(/ / 11 1 1)

*

. ABAQUS .

:

DDA DEM Yu. . Houhe et al. :

.[] . .

Email: vahlotfi@aut.ac.ir : : : , ,

)

. .

.

()

.

.

 $\tau = c - \sigma_n . tan \varphi \qquad ()$ $f'_t = 2R_t = \frac{2C \cos \varphi}{1 + \sin \varphi} \qquad ()$

 $f_c' = 2R_c = \frac{2C\cos\varphi}{1-\sin\varphi} \tag{)}$

 $f_c' = f_t'$.

()

:

[] [].

Parameter	Definition	Rock Types					
		R4	R5	R6	R8	R10	R12
Ε	Modulus of Elasticity (GPa)	4	5	6	8	10	12
V	Poisson's Ratio	0.25	0.25	0.25	0.25	0.25	0.25
$arphi_0$	Friction angle (Degree)	44	44	44	46	48	48
C_0	Cohesion (MPa)	0.7	0.7	0.7	0.8	1	1
γ	Specific Weight (kN/m ³)	26	26	26	26	26	26

().

()

:

.[].

.

Parameter	D25	D35
Compressive strength (MPa)	25	35
Tensile Strength (MPa)	2.5	3.5
Modulus of Elasticity (GPa)	23.6	28.0
Poisson's ratio (v)	0.2	0.2
Specific Weight (kN/m^3)	2.45	2.45

.[]

.

.

Location	Madal	Strong Co	mnonont	Load Combination	
Location	Model	Stress Component		Dead	Dead+ Hydrostatic
	Elastic	Major Princ.	Max. (MPa)	2.95	4.00
Integration Doints		Minor Princ.	Min. (MPa)	-9.91	-14.56
Integration Points	Elasto Plastic	Major Princ.	Max. (MPa)	2.80	2.65
		Minor Princ.	Min. (MPa)	-9.95	-15.26
Element Nodes	Elastic	Major Princ.	Max. (MPa)	3.30	6.44
		Minor Princ.	Min. (MPa)	- 11.91	-16.39
	Elasto Plastic	Major Princ.	Max. (MPa)	2.99	3.34
		Minor Princ.	Min. (MPa)	- 12.03	-17.28

+

+

.

.

.

()

1

()

:

()

.

:

()

()

+

:

()

.

()

.

()()

+

() () + / MPa / MPa

.

.[] (/ MPa) / MPa . ()

() + () () R12 (/ < / < /) $f'_t < \sigma_t < f'_{t(Max)}$

. . ()

(/ MPa)

() (/ MPa) .

.

+

() .() .()

()

Madel Leasting		Strong Cou		Load Combination	
Model	Location	Stress Component		Dead	Dead+Hydrostatic
Elastic	Integration points	Major Princ.	Max. (MPa)	4.24	4.53
		Minor Princ.	Min. (MPa)	-23.72	-23.73
Elasto Plastic	Integration points	Major Princ.	Max. (MPa)	0.85	0.85
		Minor Princ.	Min. (MPa)	-23.34	-23.35

_

:

.

.

 (φ)

MPa) %

 (ψ)

$$(\psi = \varphi - a)$$

:

(c)

Load Combination Location **Stress Component** a Dead+Hydrostatic Dead Major Princ. Max. (MPa) 2.80 2.65 0 Minor Princ. Min. (MPa) -9.95 -15.26 2.82 2.91 Major Princ. Max. (MPa) Dam Body 10 -15.22 Minor Princ. Min. (MPa) -9.97 Major Princ. Max. (MPa) 2.79 3.21 20 -9.97 -15.20 Minor Princ. Min. (MPa) Major Princ. Max. (MPa) 2.81 3.45 30 Minor Princ. Min. (MPa) -9.98 -15.19 Major Princ. Max. (MPa) 0.85 0.85 0 Minor Princ. Min. (MPa) -23.34 -23.35 Rock Foundation 0.86 Major Princ. Max. (MPa) 0.85 10 Minor Princ. Min. (MPa) -23.35 -23.36 Major Princ. Max. (MPa) 0.89 0.89 20 -23.36 Minor Princ. Min. (MPa) -23.36 Major Princ. Max. (MPa) 0.90 0.90 30 -23.36 -23.37 Minor Princ. Min. (MPa)

()

 $\cdot (\psi = \varphi - a)$

()()

+

a

()

(/

.

 (ψ)

Location h		Strong Component		Load Combination		
Location	D	Stress Component		Dead	Dead+Hydrostatic	
Dam Body	0	Major Princ.	Max. (MPa)	2.80	2.65	
		Minor Princ.	Min. (MPa)	-9.95	-15.26	
	10	Major Princ.	Max. (MPa)	2.83	2.55	
		Minor Princ.	Min. (MPa)	-9.98	-15.24	
	20	Major Princ.	Max. (MPa)	3.08	2.62	
		Minor Princ.	Min. (MPa)	-10.21	-14.31	
Rock Foundation	0	Major Princ.	Max. (MPa)	0.85	0.85	
		Minor Princ.	Min. (MPa)	-23.34	-23.35	
	10	Major Princ.	Max. (MPa)	1.14	1.15	
		Minor Princ.	Min. (MPa)	-23.22	-23.23	
	20	Major Princ.	Max. (MPa)	1.41	1.45	
		Minor Princ.	Min. (MPa)	-21.10	-21.14	

I and then I		GL		Load Combination		
Location	a	Stress Component		Dead	Dead+Hydrostatic	
Dam Body	0	Major Princ.	Max. (MPa)	2.80	2.65	
		Minor Princ.	Min. (MPa)	-9.95	-15.26	
	0.2	Major Princ.	Max. (MPa)	3.02	2.39	
		Minor Princ.	Min. (MPa)	-10.06	-15.35	
	0.3	Major Princ.	Max. (MPa)	3.22	2.33	
		Minor Princ.	Min. (MPa)	-10.17	-15.29	
Rock Foundation	0	Major Princ.	Max. (MPa)	0.85	0.85	
		Minor Princ.	Min. (MPa)	-23.34	-23.35	
	0.2	Major Princ.	Max. (MPa)	0.69	0.69	
		Minor Princ.	Min. (MPa)	-23.36	-23.36	
	0.3	Major Princ.	Max. (MPa)	0.60	0.60	
		Minor Princ.	Min. (MPa)	-23.37	-23.38	

0.2

. .

 (c, φ, ψ)

+

1 - Pande, G. N. and Xiong, W. (1982). "An improved multi-laminate model of jointed rock masses." *Inter. Sym. On Numerical models in Geomechanics*, Zurich, PP. 218-226.

+

- 2 Chen, S., Xu, M., Shahrour, I. and Egger, P. (2003). "Analysis of arch dams using coupled trial load and block element methods." *Journal of Geotechnical and Geoenviromental Engineering*, Vol. 129, No. 11.
- 3 Yu, X., Zhou, Y. F. and Peng, S.Z. (2005). "Stability analyses of dam abutments by 3D elasto-plastic finiteelement method: a case study of Houhe gravity-arch dam in china." *Int. J. Rock. Mech. Min. Sci*, Vol. 42, PP. 415-430.
- 4 Khoshboresh, A. (2005). Drilling and grouting of Karun 3 dam, Jaam-e-andisheh, Tehran. [Persian]
- 5 Hosseinzadeh, A. (2007). Three dimensional numerical analysis of stress-strain in arch concrete dams, Using more accurate modeling of foundation, Msc thesis, Amirkabir University of Technology. [Persian]
- 6 Mahab Ghods-Acres JV. (1993). Dam site geological and geotechnical report, KARUN III Development Project, Vol. 1.
- 7 Mahab Ghods-Acres JV. (2001). Dam and thrust block analysis, Design report in KARUN III development project.
- 8 Mahab Ghods-Acres JV. (1992). Dam structural Analysis, KARUN III Development Project.
- 1 Multi Laminate Model
- 2 Finite Element Mesh
- 3 Interface Element
- 4 Joint Element
- 5 Block Theory (BT)
- 6 Distinct Element Method (DEM)
- 7 Discontinuous Deformation Analysis (DDA)
- 8 Integration Points
- 9 Weight-less

10 - Plastic Strain Equivalent (PEEQ). ($\bar{\varepsilon}^{pl} = \int \frac{1}{c} \sigma : d\varepsilon^{pl}$, where c is the cohesion yield stress.