

. Visual C++ 6.0

- - - : -

.

.

() شماتیک

.[][][]

Email:mrahmati@ut.ac.ir , _ : ; _ *

п

п

[]. ۲- قطر

_

() .

 $E(1-y)|_{l+dl} - E(1-y)|_{l} = 0 \implies \frac{d}{dl}(E(1-y)) = 0$ $: \mathbb{R}$ ()

$$R(1-x)|_{l} - R(1-x)|_{l+dl} - FTR \, .dl \, .(1-x) = 0$$

$$\Rightarrow \frac{d}{dl} (R(1-x)) = -FTR \, (1-x)$$
()
F
-

•

()

$$T_{S}$$

$$C.D_{e}.x_{A} = \frac{K_{1}}{r} + K_{2}$$

$$\Rightarrow \quad K_{1} = \frac{C.D_{e}.R_{h}.R_{p}}{(R_{h} - R_{p})}(Y - x_{A}^{*})$$
()

mass

()

()

()

()

:

) m_{P0} (" x₀ R . (L = 0 $\rho_{s} \cdot \frac{4}{3} \pi \cdot R_{p}^{3} = m_{p_{0}}$

FTR

$$\rho_{P} = \frac{m_{P}}{V_{P}} = \frac{m_{dp} + m_{hp}}{\frac{4}{3}\pi \left(\frac{d_{P}}{2}\right)^{3}}$$
()

 $\frac{E \times \rho}{A_{t}} \qquad u_{air} \quad \frac{R \times \rho_{P}}{A_{t}} \qquad u_{Powder}$ $\cdot \qquad () \qquad u_{t} \qquad u_{t} \qquad ()$ $d_{fine} \qquad F \qquad R$

FTR d_{fine}

.

•

می کنند

(

1

spray sheet

ср

0

conical

)

.

bar

.

.[]

 $D_{50} = f d^{0.2} V p^{-0.9} \eta^{0.1} \rho^{-0.5}$ () () که درآن D_{50} قطر متوسط، b قطر توربین، Vp سرعت محیطی، η گرانروی مایع، و ρ چگالی مایع است.

زير^ا . r ()

.

FTR $: I = L \xrightarrow{from \ eq \ (21) \ , \ (22)} d_{fine} = f(l)$ Mesh $(d_{20}, d_{60}, d_{80}, d_{100}) \xrightarrow{if \ d_{fine} = d_i} f$ FTR= R P_i , otherwise: FTR= 0 () d_i P_i P_i FTR

 $N'_A N_A$.

	Mesh	20	60	80	100	200	270	325
	Dia. (mm)	0.84	0.25	0.177	0.149	0.074	0.053	0.044
	Per. (%)	17.36	66.92	5.72	5.4	4.3	0.25	0.009

:

:

.

 $m_{shuury} = 18000 kg / hr \qquad m_{air} |_{Down} = 127250 Kg / hr$ $T_{Shurry} = 79 \ ^{\circ}C \qquad T_{a} |_{down} = 300 \ ^{\circ}C \qquad Z |_{Down} = 0$ $F |_{Down} = 0 \qquad y |_{Down} = 0.011 \qquad x |_{top} = 0.4$

:

		•				•			
Tower		Τe	emp. (°C)	Humidity (mass %)			Flow rate (ton/hr)		
location	n Test	air	slurry/powder	Air	Fine	Slurry/powder	air	slurry/powder	fine
Тор	1	93	78	6.59	6.2	40	112.700	18.000	475
Down	1	297	110	1.15	-	8.5	106.500	12.540	-
Тор	2	90	79	6.5	6.5	40	116.257	18.000	520
Down	2	295	108	1.21	-	8.1	110.000	12.480	-
Тор	3	101	78	6.66	6	40	114.300	18.000	490
Down	3	306	114	1.15	-	7.1	108.000	12.500	-
Тор	4	92	75	6.13	6.2	40	118.230	18.000	540
Down	4	290	104	1.2	-	8.3	112.000	11.225	-
Тор	5	82	72	6.24	6.9	40	115.100	18.000	500
Down	5	272	98	0.99	-	9.3	109.000	11.390	-

()

	$[kg/m^3]$: $ ho_{\scriptscriptstyle P}$	
	$[kg/m^3]$: $ ho_{\scriptscriptstyle S}$	
	[°C]	: <i>T_s</i>	
[°C]		: <i>T</i> _a	
	[J/kg.°C]	: C _{Ps}	,
	[J/kg.°C]	: C _{Pa}	(D ₄
	[°C]	: T ₀	
	W/m^2 .'C	: h	
	[m]	: R _P	
		:R _h	
	[m] ()	
R		: d _{fine}	
	[m]	F	
	[m/s]	: <i>u</i> _t	
	[m/s]	: u_{air}	
	[m/s]	: <i>u</i> _{Powder}	
	$[m^2/s]$: g	[kg/hr]
		:C	[kg/hr]
		$[mol/m^3]$	
$[m^2$	/ s]	: D_{AB}	
		: D_e	
		$[m^2/s]$	
		$: C_d$	
ذره پاشيده	قال جرم برای جزء دیفرانسیلی	A _r : سطح تن	
	F: 1	شدہ [² m]	
	[kg]	: <i>m</i> _{hp}	
	[kg]	: <i>m</i> _{dp}	[m
		m_{P0}	[<i></i>
		$\therefore x_A$	
ذره ياشيده	ولی اشباع در هر شعاع از درون	، کسر : <i>X</i> ،	
		شده	
داخل ذره با	ادلی در فصل مشترک رطوبت ه	K : ضریب ت ع	
	محيط	رطوبت هوای	
	ر پاشیده شده [kg]	m _p : جرم ذ	
	ره پاشیده شده [m ³]	Vp : حجم ذ	

. FTR (D_{AB} NU)

kg/hr] : E : R : F : у : Y : x : z : N_A $[mol/m^2.hr]$: N'_A $[mol/m^2.hr]$ \imath^2] : S : a $[m^2/m^3]$: a' $[m^2/m^3]$: Ø : Ø : **\$\$**_P\$:*M*

 $[kg/m^{3}] \qquad : \rho_{W}$ $[kg/m^{3}] \qquad : \rho$

 $[gr/cm^3]$: () () ; d_i : Nu [m]: Nu [m]: Re [mm] : Re: FTR [mm] : D_{50} : ftr [mm]b: قطر توربین {mm} [mm]: Pressonal (mm): Dye (mm): Vp: (ms): Vp: (ms): Vp: (ms): Vp: (ms): Vp: (ms): (ms): Vp: (ms): (ms):

- 1 Zbieinski, I., Strumillo, C. and Delag, A. (2002). "Drying kinetics and particle residence time in spray drying." *Drying Technology*, Vol. 20, PP.1751-1768.
- 2 Zbieinski, I. (1995). "Development and experimental verification of momentum-, heat- and mass-transfer model in spray drying." *The Chemical Engineering Journal*, Vol. 58, PP.123-133.
- 3 Krokida, M. K., Maroulis, Z. B. and Marinos-Kouris, D. (2002). "Heat and mass transfer coefficient in drying: Compilation of literature data." *Drying Technology*, Vol. 20, No.1, PP.1-18.
- 4 Palencia, C., Nava, J. and Herman, E. (2002). "Spray drying dynamics modeling with a mechanistic model." *Drying Technology*, 2002, Vol. 20, No. 3, PP.569-586.
- 5 Fletcher, D., Guo, B., Harrie, D. and Langrish, T. (2003). "What is important in the simulation of spray dryer performance and how do current CFD models perform." *Third international conference on CFD in the Minerals and Process Industries*.
- 6 Fletcher, D. and Langrish, T. (2001). "Spray drying of food ingredients and applications of CFD in spray drying." *Chemical Engineering and Processing*, Vol. 40, PP.345-354.
- 7 Oakley, D. E. (1997). "Produce uniform particle by spray drying." *Chemical Engineering Progress*, PP.48-55.
- 8 Liang, H., Shinohara, K., Minoshima, H. and Matsushima, K. (2001). "Analysis of constant-rate period of spray drying of slurry." *Chemical Engineering Science*, Vol. 56, PP.2205-2213.
- 9 Mohammad, F. (2003). "A new approach to modeling of single droplet drying." *Chemical Engineering Science*, Vol. 58, PP.2985-2993.
- Kadja, M. and Bergles, G. (2003). "Modeling of slurry droplet drying." *Applied Thermal Engineering*, Vol. 23, PP.829-844.
- 11 Keishi, G. and Hiroaki, M. (1997). Powder Technology Handbook, Marcel Dekker Inc., 2nd Edition.

12 - Strumilo, C. and Kudra, T. (1998). *Drying: Priciples, Applications and Design,* translated by H. Pahlavanzadeh, Tarbiat Modarres University Press.

- 13 Fogler, H. S. (2002). Elements of chemical reaction engineering, Prentice-Hall Inc., 3rd Edition.
- 14 Hoepffner, Th. *Spray Drying*, Report published by WEIR ENTRPIE, ZA Les Fayaux, Angerville La Campagne, BP 3206, 27032, EVREUX CEDEX, PP.1-24.
- 15 Filkova, I. Drop size distribution of non-Newtonian slurries, Drying'80, PP.346-350.

1 - Co-Current	2 - Plug Flow	3 - Fines Transfer Rate	4 - Correlation
5 - Back Calculation	6 - Terminal velocity	7 - Retarding Force	