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the ability to generate high quality feasibale solutions, whenever such 
a solution exist. 

 
• In terms of quality of solution both algorithm (GA and SA) 

obtained same result but in terms of computation time 
simulated annealing prformance was better than genetic 
algorithm. 

• Simulated annealing is easy to understand and also easier than 
genetic algorith to code. 

• Simulated annealing can easily handel change in the objective 
function. But in enetic algorith me need to have fitness 
function, which some times makes problem. 

• Simulated annealing can be simply stated and that lend 
themselves more readily to analysis 

4. Conclusion  
In this paper we focused in the performance of genetic algorithm and 
simulated annealing in optimal part replacement. Some evaluation 
criteria were explained. Although there are not too many application 
of SA and GA in optimal preventive part replacement for minimum 
downtime maintenance planning. But it was decided to recommend 
using simulated annealing approach in this topic.  
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3. Evaluation criteria for approximate algorithms 
Some output are evidenced in table 3 and figure 1,which shows that 
the result produced by both algorithms are same. Some evaluation 
criteria are explained in order to compare the performance of 
algorithms. In other word, which algorithm is more suitable for 
optimal preventive part replacement? 
a) Quality of solution and computation time 
Solution quality and computation time of an algorithm are important 
criteria to assess the effectiveness of an algorithm. A reasonable 
running time is a very important element of algorithm evaluation and 
implementation. Therefore, a very desirable algorithm would be one 
that is equipped with a set of adjustable parameters, that would allow 
the user to meet changes in emphasis between cost and performance 
through controlling the trade-off between the quality of the solution 
and the amount of computational effort. 
b) Code difficulty and ease of implementation 
 It is difficult to measure the intricacy and simplicity of coding of a 
particular algorithm.Algorithm principles must be simple, not 
cumbersome; generally applicable, not problem specific. This 
generality would enable an easy implementation of the algorithm to 
new domain areas with little a priori knowledge of the problem 
structure. 
c) Flexibility 

Since heuristic algorithms are typically involved in the solution of 
real world problems, it is important that they should be flexible. In 
particular, they should easily handle changes in the model, constraints 
and objective function. 
d) Simplicity and analysability 
There is a significant appeal of algorithms that can be simply stated 
and that lend themselves more readily to analysis. Extremely complex 
algorithms are less likely to be analyzed in terms of flexibility and 
quality of solution than a simple algorithm. 
e) Robustness 
This class of algorithms have a number of desirable characteristics 
including: the ability to perfrm parametric analysis; a good 
characterisation that would enable a user to prove that the solution is 
within a certain percentage error(devation) from the optimal solution; 
 



A Comparison Between Genetic Algorithm and Simulated... 

 

 

115

Here follows a description of a genetic algorithm where k1 is the 
number of generations and k 2  is the number of selections per 
generation. At each of iteration t = 1,..., k1 , apply k 2  times steps 1 
through 3, then apply step4  

Step 1, selection. Randomly select two parents from X t , with a 
probability inversely related to the value of /)()( rrr TTD τ+=  

])([ frr Tg ττ +  the fitness function.  
Step 2, one-point crossover. Create two offspring from the two parents 

by swapping a bit string located after a randomly selected cut point. 
Step 3, mutation. Apply a random mutation to each offspring by 

flipping bits with small probability. 
Step 4, new population. Obtain X 1+t  from X t  by removing the 

2k 2 worst solutions in X t  and replace them with the 2k 2  offspring 
just created. 

Some output samples are evidence in figure 1, which show that 
generations finally settle at fixed values, rendering optimal solutions. 
The outputs read as xmax=5 and max=160.24, which 
indicates 5=rT (weeks) and minimum value of )( rTD as 1/160.24 = 
0.0062. Therefore, the same results as observed from table 2, are 
obtained by the application of genetic algorithm. 

 
Table 4. Output sample for generations 49 and 50 

------------------------------------------------------------------------------------ 
                                           Population Report 
               Generation 49                                                                  Generations 50 
  #  string          x            fitness        #   parents        xsite           string             x            fitness   
 
   0) 0101         5.00       160.24        | 0) ( 1   ,  8)           0            0101            5.00        160.24 
  1) 0101         5.00       160.24        | 1) (  1  ,  8)           0            0101            5.00        160.24 
   2) 0101         5.00       160.24        | 2) (  8  ,  4)           1            0101            5.00        160.24 
   3) 0101         5.00       160.24        | 3) (  8  ,  4)           1            0101            5.00        160.24 
   4) 0101         5.00       160.24        | 4) (  8  ,  6)           3            0101            5.00        160.24 
   5) 0101         5.00       160.24        | 5) (  8  ,  6)           3            0101            5.00        160.24 
   6) 0101         5.00       160.24        | 6) (  5  ,  2)           1            0101            5.00        160.24 
   7) 0001         1.00          42.90       | 7) (  5  ,  2)           1            0101            5.00        160.24 
   8) 0101         5.00       160.24        | 8) (  0  ,  6)           0            0101            5.00        160.24 
   9) 0101         5.00       160.24        | 9) (  0  ,  6)           0            0101            5.00        160.24 
----------------------------------------------------------------------------------------------------------------- 
Note: Generation 50& Accumulated Statistics: xmax=5 max=160.24 min=160.24 
avg= 160.24 sum=1602.43 nmutation=64 ncross=167 
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         Else if random (0,1) )/exp( Tσ−< then ;ji =  
;1+= mm  

       Until  );(tNm =  
1+= tt ; 
);(tTT =  

Until stopping criterion true (number of iterations) 
 
After some initial experiments (results not recorded) testing the 

effect of different values, a series of experimental runs was carried out 
where some parameters was given two possible values in the region of 
what was expected to be a suitable value. The table (3) show the 
different values for the parameters.  

T : initial temperature 
N: number of iterations 
r: the temperature update rule 
Sc: stopping criteria 

)( rTD : Minimum downtime 
No.its: total of number of the iterations 
CPU: total time in second 
 

Table 3. Experiment with different values of the different parameters (T=200) 
T N r Sc )( rTD  No.its CPU 

200 100 0.99 50 0.0062 11057 421 
200 100 0.99 20 0.0062 9687 367 
200 100 0.90 50 0.0068 6939 187 
200 100 0.90 20 0.0068 4569 134 
200 50 0.99 50 0.0062 11057 421 
200 50 0.99 20 0.0062 9687 367 
200 50 0.90 50 0.0071 3339 157 
200 50 0.90 20 0.0071 2969 123 

 
The result produced by the computer program (table3) was same 

with the result that obtainable by ordinary methods.  

2-2. Genetic algorithm procedure:  
Genetic algorithms are rooted in the work of Fogel et al. [4] and Holland [10]. 
They work on a population of solutions. At each step, a new population is 
derived from the preceding one by combining some of its best elements and 
discarding the worst. 
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Table 1. Value of replacement function 
N 0 1 2 3 4 5 6 7 8 9 

g(n) 0 0.001 0.006 0.023 0.067 0.159 0.310 0.504 0.698 0.868 
 

Table 2. Minimum downtime 
Tr 1 2 3 4 5 6 7 8 9 

D(Tr) 0.0232 0.0119 0.0082 0.0067 0.0062 0.0064 0.0068 0.0071 0.0072 
 

2-1. Simulated annealing procedure 
The simulated annealing algorithm has its origins in statistical 
mechanics. The interest in simulated annealing began with the work of 
Kirkpatrick [8], and Cerny [1]. They proposed a simulated annealing 
algorithm, which is based on the analogy between the annealing 
process of solids and the problem of solving optimization problems. 

Having above defined all simulated annealing terminology and its 
analogy with statistical mechanics, simulated annealing can be seen as 
a generalized iterative improvement algorithm [10]. The simulated 
annealing algorithm steps are summarized as follows:  

Select an initial state )( 1TDi =  
       0)0( =g , ;1=n  

      ∫∑
+−

=

−−+=
Ti

iT

n

i
dttpingng

)1(1

0
})()]1(1{[)( ,  

     )/(])([)( rrfrrr TTgTD τττ ++=  
Select an initial temperature ;0>T  
     Set temperature change counter ;0=t  
Repeat 
   Set repetition counter ;0=m  
Repeat 
   Generate state j, a neighbour of i;  

;1+= nn  

∫∑
+−

=

−−+=
Ti

iT

n

i
dttpingng

)1(1

0
})()]1(1{[)( ,  

)/(])([)( rrfrrr TTgTDj τττ ++==  
    Calculate    );()( ifjf −=σ   

  If   0<σ  then ;ji =  
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∫∑
+−

=

−−+=
Ti

iT

n

i
dttpingng

)1(1

0
})()]1(1{[)(              (1) 

Known as the replacement function, stats at 0)0( =g , due to the 
fact that 0)( =ntg , for 0=n , i.e., there is no renewal at the time 
origin )0( =t . There on, it renders the number of renewals or 
replacements as )(ng , at discrete time intervals nT, for any number n, 
used as a multiple of an arbitrary constant time interval, T. the 
equipment is, however, supposed to fail according to some probability 
density function p(t). In optimal part replacement policies, the 
replacement function, given by equation (1), is used to formulate the 
required strategy. This is usually accomplished by minimizing or 
maximizing a desired objective function. As a major tendency, the 
optimality of part preventive replacements and also required due to the 
random failures that may occur. Hence, the function to be minimized 
can be written as [2]: 

)/(])([)( rrfrrr TTgTD τττ ++=      (2) 
In the above equation, the total downtime )( rTD is minimized with 

respect to the replacement time rT . The parameters rτ and fτ are the 
times required for a preventive replacement and a replacement forced 
due to failure, respectively. The value for )( rTg can also be computed 
from equation (1), for nTTr = . In practice, the values of )( rTg are 
obtained, iteratively, from equation (1) and substituted in equation (2), 
to find the value of rT  which minimizes )( rTD , as a numerical 
solution [2][3]. As a numerical example, consider an equipment with a 
failure characteristic following the Gaussian probability distribution 
function with parameters, 7=µ and 2=δ . (weeks, day), as the mean 
and standard deviation, respectively. Suppose, also, that, 

0238.0=rτ and 0476.0=fτ weeks. Hence, iterating equation (1), 
with 1=T (week) and )(tp as a Gaussian probability density function 
with the given parameters, the values shown in table (1) can be 
obtained. Then substituting these values for )( rTg , together with the 
given values of rτ and fτ , in equation (2), table (2) can be computed. 
As it can be seen in table (2), the minimum value of )( rTD occurs at 

5=rT (weeks); that is, the optimum preventive replacement period, 
for minimum downtime is 5 weeks. 
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1. Introduction 
In most of these problems, the optimal solution is computationally 
difficult to obtain. Hence, it is important to have approximate 
algorithms (heuristics) which can provide near optimal solutions for 
large - sized problems in a reasonable amount of computational time. 

Of late, a lot of research attention has been focused on the 
development of intelligent and effective heuristic approaches that 
solve large problems of practical size. These approaches have evolved 
through interactions and analogies derived from biological, physical, 
computer and decision making sciences. New approaches to the 
approximate solution of difficult combinatorial problems include 
simulated annealing, tabu search, genetic algorithms and neural 
networks. The First derives from physical science - more specifically, 
from statistical mechanics.  The second stems from the general tenets 
of intelligent problem solving. The last two are inspired by principles 
derived from biological sciences. See Glover, [5] for a further expose. 

In this paper we just focus on the performance of simulated 
annealing (SA) and genetic algorithm (GA) in optimal preventive part 
replacement for minimum downtime maintenance planning. However, 
in the maintenance planning, optimal part replacement policies, 
mainly, employ statistical renewal theory, leading to minimization of 
a function such as downtime [7][2]. Hence, simulated annealing and 
genetic algorithms appear to be suitable tools for optimal maintenance 
planning. We review shortly in section 2 the results of studies carried 
out by the author ([3][9]) that consisted of the using simulated 
annealing and genetic algorithm in preventive part replacement. In 
section 3, some evaluation criteria will be explained in order to show 
which algorithm is more suitable to use in optimal preventive part 
replacement for minimum downtime maintenance planning. Finally 
section 4 presents the overall conclusion. 

2. Applying simulated annealing and genetic algorithm in optimal 
part replacement 
In the maintenance planning, part replacement strategies, mainly, rely 
on the renewal function, which in its numerical forms, appears as [7], 
[2]: 

 


