by applying the following 
regression equation, in which presence/absence 
of an object is transformed into a continuous 
probability y ranging from 0 to 1. Values close 
to 1 represent high probability of presence, 
whereas values close to 0 represent high 
probability of absence. In order to discrete y into 
presence and absence, a posterior threshold is 
assigned. 
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Fig. 1. Location of the study area 

 
     Occurrence probability of each plant species 
is calculated with respect to the combined effect 
of site conditions with the following equation: 
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     Where y is the probability; xn is explanatory 
variable; b0 is the constant; and exp is an 
exponential function. 
     To assess possible collinearity problems, 
model coefficients and their errors are checked 
for irregularities and approximate variance 
inflation factors (VIF) are calculated for the 
final regression models (De Veaux and Ungar, 
1994; Dallal 2001). VIF=1/(1−R2), with a 
coefficient of determination (R2) obtained from 
the regression of each explanatory variable (the 
way it appears in the model; i.e. in its linear or 
quadratic form) against all other explanatory 
variables present in the model (also using linear 
or quadratic terms as modeled). A VIF greater 
than 10 is often considered to point at possible 

collinearity problems (Dallal, 2001). Notice that 
the computed variance inflation factors are 
approximate. We used exclusively linear models 
(with first and second-order model terms) for 
VIF calculation, as R2 is not readily available 
for GLM. 
     Models are calculated with individual 
selected variables and their combination (SPSS, 
13.0). The best model is selected based on two 
criteria; i.e. approximate variance explained 
(Nagelkerka R square) and goodness of fit 
(Hosmer and Lemeshow test statistic; for details 
refer to SPSS 13.0).  
 
2.4. Mapping prediction models 
 
     To plants predictive mapping, it is necessary 
to prepare the maps of all affective factors of 
models. Topographic data (elevation, slope, and 
aspect) were derived from DEM with accuracy 
10m.  
     To mapping soil characteristics, 
geoestatistical method including variogram 
analysis and Kriging interpolation were used by 
GS+ Ver. 5.1.1 .  
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     Based on obtained predictive models for 
each species (through LR method) related 
predictive maps were prepared in GIS (Fig. 3). 

 
2.5. Model evaluation 
 
     The best measure of agreement between 
observed (actual vegetation types) and predicted 
presence/absence is Kappa (Cohen 1960; 
Monserud and Leemans, 1992; Bell and 
Fiedling, 1997; Zimmermann and Guisan, 2000; 
Moisen and Frescino, 2002; Robertson et al. 
2003; Liu et al. 2005). Its calculation is based 
on marginal probability of a contingency table. 
Kappa is used as the main measure, in the study, 
to evaluate the models. Monserud and Leemans 
(1992) suggested the following ranges of 
agreement for the  statistic: no agreement, 
<0.05; very poor, 0.05–0.20; poor, 0.20–0.40; 
fair, 0.40–0.55; good, 0.55–0.70; very good, 
0.70–0.85; excellent, 0.85–0.99; and perfect, 
0.99–1.00. Negative values indicate extremely 
poor agreement (Monserud and Leemans, 
1992). We used these ranges to describe the 
levels of agreement reported here using two 
tests. 
 
 
 

3. Results  
 
3.1. LR models 
 
     In the study area, 6 communities; Rheum 
ribes-Artemisia sieberi, A. sieberi- 
Zygophyllum. Eurypterum, Ephedra 
strobilaceae-Z. eurypterum, Cornulaca 
monocnatha, Seidlitzia rosmarinus  and 
Tamarix ramosissima from north to south of 
study area, respectively, were distinguished. 
     Predictive models of abovementioned 
communities are represented in equation 1-6. 
Regarding equation 1, occurrence of R. ribes-A. 
sieberi community has inverse relation with 
clay and positive relation with OM. A. sieberi- 
Zygophyllum. E. community is significantly 
affected by the presence of gravel, lime, 
available water and pH (Eq. 2). Equation 3 
shows that occurrence of E. strobilaceae-Z. 
eurypterum community is dependent to second 
layer gypsum.  
     Factors affecting the distribution of C. 
monocnatha is elevation, gravel and gypsum of 
first layer.  
     Occurrence of S. rosmarinus community has 
positive relation with lime of second layer. 
T. ramosissima community is significantly 
affected by the presence of EC of first layer. 
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3.2. Mapping prediction models 
 
For soil characteristics mapping, at the first, 
spatial structure of data was evaluated in GS+ 
for windows and component of variogram was 

determined (Table 1 and Fig. 2). In next stage, 
point map of soil characteristics were prepared 
in Arc GIS 9.2. Finally, using component 
variogram and kriging interpolation, soil map 
characteristics in 1:50000 scale were provided. 
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Fig. 2. Variogram model for gravel content of the first depth of soils in Garizat rangelands 

 
 
Table 1. Components of variogram analysis for selected soil characteristics. For vegetation types and variables abbreviations, see 
Appendix A. 

Characteristic Model 
Nugget effect 

(%) 
Sill 
(%) 

Effective range 
(m) 

Lag distance 
(m) 

Correlation 
Coefficient 

gr1 Spherical 0.00287 0.94532 19740 4590.52 0.89 
gr2 Spherical 0.0444 0.95820 15640 4590.52 0.81 

clay1 Spherical 0.00276 1.03634 23680 4590.52 0.95 
clay2 Spherical 0.10491 0.97463 16880 4590.52 0.84 
A.W.1 Exponential 0.32999 10.42999 18990 4590.52 0.78 
A.W.2 Spherical 0.17000 8.72000 15720 4590.52 0.79 
O.M1 Spherical 0.00850 3.79235 91710 4590.52 0.96 
O.M2 Spherical 0.00215 3.919989 91710 4590.52 0.97 
lime1 Spherical 0.26279 2.16991 101100 4590.52 0.73 
lime2 Spherical 0.34209 1.94708 101100 4590.52 0.69 
gy1 Spherical 0.003754 2.12352 852900 4590.52 0.90 
gy2 Spherical 0.24988 2.23559 81740 4590.52 0.78 
pH1 Spherical 0.13731 2.60071 101100 4590.52 0.97 
pH2 Spherical 0.66694 1.49709 92480 4590.52 0.93 
EC1 Spherical 0.32951 1.64325 93530 4590.52 0.82 
EC2 Spherical 0.36977 1.71377 97030 4590.52 0.88 

 
3.3. Model evaluation 
 
     The accuracy of the predicted maps were 
tested with actual vegetation maps. In this study, 
the adequacy of vegetation type mapping was 
evaluated using kappa statistics. The values of 
Kappa coefficient based on LR of predicted and 

actual maps of vegetation cover indicates the 
accordance of predicted map for C. monocantha 
habitat is excellent and for E. strobilcaea-Z. 
eurypterum, S. rosmarinus and T. ramosissima 
habitat is good. While for R. ribes-A. sieberi and 
A. sieberi-Z. eurypterum habitat is Fair (Table 
2).    

 
        Table 2. Kappa coefficient and accordance classes for predicted vegetation types. For vegetation types abbreviations 

Vegetation type Kappa Coefficient Accordance class 
R. ribes-A. sieberi 0.51 Fair 

A. sieberi-Z. eurypterum 0.42 Fair 
E. strobilacea-Z. eurypterum 0.58 good 

C. monocnatha 0.90 Excellent 
S. rosmarinus 0.60 good 

T. ramosissima 0.56 good 
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Fig. 3. Predicted map of vegetation types provided by logistic regression
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4. Discussion and conclusion 
 
     The results showed that the presence of 
vegetation types was related to edaphic and 
topographic factors. In general, the most 
important ecological factors affecting on 
vegetation of Garizat rangelands are elevation, 
gravel, texture, lime, EC, pH, gypsum, available 
water and organic matter. Soil physical 
properties are affecting on water availability 
(Enright et al, 2005). Similar to our findings, 
Tavili et al (2009) and Enright et al (2005) 
showed that those environmental factors that 
affect on water availability were the most 
effective on distribution of vegetation in arid 
rangelands.   
     Predictive maps of E. strobilacea-Z. 
eurypterum,  C. monachantha,  S. rosmarinus and  
T. ramosissima, which have narrow amplitude, 
high accordance with actual vegetation map 
prepared for the study area. Among species of 
study area, predictive model of R. ribes-A. 
sieberi and A. sieberi-Z. eurypterum, due to its 
ability to grow in different habitat conditions, is 
not possible. 
     In conclusion, our work has shown that 
evaluating a habitat suitability model based only 
on presences is possible. The result of this 
research confirmed that both GIS expert system 
and logistic regression model are capable of 
predicting the spatial distribution of plant 
species (Yang, 2004). 
     Logistic regression is a suitable method in 
prediction of different plant species occurrence. 
In this study, predictive models of vegetation 
types were provided based on absence-presence 
of species, using logistic regression. Comparing 
results of prediction with real vegetation map of 
the study area shows that in logistic regression 
method absence-presence of species, as a 
dependent variable, is an effective factor for 
predictive species modeling. In this method, it is 
not necessary to use quantification attributes 
like density, frequency, biomass and canopy 
cover. These properties are severely affected by 
sampling method, shape, size and number of 
quadrate, as well as precipitation, while 
absence-presence is not dependent to above-
mentioned factors. 
     Based on the prediction models, it is possible 
to estimate the probability of presence/absence 
of plant species in response to environmental 
factors (He et al, 2007). In case of calibration of 
the resulted models for each species, it is 
possible to apply such models in introduction of 
plant species for rangeland rehabilitation 
activities considering the environmental factors 
affecting establishment of vegetation cover.  
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