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Abstract 

The pupose of this paper is modeling of Partial Digest Problem (PDP) as a 

mathematical programming problem. In this paper we present a new viewpoint of 

PDP. We formulate the PDP as a continuous optimization problem and develope a 

method to solve this problem. Finally we constract a linear programming model 

for the problem with an additional constraint. This later model can be solved by 

the simplex method in which a restricted basis-entry-rule is defined. 

 
Keywords: Molecular biology; Continuous optimization; Simplex method; DNA; PDP 

 

 

 
* Corresponding author, Tel.: +98-21-66412178, Fax: +98-21-66412178, E-mail: salehi@khayam.ut.ac.ir 

Introduction 

One of the interesting tasks in computational biology 

is Restriction Site Mapping. When a particular 

restriction enzyme is added to a DNA, the DNA is cut at 

particular restriction sites. The goal of restriction site 

mapping is to determine the location of every site for a 

given enzyme. Using gel electrophoresis, one can find 

the distance between each pair of restriction sites. In the 

Partial Digest Problem (PDP), the distances arising from 

digestion experiments with one enzyme are given, and 

the locations of all restriction sites must be computed. 

Let 
0 1= { , ,..., }nX x x x  be the set of restriction site 

locations on a DNA strand. We denote the "multiset" of 

all 
1

2

n
N

+ 
=  
 

 pairwise distances between these site 

locations by =X∆ { | > , ,j i j ix x x x i j− = 0,1,..., }n . 

Suppose that, in PDP, a multiset 
1 2= { , ,..., }

N
B b b b  

of distances is given. Our goal is to find a set 

0 1= { , ,..., }nY y y y  of points on a line such that B is the 

pairwise distance multiset of Y. We denote the 

minimum and maximum of B  by mb  and Mb , 

respectively. 

This problem was presented in the 1930's in the area 

of X-ray crystallography [1]. In 1988 P. Lemke and M. 

Werman, solved it by a pseudo-polynomial time 

algorith[2]. The running time of the presented algorithm 

depends on bM. Skiena et al[3] suggested a backtracking 

algorithm to solve the problem where its running time 

was depended only on n. In 1994, Z. Zhang, by an 

example, showed that the running time of backtracking 

algorithm in worst case is exponential [4]. Then, in 

2000, T. Dakice in his Ph.D. thesis presented a 0 1−  

quadratic programming model for PDP and solved it by 

a heuristic successive semidefinite programming 

algorithm [5]. Finally, in 2005, M. Cieliebak et al. 

proved that Partial Digest Problem is hard to solve for 

erroneous input data [6]. 

Modeling this problem using mathematical 

programming techniqiues, connects it to known and 

powerful algorithms in the area of mathematical 

optimization. In this paper we present a continuous 
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optimization model that can be solved by the well-

known simplex method with restricted entry rule for 

non-basic variables. 

In Section 1, we introduce the continuous 

optimization model for PDP . In section 2 the model is 

converted  to a linear programming problem with an 

additional set of constraints and dvelop an extended 

version of the simplex algorithm to solve the problem. 

Continuous Optimization Model 

Suppose that there are = ( 1) / 2N n n +  line 

segments with lengths of 
1 2
, ,...,

N
b b b . We want to 

place them in a line interval [0, ]Mb  such that the 

multiset of endpoints of these line segments equals to 

1 2= { , ,..., }NB b b b . In other word, we are to provide a 

solution of PDP  with endpoints of line segments. Let a 

line segment with length jb  be denoted as " jb -

segment". It is obvious that the beginning point of 
Mb -

segment is zero  and its endpoint  is 
M

b . Let the 

variables jx  and j Nx + , = 1,2,...,j N show the 

beginning and end points of jb -segment in the interval 

[0, ]Mb , i.e. =j N j jx x b+ −  for all = 1,2,...,j N . 

We design an optimization model with 

1 2 2= { , ,..., }NX x x x  as the decision variables such that, 

at optimality, X  has exactly ( 1)n +  different values 

and the multiset of these  values is equal to B . We 

define  the new set X  by eliminating the replicated 

members of X . (The number of different values in X  

is equal to the cardinality of X , | |X ). 

Each set of values of jx 's that are between zero and 

Mb , and satisfy the constraints =j N j jx x b+ −  

, = 1,2,...,j N , is defined as a "placement" of line 

segments 
1 2, ,..., Nb b b  in interval [0, ]Mb . It is clear that 

a placement in which the number of its endpoints is not 

equal to ( 1)n +  is not desirable. Moreover, in the 

following example, we show that it is possible to place 

the line segments in interval [0, ]
M

b  with ( 1)n +  

endpoints such that the multiset of the endpoints is not 

equal to B . 

 

Example 1. let = {2,2, 2, 4,4, 4,6,6,8,10}B  be the 

input data of PDP . Then we have = 10N , = 4n  and 

the target interval is [0,10] . Also we have: 

1 = 2b ,
2 = 2b ,

3 = 2b ,
4 = 4b ,

5 = 4b ,
6 = 4b , 

7 = 6b ,
8 = 6b ,

9 = 8b ,
10 = 10b . 

Now we present two different placements of these 

line segments in interval [0,10]  with 1 = 5n +  

endpoints, such that one of them is a solution of PDP  

but the other one is not. In the presented placement in 

the Table 1 (placement(1)), X  is equal to 

{0, 4,6,8,10}  and X∆  is equal to B . Therefore, X  is 

a solution of PDP . In the placement(2), Table 2, X    

is equal to {0, 2,4,8,10} but = {2, 2,2, 4,4,6,X∆  

6,8,8,10}  is not equal to B  and ,hence, X  is not a 

solution of PDP . □ 

Review of differences between placement(1) and 

placement(2) is useful to provide the rule of correct 

placing. In placement(1) for each 
kx  from X  there are 

exactly n=4 members of X equal to kx  (see Figure 1), 

but in placement(2) only 
13x  is equal to 2  and there are 

more than 4  members of X  equal to 4 (see Figure 2). 

In placement(2) some 
jb segments−

 
coincide with 

each other, i.e. they have the same beginning and end 

points. For example 4 5,b b  and 6b  are coincided 

together. But in placement(1) there is no coincidence. 

In the following lemma and theorem it is proved that 

each placement of B  with ( 1)n +  different endpoints 

that has no coincidence, is a solution of PDP . 

Lemma 1. If a placement has no coincidence, then its 

set of endpoints consists of at least ( 1)n +  different 

values. 

Proof. If a placement X  does not have any 

coincidence, then each pair of members of X  

corresponds at most to one member of B . Suppose that 

X  has r  members. The number of distinct pairs of the 

members is greater than or equal to N  ( =| |N B ). This 

means: 

 
Table 1. xi's values of placement(1) 

i 1 2 3 4 5 6 7 8 9 10 

bi 2 2 2 4 4 4 6 6 8 10 

xi 4 6 8 0 4 6 0 4 0 0 

xi+10 6 8 10 4 8 10 6 10 8 10  

 
Table 2. xi's values of placement(2) 

i 1 2 3 4 5 6 7 8 9 10 

bi 2 2 2 4 4 4 6 6 8 10 

xi 8 8 0 0 0 0 4 4 0 0 

xi+10 10 10 2 4 4 4 10 10 8 10  
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( )1 1

2 22

n nr n+ +   
≥ =   

   
 

Therefore: 1r n≥ +  □ 

Theorem 1. Let X  be a placement with no coincidence 

and corresponding X  has exactly ( 1)n +  members, 

then X  is a solution of PDP . 

Proof. In a placement with no coincidence each jb  has 

a unique corresponding pair ( , )k lx x , so that =k jx x  

and =l j
N

x x +
. Therefore there are N  distinct pair of 

members of X  corresponding to members of B . On 

the other hand, there is only N  members in X∆ , 

hence there is no member of X∆  that is not in B . That 

is =X B∆ . □ 

Now, in oredr to avoid coincidence, we define a set 

of constraints in placing jb 's. A coincidence occurs 

when two line segments with the same length have 

equal beginning and end points. If we consider the 

following constraint in the placing process, then we 

have no coincidence in a placement: 

= >j i m j ix x b if b b and j i− ≥  (1) 

Suppose that X  is a placement for 

1 2= { , ,..., }NB b b b . We use the term " ε -colony" to 

present a subset of X  such that distance between each 

pair of it's members is less than ε . In other words, the 

subset 
1 2

= { , ,..., }
l l l

r
S x x x  is an ε -colony if 

{ | , = 1,2,..., } <
l l

j i
max x x i j r ε− . It is clear that if 

< mbε  , then there is no line segment placed in an ε -

colony. Moreover with respect to the constraints 1, if 

<ε  { |
3

j i

j

b b
min b

−
 > , ,ib i j  = 1, 2,..., }N , then for 

each pair of ε -colonies 
1S  and 

2S , there is at most one 

ib  such that 
1ix S∈  and 

2i Nx S+ ∈ . Therefore, 

immediately, we have the next theorem: 
 

Theorem 2. In a placement with respect to constraints 1, 

if < { , { | > , , = 1, 2,..., }}
3

j i

m j i

b b
min b min b b i j Nε

−
, 

then there are at least ( 1)n +  ε -colonies such that the 

distance between each pair of them is greater than ε . □ 

Now we constract an optimization model with X  as 

the set of decision variables so that, at optimality, the 

corresponding X  is a solution of PDP . We denote the 

distance between 
ix  and jx  by ijz , i.e. 

=| |ij i jz x x− . To avoid duplication we define 
ijz  

only for j i≥ . 

In order to complete the model we define an 

objective function and a set of constraints.These 

constraints and the objective function ensure that there 

are exactly ( 1)n +  different values for jx  in the 

optimal solution. Let’s define new variables 

, , = 1,2,..., 2 .,ijw i j N j i≥  which indicate the  share of 

ijz  ‘s in the objective function.  

1
( ) ,

( ) (1 ) > .

ij ij

ij

ij ij

M

z if z

w

z if z
b

ε
ε

ε

ε
ε ε ε

−
≤


= 
 − + −


 

Figure 3 shows the curve of this function. 

In the definition of 
ijw , ε  is a positive real value 

less than 1 . When ε  is much smaller than 
M

b
 
, the 

gradient of the first segment of the curve is much 

steeper than the gradient of the second segment. 

Using the following constraints, the next lemma 

shows that adding constraints (2) to the placing process 

restricts the number of ε -colonies to ( 1)n + . 

> <

2 = 1, 2,..., 2 .ij ji

j i j i

w w N n for i N+ ≤ −∑ ∑  (2) 

 

 

Figure 1. Placement(1). 

 

 

Figure 2. Placement(2). 

 

 

Figure 3. Curve of wij. 
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Lemma 2. If we choose 
1

<
2 1N n

ε
− +

 in any 

placement that satisfies constraint (2), then each 

neighbourhood ( )iN xε  has at least n  members for any 

i , where ( ) { || | }.i iN x x x xε ε= − <  

Proof. Suppose that there exist an index i  such that 

( )iN xε  has less than n  members. Then, there are at 

least (2 1)N n− +  variables 
jx , such that =ijz  

| |>i jx x ε− , and: 

> <

> (2 1)(1 )
ij ji

j i j i

w w N n ε+ − + −∑ ∑  

or  

> <

> (2 )
ij ji

j i j i

w w N n+ −∑ ∑  

which violate constraints 2. □ 

With respect to Theorem 2 and Lemma 2, in any 

placement satisfying constraints (1) and (2) for  

1
< { ,

2 1
min

N n
ε

− +
 

 { | > , , = 1, 2,..., , ,1}
3

j i

j i m

b b
min b b i j N b

−
 

we have exactly ( 1)n +  ε -colonies such that each of 

them has exactly n  members. (The number of members 

of X  is 2 = ( 1)N n n + ). 

Now we can state the complete model as follow: 

( P ) 
<

: =
ij

i j

minimize f w∑  

subject to: 

1
( ) ,

=

( ) (1 ) > .

ij ij

ij

ij ij

M

z if z

w

z if z
b

ε
ε

ε

ε
ε ε ε

−
≤


 − + −


 

=| |ij i jz x x−  for > , , = 1,2,..., 2j i i j N , 

=j N j jx x b+ −  for = 1,2,...,j N , 

j i mx x b− ≥  for = ,j ib b > , , = 1,2,..., 2j i i j N , 

> <

2
ij ji

j i j i

w w N n+ ≤ −∑ ∑  for = 1,2,..., 2i N , 

0 j Mx b≤ ≤  for = 1, 2,..., 2j N , 

= 0Nx . 

In problem( P ), ε  is a real number less than: 

1
{ ,

2 1
min

N n− +
 

 
3

{ | > , , =1,2,..., }, , }
3

j i M

j i m

M

b b b
min b b i j N b

b n

−

+
 

Remember that the reasons for constraints, 

1
<

2 1N n
ε

− +
, < mbε  and < { | > ,

3

j i

j i

b b
min b bε

−
 

, = 1,2,..., }i j N  were discussed earlier. In the next 

Theorem we show that the constraint 
3

< M

M

b

b n
ε

+
 , 

(which yields < 1ε ) implies that an optimal solution of 

P , is a solution to the corresponding PDP . 

Theorem 3. If 1 1 1( , , )X Z W  and 2 2 2( , , )X Z W  are two  

feasible solutions of problem P  such that 1X  is a 

solution to the corresponding PDP  and 2X  is not, then 

we have:   

1 1 1 2 2 2( , , ) < ( , , )f X Z W f X Z W  

Proof. Let ( , , )X Z W  be an arbitrary feasible solution 

of P . Any feasible solution of P  satisfies constraints 1 

and 2. Therefore there are exactly ( 1)n +  ε -colonies 

such that each of them has exactly n  members. We 

denote these ε -colonies by [ ] , = 1,2..., ( 1)ix i n +  and 

their length by , = 1, 2..., ( 1)i i nδ + . 

Each pair ([ ] ,[ ] )r lx x  ( > )l r  of these ε -colonies 

defines a unique jb  in B , so that [ ]j rx x∈  and 

[ ]j N lx x+ ∈ . Let's ( )jI x  , ( )jI x  and ( )jI X  are 

defined as follow:  

( ) ={ || |< }, ( ) ={ || |< }j i j j i j N
I x i x x I x i x xε ε

+
− −  

( )={( , )| , ( ) ( ), > , > }jj j mnI x m n m n I x I x z n mε∈ ∪  

It is clear that 2
| ( ) |=jI x n . Let the length of 

colonies that include the beginning and end of 
jb  be 

denoted by jδ  and jδ  respectively, and define ˆ
jδ  as 

follow:  

ˆ =j j jδ δ δ+  

We split the objective function into 1f  and 2f  with 

the following properties: 
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1 2 1 2

<

= , ( , , )= , ( , , )=
ij ij

i j i j

z z
ij ij

f f f f X Z W w f X Z W w

ε ε

< <

≥

+ ∑ ∑  

Now compare the values of the objective function in 
1 1 1

( , , )X Z W  and 2 2 2
( , , )X Z W . It is clear that for 

each 2( , ) ( )jm n I x∈  ( = 1, 2, ,j NL ), we have: 

2 2ˆ
mn j jz b δ≥ −  and for each 1

( , ) ( )jm n I x∈ , 1
=mn jz b . 

Therefore: 

2 1 2 2

2 1( , ) ( ) ( , ) ( )

ˆ( )ij ij j

Mi j I x i j I x
j j

w w n
b

ε
δ

∈ ∈

≥ −∑ ∑  

which implies 

2 1 2 2

2 1=1 =1 =1( , ) ( ) ( , ) ( )

ˆ( )
N N N

ij ij j

j j ji j I x i j I x Mj j

w w n
b

ε
δ

∈ ∈

≥ −∑ ∑ ∑ ∑ ∑  

Now we have 

2 2 2 1 1 1 2 2

1 1

=1

ˆ( , , ) ( , , ) ( )
N

j

jM

f X Z W f X Z W n
b

ε
δ≥ − ∑  

On the other hand  

1
2 2

=1 =1

ˆ =
N n

j i

j i

nδ δ
+

∑ ∑  

Hence  

3 1
2 2 2 1 1 1 2

1 1

=1

( , , ) ( , , )
n

i

iM

n
f X Z W f X Z W

b

ε
δ

+

≥ − ∑ (3) 

Moreover 

1 1 1

2 ( , , ) = 0f X Z W  

and 

1
2 2 2 2 2

2

=1

2
<

1 1
( , , ) =

n

ij i

i j i

z
ij

f X Z W z

ε

ε ε
δ

ε ε

+

<

− −
≥∑ ∑  

Therefore  

1
2 2 2 1 1 1 2

2 2

=1

1
( , , ) ( , , )

n

i

i

f X Z W f X Z W
ε

δ
ε

+−
≥ + ∑ (4) 

With respect to equations 3 and 4 we have 

2 2 2 1 1 1

3 1 1
2 2

=1 =1

( , , ) ( , , )

1n n

i i

i iM

f X Z W f X Z W

n

b

ε ε
δ δ

ε

+ +

≥

−
− +∑ ∑

 

In order to complete the proof, it is sufficient to show 

that  

3 1
<

M

n

b

ε ε

ε

−
 

In problem P  we assumed that 
3

< M

M

b

b n
ε

+
, 

therefore 

3
1

<M

M

b n

b ε

+
 

or : 

3 1
<

M

n

b

ε

ε

−
 

According to 
1

<
2 1N n

ε
− +

, ε  is less than 1  and 

3 1
<

M

n

b

ε ε

ε

−
 □  

Result: If a PDP  has a solution, the corresponding 

model P  has a feasible solution and the optimal 

solution of P  is a solution of PDP .  

It should be mentioned that if PDP  has any solution, 

it has 2k  (for some integer k ) different solutions ,[6], 

for which the value of the objective function in 

corresponding  P  is the same for all of them. 

Presenting a Ppiecewise Linear Programming Model 

In the previous section we presented a continuous 

optimization model for PDP . In this model 
ijw  ‘s are 

nonlinear(piecewise linear) function of ijz ’s. In this 

section we convert this model to a linear programming 

problem with an extra constraint. We write ijw  ‘s and 

ijz  ‘s as convex combinations of the break points in 

curve of 
ijw ’s. 

If 0 ijz ε≤ ≤  , then there are 0
0ijλ ≥  and 1

0ijλ ≥  

such that: 

0 1

0 1 1

0 1 1

= 1

= 0 =

= 0 (1 ) = (1 )

ij ij

ij ij ij ij

ij ij ij ij

z

w

λ λ

λ ελ ελ

λ ε λ ε λ

 +


+


+ − −

 

and if 
ij M

z bε ε≤ ≤ + , then there are 
1

0ijλ ≥  and 

2
0ijλ ≥  so that: 
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1 2

1 2

1 2

= 1

= ( )

= (1 ) 1

ij ij

ij ij ij
M

ij ij ij

z b

w

λ λ

ελ ε λ

ε λ λ

 +


+ +


− +

 

These equations yield:  

0 1 2 1 2

0 1 2 1 2

0 1 2

0 2

= 0 ( ) = ( )

= 0 (1 ) 1 = (1 ) 1

= 1

= 0

ij ij ij ij ij ij
M M

ij ij ij ij ij ij

ij ij ij

ij ij

z b b

w

λ ελ ε λ ελ ε λ

λ ε λ λ ε λ λ

λ λ λ

λ λ

 + + + + +

 + − + − +


+ +



 

We substitute these results in problem P . Before 

substitution, consider that with respect to the objective 

function, the constraint =| |ij i jz x x−  is equivalent to 

the following constraints: 

0

0

ij j i

ij j i

z x x

z x x

+ − ≥


− + ≥
 

After substitutions, we have a linear programming 

problem with an additional set of constraints: 0 2
= 0ij ijλ λ . 

We denote the new problem by P ′ . 

( P ′ ) 1 2

<

: = ((1 ) )
ij ij

i j

minimize f ε λ λ− +∑  

subject to: 

1 2
( ) 0ij M ij j ib x xελ ε λ+ + + − ≥  

 for > , , = 1,2,..., 2j i i j N , 

1 2
( ) 0ij M ij j ib x xελ ε λ+ + − + ≥  

 for > , , = 1,2,..., 2j i i j N , 

=j N j jx x b+ −  = 1,2,...,for j N , 

j i mx x b− ≥

 = , > , , = 1, 2,...,j ifor b b j i i j N , 

1 2 1 2

> <
((1 ) ) ((1 ) ) 2

ij ij ji jij i j i
N nε λ λ ε λ λ− + + − + ≤ −∑ ∑  

 = 1,2,..., 2for i N , 

0 1 2
= 1ij ij ijλ λ λ+ +  for > , , = 1,2,..., 2j i i j N , 

0 2. = 0ij ijλ λ  for > , , = 1,2,..., 2j i i j N , 

0 1 2
, , 0ij ij ijλ λ λ ≥  for > , , = 1,2,..., 2j i i j N , 

0 j Mx b≤ ≤  = 1,2,..., 2for j N , 

= 0Nx . 

As in the problem ( P ), here ε  is a real number less 

than 

1
{ ,

2 1
min

N n− +
 

 
3

{ | > , , =1, 2,..., }, , }
3

j i M

j i m

M

bb b
min b b i j N b

b n

−

+
. 

Problem( P ′ ) could be solved by simplex method 

with "restricted basis-entry-rule". In this rule, 0

ijλ  or 2

ijλ  

is introduced into the basis only if it improves the 

objective function and if the new basis has only one of 
0

ijλ  or 2

ijλ  [1]. In [1], this method has been used for 

obtaining an approximating solution to the separable 

programming. 

Results 

In this paper our goul was to construct and analyse an 

exact mathematical model of Partial Digest Problem and 

propose a proper algorithm to solve it. Hence, we 

developed a continuous optimization model, which is 

solvable by the simplex method with restricted basis-

entry-rule. Theoretically the running time of the simplex 

method is exponential but, in practice, the simplex 

method works surprisingly well and exhibits linear 

complexity; proportional to n m+  where n  and m  are 

the number of variables and constraints respectively in 

the problem. The computational complexity of Partial 

Digest Problem is an open problem. Neither a proof of 

NP-hardness nor a polynomial time algorithm is known 

for this problem. Mathematical programming models 

have a long history in optimization theory and there are 

many powerful methods to solve them. We hope this 

model of PDP , open a new view to this problem. 
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