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Abstract 
Gas hydrate formation in production and transmission pipelines and consequent plugging of these 

lines have been a major flow-assurance concern of the oil and gas industry for the last 75 years.  Gas 

hydrate formation rate is one of the most important topics related to the kinetics of the process of gas 

hydrate crystallization. The main purpose of this study is investigating phenomenon of gas hydrate 

formation with the Presence of kinetic Inhibitors in operation gas transmission, and prediction of gas 

hydrate formation rate in the pipeline. In this regard, by using experimental data and Intelligent Systems 

(Artificial neural networks and adaptive neural–fuzzy system), two different high efficient and accurate 

models were designed to predict hydrate formation rate of CO2, C1, C3, and i-C4. It was found that such 

models can be used as powerful tools, for prediction of gas hydrate formation rate with total average of 

absolute deviation less than 6%. 
 

Keywords: Fuzzy Inference System, Artificial neural network, Gas hydrate formation, Kinetic 

inhibitor, Rate model. 
 

1. Introduction 
   Hydrates are crystalline clathrate 

compounds composed of water and light 

gases. Natural gas hydrates are defined as 

clathrates that contain the following 

molecules as guests: light hydrocarbons up 

to the size of normal butane, and impurities 

often found in natural gas, such as, 

hydrogen-sulfide, carbon dioxide, and 

nitrogen. Although clathrates have similar 

properties to ice, they differ in that they 

may form at temperatures well above the 

freezing point of water at elevated pressure 

conditions [1]. With the development of the 

natural gas industry in the 20th century, the 

production, processing and distribution of 

natural gas under high-pressure conditions 

were necessary. Under these conditions, it 

was found that the production and 

transmission pipelines were becoming 

blocked with what looked like to be ice. 

Hammer schmidt [1934] determined that 

hydrates were the cause of plugged natural 

gas pipeline [1, 2].  

   Prediction of gas hydrate formation rate 

(HFR) plays an important role in developing 

models that can describe and predict the 

hydrate formation processes and also in 

studying the mechanisms of nucleation and 

growth of hydrate plugs in pipelines, thus 

several researches have been performed on 

the measurement and modeling of hydrates 

formation rate based on the hydrate-former 

gases consumption values [3, 4, 5, 6].  

   Several processes were investigated in 

order to prevent and/or combat hydrate 

plugs and ensure regular flow: chemical, 

hydraulic, thermal and mechanical 

processes. The chemical method consists in 

injecting chemicals in the pipeline. These 

chemicals fall into three classes: 

Thermodynamic hydrate Inhibitors (THIs), 

Kinetic Hydrate inhibitors (KHIs) and anti 

agglomerants (AAs) [7,8] .Unlike the THIs, 

the KHIs (generally polymers) do not alter 

the thermodynamics of hydrate formation 

but instead, modifies the kinetics of hydrate 

formation by preventing nucleation or by 
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hindering or slowing down the crystal 

growth[Sloan,1997].Talaghat[2010] 

proposed a new Rate equation to predict gas 

consumption rate during hydrate formation 

in the Presence of kinetic Inhibitors(PVP 

and L-Tyrosine)[9].(the so called “Talaghat-

model”). 

   However, these presented models are not 

accurate enough to predict HFR in pipelines 

and often consider only simple pure gases. 

Most of them require complex and time 

consuming computations and also a lot of 

input information to achieve the answer. 

   Based on the above discussion, it is 

obvious that there is a research requirement 

for developing new models. These models 

should not have the limitations and 

complexities of the available models. In 

other words the new models should be more 

accurate, robust and less sensitive to noisy 

input data, adaptive to a new input-output 

information and also should require the least 

amount of input information. Intelligent 

models offer all of the above desirable 

characteristics. One of the first studies in 

this regard was performed by Blusari[1995]  

that in this work proposed a new book as 

artificial neural networks for chemical 

engineers [10].In this work rate models of 

hydrate formation for a pure gas component 

(such as C1, C3, i-C4 and CO2) with 

presence of kinetic hydrate inhibitors were 

developed. The kinetic inhibitors are PVP 

and l-tyrosine. Therefore, The main 

objective of this study was to present 

models of (Adaptive Network–Based Fuzzy 

Inference System) ANFIS and (Multi-layer 

Perceptron) MLP for predicting the HFR of 

common hydrate-former gases (C1, C3, i-

C4 and CO2), in the Presence of  kinetic 

Inhibitors using experimental data obtained 

from flow mini-loop apparatus.  
 

2. Artificial neural networks 

(multi-layer network) 
   The study of neural networks (NNs) was 

inspired by biological NNs, and founded on 

a semi-empirical base to model the behavior 

of the biological nerve cell structure. The 

processing elements or neurons in a NN 

simulate the function of the nerve cells in 

human brain that contains billions of 

interconnected neurons. These neurons are 

the fundamental elements of the central 

nervous system and determine any action 

that is taken. Artificial neural networks 

(ANN) are computing systems made up of a 

number of simple, highly interconnected 

processing elements, which process 

information by their dynamic state response 

to external inputs. The fundamental concept 

of neural networks is the structure of the 

information processing system. Generally, 

an ANN is made of an input layer of 

neurons, sometimes referred to neurons or 

processing elements (PEs), one or several 

hidden layers (HLs) of neurons and output 

layer of neurons. The neighboring layers are 

fully interconnected by weight. The input 

layer neurons receive information from the 

outside environment and transmit them to 

the neurons of the hidden layer without 

performing any calculation. Layers between 

the input and output layers are called HLs 

and may contain a large number of hidden 

processing units. Finally, the neurons of 

output layer produce the network 

predictions to the outside world. Each 

neuron of a layer other than the input layer 

computes first a linear combination of the 

outputs of the neurons of the previous layer, 

plus a bias. The coefficients of the linear 

combinations plus the biases are called 

weights. Then, neurons in the HL apply a 

nonlinear function as activation function to 

their inputs [11,12]. 
 

3. Adaptive Neural-Fuzzy Inference 

System (ANFIS) 
   ANFIS is the famous hybrid neural-fuzzy 

network for modeling the complex systems. 

ANFIS incorporates the human-like 

reasoning style of fuzzy systems through the 

use of fuzzy sets and a linguistic model 

consisting of a set of IF–THEN fuzzy rules. 

The main strength of ANFIS models is that 

they are universal approximators with the 

ability to solicit interpretable IF– THEN 

rules [13]. 
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   Suppose that the rule base of ANFIS 

contains two fuzzy IF–THEN rules of 

Takagi and Sugeno’s type as follows: 
 
 

Rule1: If  x is 𝐴𝑖  and y is 𝐵𝑖  THEN 𝑓𝑖=𝑝𝑖x + 𝑞𝑖y + 𝑟𝑖 
 
 

   ANFIS architecture is shown in Figure1.                                        

The functions of each layer are described as 

follows: 

Layer 1 – Every node i in this layer is a 

square node with a node function: 
 

 

𝑂𝑖
1=

𝐴𝑖
(x)                                                                (1)                                                                                                                              

 
 

   Where x is the input to node i, and Ai is 

the linguistic label (fuzzy sets: small, large.) 

associated with this node function. Layer 2 

– Every node in this layer is a circle node 

labeled P which multiplies the incoming 

signals and sends the product out [16,17]. 

For instance, 
 

 

𝑂𝑖
2=𝑊𝑖 = 

𝐴𝑖
(x)  

𝐵𝑖
(y)     ,   i=1,2,…,n              (2) 

 
 

   Each node output represents the firing 

weight of a rule. Layer 3 – Every node in 

this layer is a circle node labeled N. The ith 

node calculates the ratio of the ith rule’s 

firing weight to the sum of all rule’s firing 

weights: 
 

 

𝑂𝑖
3=𝑤 𝑖=

𝑤𝑖

 𝑤𝑖
𝑛
𝑖=1

    ,   i=1,2,..  ,n                                 (3) 

 
 

Layer 4 – Every node in this layer is a 

square node with a node function: 
 
 

𝑂𝑖
4=𝑤 𝑖𝑓𝑖=𝑤 𝑖(𝑝𝑖x + 𝑞𝑖y + 𝑟𝑖) ,   i=1,2,..  ,n              (4)                                                                      

 
 

Where 𝑊𝑖  is the output of layer 3, and {𝑝𝑖 , 

𝑞𝑖 , 𝑟𝑖} is the parameter set. 

   Layer 5 – The signal node in this layer is a 

circle node labeled Ʃ that computes the 

overall output as the summation of all 

incoming signals, i.e., 

 
𝑂𝑖

5= 𝑤 𝑖𝑓𝑖
𝑛
𝑖=1    ,   i=1,2,..  ,n                                   (5) 

 

4. Development of ANFIS and MLP 

models 
  To develop models of ANFIS and MLP , 

479 data (Table1) was used and with a 

random selection, 359 of data was used as 

train set data and the 120 remaining data 

was used as test set data. Choosing this 

configuration was done based on trial and 

error procedure to achieve best results.  

   To develop an Intelligent System, the 

most important physical skill required is to 

make a decision what the principal inputs 

and output(s) of the system are. In this 

study, the inputs to the present Models were 

temperature, pressure, molecular weight of 

hydrate-former, time and concentrations of 

the KHIs. The desirable output of the 

models was the hydrate formation rate (gas 

consumption amount). To achieve this goal, 

two models of ANFIS and MLP were 

desined. 

 

 
Figure 1: Schematic of ANFIS architecture  
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Table1: Ranges of the input variables used in developing the ANFIS and MLP models 

Parameter Hydrate- 

Former 

Minimum Maximum 

Temperature (K) C1, C3 277.15 277.15 

 i-C4 275.15 275.15 

 CO2 280.15 280.15 

Pressure (Mpa)  C1 5 8 

 C3 1 2 

 i-C4 1 2 

 CO2 4 7 

Molecular Weight 

(gr/mol) 

C1,C3, i-C4, 

CO2 

16.043 (C1) 58.123 (i-C4) 

Time (min) C1,C3, i-C4, 

CO2 

0
 

485
 

PVP 

concentration(ppm) 

C1,C3, i-C4, 

CO2 

0 200 

L-Tyrosine 

concentration(ppm) 

C1,C3, i-C4, 

CO2 

0 200 

 

 
Figure 2: results of testing ANFIS and MLP models for the rate of  𝐂𝐎𝟐 hydrate formation as a function of 

time at a 280.15K and 4 Mpa 

 

 
Figure3: Results of testing ANFIS and MLP models for the rate of  𝐂𝐎𝟐 hydrate formation as a 

function of time at 280.15 K and 7 Mpa 

0

20

40

60

80

100

120

140

160

0 200 400 600

C
O

2
 c

o
n

su
m

e
d

 (
g

r
)

Time(min)

Talaghat Model

Experimental Data

ANFIS Model

MLP Model
200 ppm L-

Tyrosine

0

50

100

150

200

250

300

350

0 100 200 300 400 500

C
O

2
 c

o
n

su
m

e
d

 (
g

r
)

Time(min)

Talaghat Model

Experimental Data

ANFIS Model

MLP Model

100 ppm PVP



 
  Modeling of Gas Hydrate Formation…..                                                                                                                              105 

 

 

 
Figure4: Results of testing ANFIS and MLP models for the rate of methane hydrate formation as a 

function of time at 277.15 K and 8Mpa 

 

 
Figure5: Results of testing ANFIS and MLP models for the rate of propane hydrate formation as a 

function of time at 277.15 K and 1.5Mpa 

 

 
Figure6: Results of testing ANFIS and MLP models for the rate of iso-butane hydrate formation as a 

function of time at 275.15 K and 2Mpa 
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   In MLP model, HFR was a function of 

temperature (T), pressure (P), molecular 

weight of hydrate-former (𝑀𝑊ℎ𝑓  ), time 

(t), 𝑃𝑉𝑃𝐶𝑂𝑁𝐶  and  𝐿 − 𝑇𝑦𝑟𝑜𝑠𝑖𝑛𝑒𝐶𝑂𝑁𝐶   

therefore, the model has 6 and 1 neurons in 

its input and output layers, respectively: 

 
HFR = 𝑓𝑀𝐿𝑃 𝑎𝑛𝑑  𝐴𝑁𝐹𝐼𝑆   (T, P, 𝑀𝑊ℎ𝑓 , t , 𝑃𝑉𝑃𝐶𝑂𝑁𝐶  

, 𝐿 − 𝑇𝑦𝑟𝑜𝑠𝑖𝑛𝑒𝐶𝑂𝑁𝐶 )                                              (5)                           

 

   Based on the importance of optimum 

architecture determination in developing 

multi-layer neural networks (Engelbrecht, 

2007), four elements that contain these 

architectures have been investigated to 

developed the desirable models: 1) number 

of hidden layers, 2) number of neurons in 

each hidden layer, 3) activation function of 

each layer and 4) training algorithm, which 

determines the final value of the weights 

and biases. 

   Several neural network architectures were 

tested to find out the best accuracy. Finally, 

a multi-layer network with two hidden 

layers was found to be suitable to consider 

the relationship indicated in equation (5). 

The optimum numbers of the neurons in the 

first and second hidden layers were 

determined 18 and 5 and tangent-sigmoid 

and linear transfer functions were used as 

activation (transfer) functions of the hidden 

layers and output layer, respectively. In the 

network were developed in this study, the 

Bayesian regularization (automated 

determination of optimal regularization 

parameters) in combination with 

Levenberg-Marquardt training algorithm, 

was used to improve the generalization 

power of ANN. This kind of regularization 

has been implemented in the function 

“trainbr”. 

   ANFIS model on the basis of the 

subtractive clustering algorithm with inputs 

and output similar to MLP model was 

developed. The fuzzy HFR modeling 

system used in this study is a multi-input 

single output (MISO) Takagi-Sugeno 

system. Because of large number of input 

variables, scatter partitioning was used to 

avoid “curse of dimensionality” problem 

instead of grid partitioning. 

   Table 2 shows the details of optimal fuzzy 

model designed for ANFIS model. This 

arrangement resulted by trial and error 

procedure. Hybrid optimization method was 

used to optimize generated fuzzy inference 

systems (FIS) and the best models of  

ANFIS  and MLP were selected according 

to minimum total average absolute 

deviation percent (TAAD%): 

 

TAAD% = 
100

𝑁
×  

  𝑦𝑖
𝑒𝑥𝑝

−𝑦𝑖
𝑐𝑎𝑙  𝑁

𝑖=1

𝑦
𝑖
𝑒𝑥𝑝                               6  

 

   Where yi
exp

and yi
cal  are target and model 

output for the ith output, and N is the total 

number of events considered. 

 
Table2: Characteristics of fuzzy model for ANFIS 

model. 

Parameter Operator 

AND prod 

OR probor 

Implication prod 

Aggregation max 

Difuzzification wtaver 

 

5. Result and discussion 
   In this work, ANFIS and MLP models 

were used to predict gas hydrate formation 

rate. Data needed to design and train the 

presented model were extracted and 

collected from articles which investigate the 

phenomenon of hydrate formation in 

laboratory-scale [9]. 
   Table 3 shows the features and functions 

of designed models compared with the 

actual results and the latest presented model 

(talaghat model). TAAD% is the overall 

average of absolute deviation for 

normalized data and R is the correlation 

coefficient for normalized data. 

   Based on obtained results, designed 

ANFIS and MLP models are more 

accurately able to predict gas hydrate 

formation rate than Talaghat model. The 

related TAAD% for ANFIS and MLP 

models were 5.3964 and 5.8196 %, 
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respectively. On the other hand, ANFIS 

model is more accurate than MLP model 

because of the integration of fuzzy logic 

systems with the capability of learning in 

artificial neural networks which leads to the 

adaptability of the model with this issue. 

 
Table3: Error analysis of different models 

 TAAD% R 

ANFIS 5.3964 0.9995 

MLP 5.8196 0.9994 

Talaghat-

Model 
15.8 0.9815 

 

 
Figure 8: Experimental data versus MLP model 

outputs 
 

 

 
Figure 9: Experimental data versus ANFIS model 

outputs 

 

Figures 2 to 6 show the  results of testing 

for ANFIS and MLP models, along with  

Talaghat experimental model compared 

with experimental results in this study, 

moreover, four different types of fuzz 

component gas hydrates, including CO2, C1, 

C3, and i-C4 at different pressures are 

illustrated. 

   In Figures 7 and 8, actual results against 

outputs for MLP and ANFIS models are 

respectively show, moreover, they are 

efficient and consistent. 

 

6. Conclusions 
    Gas hydrate formation in production and 

transmission pipelines and consequent 

plugging of these lines have been a major 

flow-assurance concern of the oil and gas 

industry for the last 75 years.  Gas hydrate 

formation rate is one of the most important 

topics related to the kinetics  of the process 

of gas hydrate crystallization. In this work, 

utilization of the adaptive neural fuzzy 

inference system and Artificial Neural 

Network (Multi-layer Perceptron) 

techniques for predicting the hydrate 

formation rate has been investigated. 

Based on these results the following 

conclusions can be noted: 

1. Our comparison among experimental 

results, mlp, neural-fuzzy and Talaghat 

models shows that prediction of designed 

models is well matched with experimental 

data so that they are over 2 to 3 times more 

accurate than Talaghat model.  

2. Comparing obtained results determines 

that ANFIS model is more accurate than 

other models (MLP and Talaghat models) to 

predict gas hydrate formation. 

   The ANFIS and MLP models can be used 

to predict the hydrate formation rate of the 

hydrate-formers C1, C3, i-C4 and CO2 

when the operational conditions conform to 

the ranges of the input data was used to 

develop these models. 
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