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Abstract 
A non-abelian finite group G  is called sequenceable if for some positive 

integer k , G  is k -generated ( 1 2, ,..., kG a a a=< > ) and there exist integers 

1 2, ,..., kα α α  such that every element of G  is a term of the k -step generalized 
Fibonacci sequence i ix a= , 1, 2, ,i k= K , 1 2

1 1( ) ( ) ( ) k
i i k i k ix x x xα α α

− − + −= K , 
1i k≥ + . A remarkable application of this definition may be find on the study of 

random covers in the cryptography. The 2-step generalized sequences for the 
dihedral groups studied for their periodicity in 2006 by H. Aydin and it is proved 
that in many cases for 1α  and 2α , they are not periodic. Aydin’s work was in 
continuation of the research works of R. Dikici (1997) and E. Ozkan (2003) where 
they studied the ordinary Fibonacci sequences (sequences without the powers) of 
elements of groups. In this paper we consider 3-step generalized Fibonacci 
sequences and prove that the quaternion group Q

2n  (for every integer 3n ≥ ) and 
the dihedral group 2nD  (for every integer 3n ≥ ) are sequenceable. The α -covers 
together with the Fibonacci lengths of the corresponding 3-step sequences have 
been calculated as well. 
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Introduction 

Let ,G a b=< >  be a non-abelian finite group. The 
well known Fibonacci sequence of G  with respect to 
the generating set { , }A a b=  is defined to be the 
sequence 

1x a= , 2x b=  and 2 1n n nx x x− −= , 3n ≥  

(one may see [1,3,4,6,13,14], for examples). It is 
obvious that each of the following subsets of G  is also 
a generating set for G : 

1 2 3 1 2 3 4 1 2{ , , },{ , , , },...,{ , ,..., }lx x x x x x x x x x  

where, ( )Al LEN G=  is the least positive integer such 
that 
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1 1lx x+ =  and 2 2.lx x+ =  

For every integer 2k ≥  we define the k -step 
generalized Fibonacci sequence as follows: 
 
Definition 1.1. For every integer k  where, 
2 ( )Ak LEN G≤ < , the sequence { }1iy ∞  of the 
elements of G  defined by 

1 2
1 1

, 1,..., ,

( ) ( ) ...( ) , 1k

i i

i i k i k i

y x i k

y y y y i kα α α
− − + −

= =⎧
⎪
⎨ = ≥ +⎪⎩

 

is called a k -step generalized Fibonacci sequence of 
G , for some positive integers 1 2, ,..., .kα α α  
 
Definition 1.2. For an integer 2k ≥ , a non-abelian 
finite group ,G a b=< >  is called a k -sequenceable 
group if every element of G  is a term of a periodic k -
step generalized Fibonacci sequence where, k ≤  

( )ALEN G  and { , }A a b= . Moreover, G  is called 
sequenceable if G  is k-sequenceable for some integer k. 

Note that there are differences between our definition 
of k -step generalized Fibonacci sequence and the k -
nacci sequence of Aydin [2]. The article [2] is a nice 
generalization of the ordinary Fibonacci sequences of 
elements of a group and this article studies the 2-step 
generalized Fibonacci sequences by proving that the 2-
step generalized Fibonacci sequences are not periodic in 
many cases. The article [2] is in continuation of the 
articles [5] and [9] which studying the ordinary 3-step 
Fibonacci sequences (as a notation of these articles the 
“ordinary” is used for the sequences without powers) in 
certain classes of finite groups. The basic difference 
between our results in this paper and the approaches of 
the articles [5] and [9] is the considering of 3-step 
generalized Fibonacci sequences and the notion of 
sequenceable groups which was posed firstly in [2], 
inspired us to give the Definition 1.2 and to pose two 
natural questions: which groups are sequenceable? And 
how applicable may be the sequenceability of finite 
groups? 

To investigate these questions we follow Svaba [12] 
and recall the notion of a cover of a finite group: 
 
Definition 1.3. Let G  be a finite group and 

1 2[ , ,..., ]sA A Aα =  be a collection of ordered subsets 

1 2[ , ,..., ]
ii i i irA a a a=  of G . Then α  is called a cover 

for G  if for every element g G∈  there exist elements 

iij ia A∈  such that 

1 21 2 ... .
sj j sjg a a a=  

This cover is known as an α -cover for G . 
The covers and α -covers are the interesting and 

important tools in generation of random covers which 
themselves are useful in the cryptography, specially 
when G  is non-abelian (one may see [7,8,10,11,12], for 
examples). 

As a result of finiteness of the group ,G a b=< > , 
( )ALEN G  is finite. 

A k -step generalized Fibonacci sequence { }1iy ∞  
may be periodic and to distinguish this period with the 
Fibonacci length ( )ALEN G  we have to give the 
following definition. 
 
Definition 1.4. For a finite non-abelian group 

,G a b=< > , the period of a k -step generalized 

Fibonacci sequence { }1ix ∞  is called the k -step 
Fibonacci length of G  and will be denoted by 

1( , ,..., ).A kLEN G x x  
This number depends on the fixed integers 1,..., kα α  

of the Definition 1.1. 
We are now ready to investigate the posed questions. 

Indeed, in what follows we prove that the quaternion 
group 

2nQ  and dihedral group 2nD  are 3-sequenceable 
for every integer 3n ≥ . 

Moreover, following the Definition 1.3, if we let iA  
as singleton subsets, then by proving the sequenceability 
of a group G , we are able to give an α -cover for G . 
In this paper we will construct the appropriate α -
covers for the considered groups. 

Sequenceability of D2n, (n ≥ 3) 

Let 2 2
2 , | ( ) 1 .n

nD x y x y xy=< = = = >  For every 
integer 3n ≥ , we define the 3-step generalized 
Fibonacci sequence { }1ma ∞  of the elements of 2nD  as 
follow: 

1 2 3, , ,a x a y a xy= = =  

3 2 1( ) , 4m m m ma a a a mβ
− − −= ≥  

for a positive integer β . 
Our main results in this section are the Propositions 

2.1 and 2.4. These propositions identify the values of β  
for different values of the integer n . 
 
Proposition 2.1. For every even value of 4n ≥  and 

1nβ = − , { }1ma ∞  is periodic. Moreover, For every 
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element 2ng D∈ , there exists an integer 1m ≥  such 
that .mg a=  

To prove this proposition first we identify the 
elements of { }1ma ∞  by the following lemma. 
 
Lemma 2.2. Let n  be even. Then, every element of 
{ }1ma ∞  where, 

1 2 3

1
3 2 1

, , ,

, 4n
m m m m

a x a y a xy

a a a a m−
− − −

= = =

= ≥
 

may be represented by 
1

2

2

,

, .

m

m
m

x y m is odd
a

y m is even

−⎧
⎪
⎪= ⎨
⎪
⎪⎩

 

 
Proof. We argue by induction on m . For 1m = , 

2m =  and 3m =  it is true and by the induction 
hypothesis, if the assertion holds for 1m − , 2m −  and 

3m − , then we may consider two cases for m : 
Case 1: m  is even, then 1m −  and 3m −  are odd, 

so, 
1

3 2 1

( 4)/2 ( 2)/ 2 1 ( 2)/2( )

n
m m m m

m m n m

a a a a

xy y xy

−
− − −

− − − −

=

=
 

( 4)/ 2 ( 1)( 2)/ 2 ( 2)/ 2m n m mxy xy− + − − −=  

(( 4)/ 2 ( 1)( 2)/ 2) 2 ( 2)/ 2 ,m n m my x y− − + − − −=  

(for, 2( ) 1xy =  yields k kxy y x−= ) 

( 4 ( 1)( 2) 2)/ 2m n m m
ma y − + − − − + −=  

( 2)/ 2 ( 4 2 2)/ 2n m m m my y− − − + + − + −=  

/2 .m
ma y=  

Case 2: m  is odd, then 1m −  and 3m −  are even 
and we proceed in the similar way as above to show that 

( 1)/ 2m
ma xy −= . 

 
Proof of Proposition 2.1. Every element g  of the 
group 

2 2
2 , | ( ) 1n

nD x y x y xy=< = = = >  

may be written in the form i jg x y=  where 0,1i =  

and 0,1,..., 1j n= − . If 0i =  then 2 ,jg a=  and if 
1i =  then 

2 1jg a +=  by using Lemma 2.2. To find the 

period of { }1ma ∞  we show that 

2 1 2 3( , , , ) 2A nLEN D a a a n=  where, { , }A x y= . 

Let 2 1 2 3( , , , )A nLEN D a a a t= . Then the equations 

1 1ta a+ = , 2 2ta a+ =  and 3 3ta a+ =  hold, or 
equivalently, 

1 2 3, , .t t ta x a y a xy+ + += = =  

If t  is even then using Lemma 2.2, gives us 
/ 2txy x= , ( 2)/2ty y+ =  and ( 2)/2 ,txy xy+ =  i.e.; 

/ 2 1.ty =  Since y  is of order n  then, 2 .t n=  
However, t  is not an odd integer, for, in this case the 
equation 1ta x+ =  yields ( 1)/2ty x+ =  which shows that 

2nD  is an abelian group. Consequently, 

2 1 2 3( , , , ) 2A nLEN D a a a n= . 

 
Lemma 2.3. For every odd value of n  consider the 
group 

2 2
2 , | ( ) 1 ,n

nD x y x y xy=< = = = >  

And the sequence { }1mc ∞  as follows: 

1 2 3, , ,c x c y c xy= = =  

3
3 2 1, 4.m m m mc c c c m− − −= ≥  

Then for every 1m ≥ , 

( )
2

1( )
2

2

1
2

, 0(mod 4)

, 1(mod 4)

, 2(mod 4)

, 3(mod 4).

m

m

m m

m

y m

xy m
c

y m

xy m

−

−−

−

⎧
≡⎪

⎪
⎪ ≡⎪= ⎨
⎪ ≡⎪
⎪

≡⎪⎩

 

 
Proof. We argue by induction on m . The assertion 
holds for 1m = , 2m =  and 3m = . Let 4m ≥  and 
suppose that the assertion holds for all integers k m< . 
Consider four cases for m  modulo 4. 

If m 0(mod4)≡ , then 1 3(mod 4)m − ≡ , 2m −  
2(mod 4)≡  and 3 1(mod 4)m − ≡ . 
We now use the induction hypothesis and get: 
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3 ( 4)/2 ( 2)/ 2 3 ( 2)/2
3 2 1 ( )m m m

m m m mc c c c xy y xy− − − −
− − −= =  

     /2 2 3 / 2 3 / 2 1 1 /2 1m m m m mxy y xy xy xy− + − − − −= =  

     2 1 /2 1 /2m m mx y y y− + − −= = . 

Proofs in other cases are similar. 
 
Proposition 2.4. For every odd values of 3n ≥ , the 
sequence { }1mc ∞  defined as above, is periodic. 
Moreover, for every element 2 ,ng D∈  there exists an 
integer 1m ≥  such that .mg c=  
 
Proof. Since n  is odd then by Lemma 2.3, we get: 

2
1 2 3 4, , , ,c x c y c xy c y −= = = =  

2 3 3 4
5 6 7 8, , , ,c xy c y c xy c y− −= = = =  

4 5 5
9 10 11 2 2, , ,..., ,nc xy c y c xy c y−

−= = = =  

1
2 1 2 2 1 2 2, 1, , ,n n n nc xy c c x c y −

− + += = = =  

1 2 2
2 3 2 4 2 5, , ,n n nc xy c y c xy−

+ + += = =  

3 3 4
2 6 2 7 2 8, , ,n n nc y c xy c y− −

+ + += = =  

4 1 1
2 9 4 2 4 1,..., , ,n n nc xy c y c xy− −

+ − −= = =  

4 4 1 4 21, , ,n n nc c x c y+ += = =  4 3 ,...nc xy+ = . 

Every element of 2nD  appears exactly twice in the 
set 1 2 4{ , ,..., }nc c c  and 

2 1 2 3( , , , ) 4 ,A nLEN D c c c n=  (where, { , }A x y= ) for, 
if 2 1 2 3( , , , ) ,A nLEN D c c c t=  then the equations, 

1 1tc c x+ = = , 2 2tc c y+ = = , and 3 3tc c xy+ = =  hold. 
The integer t is even, for, otherwise ( 1)/2

1
t

tc y − +
+ =  or 

( 1)/2
1

t
tc y +

+ =  thus ( 1)/2tx y − +=  or ( 1)/2tx y += . That is, 

2nD  is abelian. Also, if 2(mod 4)t ≡ , then we get 
( 2)/2

2
t

tc y − +
+ = . So, /2 1txy y − −=  which yields the 

contradiction / 2 2 .tx y − −=  Hence 0(mod 4)t ≡ , and 
then /2

1
t

tc xy −
+ = , ( 2)/2

2
t

tc y +
+ =  and ( 2)/ 2

3 .t
tc xy +

+ =  
Thus /2 ( 2)/ 2,t txy x y y− += =  and ( 2)/2 ,txy xy+ =  
i.e.; /2 1ty =  holds and the least value of t  is indeed 
4n . 

Sequenceability of ≥
2

3nQ ,n  
For every integer 3n ≥  the generalized quaternion 

group 
2nQ  is defined by the presentation 

1 22 2 2 1 1
2

, | 1, ,
n n

nQ x y x y x y xy x
− − − −=< = = = >  

which is finite of order 2n . The main result of this 
section is: 
 
Proposition 3.1. For every integer 3n ≥  the group 

2nQ  
is 3-sequenceable. 
 

Proof. Consider the sequence { }1ib ∞  of the elements of 

2nQ  as follows: 

1 2 3, , ,b x b y b xy= = =  

7
3 2 1( ) , ( 4).k k k kb b b b k− − −= ≥  

This is a generalized 3-step Fibonacci sequence and 
we show that for every 1,k ≥  kb  may be represented 
by: if 1(mod8)k ≡  then, 

2

3 1 ( 1)( 9)( ) 22 2

3 1 ( 1)( 9)( ) (( 1)( 9)) ... 2 22 2

( 1)( 9), ( ) 2 ,
2

( 1)( 9), ( ) 2 ,
2

n

k k k
n

k k k k k k n

k kx
b

k kx
−

+ − − ′+ −

+ − − ′ ′+ + − − + + −

⎧ − − ′ ≥⎪⎪= ⎨
− −⎪ ′ <⎪⎩

 

where, 1 2 7nk≤ ≤ − , 
if 2(mod8)k ≡  then, 

4

5

4 4
2

5 4

( 2)2 4( )
22 2

5

( 2) ( 2)2 4( ) ( ) ... 2
22 2 2

5

( 2),( ) 2 ,
2

( 2),( ) 2 ,
2

n

kk
n

k k kk
n

kx y
b

kx y
−

−− ′+
−

− −− ′ ′+ + + +
−

⎧ − ′⎪ ≥
⎪= ⎨
⎪ − ′ <⎪⎩

 

where, 2 2 6nk≤ ≤ − , 
if 3(mod8)k ≡  then, 

2

9 25 ( 3)( 11)( ) 22 2

9 25 ( 3)( 11)( ) (( 3)( 11)) ... 2 22 2

( 3)( 11), ( ) 2 ,
2

( 3)( 11), ( ) 2 ,
2

n

k k k
n

k k k k k k n

k kx y
b

k kx y
−

− − − ′+ −

− − − ′ ′+ + − − + + −

⎧ − − ′ ≥⎪⎪= ⎨
− −⎪ ′ <⎪⎩

 

where, 3 2 5nk≤ ≤ − , 
if 4(mod8)k ≡  then, 

4

5

4 4
2

5 4

( 4)5 20 4( )
22 2

5

( 4) ( 4)5 20 4( ) ( ) ... 2
22 2 2

5

( 4),( ) 2 ,
2

( 4),( ) 2 ,
2

n

kk
n

k k kk
n

kx
b

kx
−

−− + ′+
−

− −− + ′ ′+ + + +
−

⎧ − ′⎪ ≥
⎪= ⎨
⎪ − ′ <⎪⎩

 

where, 4 2 4nk≤ ≤ − , 
if 5(mod8)k ≡  then, 

2

13 63 ( 5)( 13)( ) 22 2

13 63 ( 5)( 13)( ) (( 5)( 13)) ... 2 22 2

( 5)( 13), ( ) 2 ,
2

( 5)( 13), ( ) 2 ,
2

n

k k k
n

k k k k k k n

k kx
b

k kx
−

− + − − ′− −

− + − − ′ ′− + − − + + −

⎧ − − ′ ≥⎪⎪= ⎨
− −⎪ ′ <⎪⎩
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where, 5 2 3nk≤ ≤ − , 
if 6(mod8)k ≡  then, 

4

5

4 4
2

5 4

9 50 ( 6)( 14) ( 6) 4( ) ( ) 22 2 2
5

9 50 ( 6)( 14) ( 6) ( 6) 4( ) ( ) ( ) ... 2 22 2 2 2
5

( 6), ( ) 2 ,
2

( 6), ( ) 2 ,
2

n

k k k k
n

k k k k k k
n

kx y
b

kx y
−

− − − −′ ′+ − −

− − − − −′ ′ ′+ − + + + −

⎧ − ′ ≥⎪
⎪= ⎨
⎪ − ′ <⎪⎩

 

where, 6 2 2nk≤ ≤ − , 
if 7(mod8)k ≡  then, 

2

9 73 ( 7)( 15)( ) 22 2

9 73 ( 7)( 15)( ) (( 7)( 15)) ... 2 22 2

( 7)( 15), ( ) 2 ,
2

( 7)( 15), ( ) 2 ,
2

n

k k k
n

k k k k k k n

k kx y
b

k kx y
−

− − − ′+ −

− − − ′ ′+ + − − + + −

⎧ − − ′ ≥⎪⎪= ⎨
− −⎪ ′ <⎪⎩

 

where, 7 2 1nk≤ ≤ − , 
if 0(mod8)k ≡  then, 

4

5

4 4
2

5 4

13 116 ( 8)( 16) ( 8) 4( ) ( ) 22 2 2
5

13 116 ( 8)( 16) ( 8) ( 8) 4( ) ( ) ( ) ... 2 22 2 2 2
5

( 8), ( ) 2 ,
2

( 8), ( ) 2 ,
2

n

k k k k
n

k k k k k k
n

kx
b

kx
−

− + − − −′ ′− − −

− + − − − −′ ′ ′− − + + + −

⎧ − ′ ≥⎪
⎪= ⎨
⎪ − ′ <⎪⎩

 

where, 8 2 ,nk≤ ≤  in which, ( ) aa
q

′ =  where q  is the 

largest odd integer such that q  dividing a . 
Proof is easy by using the induction on k  by 

considering 32 cases. For example, let 0(mod8)k ≡ . 
The assertion holds for 1, 2,...,8k = . Let 8k >  and 

let the assertion holds for every t k< . Suppose 
8 2sk q− = , for some positive integer s , where q  is 

an odd integer, i.e.; 

( 8)k ′− = 8k
q
− , similarly, let 16( 16) kk

q
−′− =

′
. 

Let 
4

2
5

( 8) 2
2

nk −− ≥  and 2( 8)( 16) 2
2

nk k −− − ≥ . Observe 

that 1 7, 2 6k k− ≡ − ≡  and 3 5k − ≡ . So, 
7

3 2 1( )k k k kb b b b− − −=  

( 8)( 16)13( 3) 63 ( )
2

k kk
x

− − ′− − + −
=  

   . 
4

5
9( 2) 50 ( 8)( 16) ( 8)( ) ( )

72 2 2
k k k k

x y
− − − − −′ ′+ −

 

   . 
9( 1) 73 ( 8)( 16)( )

2 2
k k k

x y
− − − − ′+

 
4

5
13 102 ( 8)( 16) 9 68 ( 8)( 16) ( 8)( ) ( ) ( )

2 2 2 2 2
k k k k k k k

x
− + − − − − − −′ ′ ′− + + −

=  

   .
9 82 ( 8)( 16)( )

2 2
k k k

x
− − − ′− −

 

4

5 4
13 116 ( 8)( 16) ( 8)

2 2 2
k k k k

qq qx
− + − − −− −

′=  
4

5
13 116 ( 8)( 16) ( 8)( ) ( )

2 2 2 ,
k k k k

x
− + − − −′ ′− −

=  

As required. 
To prove the sequenceability of 

2nQ , we consider its 

relations. By the relations 1 1y xy x− −=  and 
22 2n

y x
−

= , 
we deduce that every element 

2ng Q∈  may be written 
in the form 

2, 0 2 , 0 1.i j ng x y i j−= ≤ ≤ ≤ ≤  

The rest of proof is similar to that of the Proposition 
2.1 by considering two cases : 0j =  and 1j = . This 
proves that kg b= , for some integer 1k ≥ . 

Note that the defined sequence { }kb  as above, is 
periodic. Moreover, 1 2 32

( , , , ) 2n
n

ALEN Q b b b = , for, if 

1 2 32
( , , , )nAt LEN Q b b b=  then the equations 1 1tb b+ = , 

2 2tb b+ =  and 3 3tb b+ =  hold. Suppose 2nt ≠ . Since 
3n ≥  then (mod8)t a≡  where, { 1, 2, 3, 4}a ∈ ± ± ± . In 

each case we get a contradiction. For example, if 
1(mod8)t ≡  then 1 2(mod8)t + ≡ . So, 

If 
4

2
5

( 1)( ) 2
2

nt −− ′ ≥  then 
4

5
1 ( 1)( )

2 2
t t

x y x
− − ′+

=  which shows 

that 
2nQ  is abelian, and if 

4
2

5

( 1)( ) 2
2

nt −− ′ <  

Then, 
4 4

2
5 4

1 ( 1) ( 1)( ) ( ) ... 2
2 2 2

nt t t

x y
−− − −′ ′+ + + +

= x  which also 
proves the abelianity of 

2nQ . 

Results 

For every even value of n , an α -cover for 2nD , 
may be given by using the sequence { }na  as follows: 

1 2 2[ , ,..., ], {1, }.n i iA A A A aα = =  

Also for the odd values of n  we use the sequence 
{ }nc  and define 

1 2 4[ , ,..., ], {1, }.n i iA A A A cα = =  

Similarly, an α -cover for 
2nQ  may be defined by 

using the sequence { }nb  as 

1 2 2[ , ,..., ], {1, }.n i iB B B B bα = =  
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Each of these covers are indeed logarithmic 
signatures (i.e., representing every element of the 
groups in terms of Ai or Bi, is unique, see [12] for the 
definition and for the properties ). To prove this 
property it is sufficient to consider the following 
obtained results: 

2

2

2

( ) 2 , even,
( ) 4 , odd,
( ) 2 , 3.n

A n

A n
n

A

LEN D n n
LEN D n n
LEN Q n

⎧ =
⎪ =⎨
⎪ = ≥⎩
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