
تعداد نشریات | 162 |
تعداد شمارهها | 6,623 |
تعداد مقالات | 71,544 |
تعداد مشاهده مقاله | 126,894,728 |
تعداد دریافت فایل اصل مقاله | 99,941,643 |
پیشبینی ورشکستگی مالی شرکتهای بورس اوراق بهادار تهران با استفاده از شبکههای عصبی مصنوعی | ||
مدیریت صنعتی | ||
مقاله 10، دوره 2، شماره 1 - شماره پیاپی 4، فروردین 1389 اصل مقاله (258.73 K) | ||
نویسندگان | ||
محمدرضا نیک بخت؛ مریم شریفی | ||
دانشگاه تهران | ||
چکیده | ||
هدف اصلی این مقاله پیشبینی ورشکستگی مالی شرکتها در بورس اوراق بهادار تهران به وسیلهی شبکههای عصبی مصنوعی است. مقادیر میانگین مربوط به نسبتهای مالی کلیدی در پژوهشهای صورت گرفته در پیشینه موضوع بهعنوان ورودی شبکههای عصبی انتخاب شدهاند. شبکه عصبی بهکار گرفته شده در این مقاله از نوع پرسپترون چند لایه است که به روش الگوریتم پس انتشار خطا آموزش دیدهاند و شامل شبکه عصبی پیشخور سه لایه با ترکیب (1 : 4 : 5) در آرایش نرونهای ورودی، میانی و خروجی است. نمونه مورد نظر شامل دو گروه شرکتهای ورشکسته و غیر ورشکسته است. گروه ورشکسته بر مبنای ماده 141 قاتون تجارت طی سالهای 1378 لغایت 1385 انتخاب شدهاند و گروه غیرورشکسته نیز بهصورت تصادفی انتخاب شدهاند. مجموعهای مساوی از دادههای فوق با استفاده از شبکههای عصبی و تحلیل تمایزی چندگانه مورد تحلیل قرار گرفتند. مقایسه توانمندی پیشبینیهای شبکه عصبی و تحلیل تمایزی چندگانه نیز ارایه شده است. همچنین صحت پیشبینی شبکههای عصبی با استفاده از نمودار ROC ارائه شده است. نتایج نشان دادند که تفاوت معناداری بین MDA و ANN وجود دارد. همچنین طبق نتایج کم بودن خطای نوع اول بر خطای نوع دوم پیشبینی اولویت دارد. | ||
کلیدواژهها | ||
الگوریتم یادگیری پس انتشار خطا (BP)؛ بورس اوراق بهادار تهران.؛ پیشبینی ورشکستگی؛ مدل شبکههای عصبی مصنوعی (ANN) | ||
آمار تعداد مشاهده مقاله: 4,176 تعداد دریافت فایل اصل مقاله: 3,837 |