

Email:saseyyed@ut.ac.ir : : *

	$\frac{Fe}{Sr} =$	
(A) Fe/ Fe ₂ O ₃ = $40/30 = 1.3$	E C	
(B) Fe/ Fe ₂ O ₃ = $50/25 = 2$	$Fe_2O_3 \frac{re}{Sr} =$	
(C) Fe/ Fe ₂ O ₃ = $75/12.5=6$	[] Parkin . SHS ()	
SHS .	$Fe_{=}$	
Linseis/L81 DTA /TGA °C	$\frac{Ba(Sr)}{\frac{Fe}{Ba(Sr)}} =$	
min	Fe ₂ O ₃	
SHS .	$(SrFe_2O_4) BaFe_2O_4 \qquad \qquad \frac{Fe}{Ba(Sr)} =$	
$\frac{\circ C}{\min}$	$\frac{Fe}{Ba} =$	
Philips/3/10 XKD Cuka		
	CHC	
	585	
. Philips/XL30		
(VSM)	°C	
. kOe	[] °C SHS	
	. SHS	
	SHS	
	())
()		
	Fe_2O_3 Fe $Ba(NO)$	
SHS ()		
SHS (C) (B) (A)	Fe/ Fe ₂ O ₃ Fe/Ba=	
(A) .		
SHS	mm mm	
(B) ((-a))		

(B) TGA . SHS () .[] TGA SHS (C) XRD °C () () () . (C) () () .[] ((-c)) °C XRD . () ((-a) (B) SHS) (A) °C SHS : °C $BaFe_2O_4 + 5Fe_2O_3 \rightarrow BaFe_{12}O_{19}$ () (B) .((-a)) SHS (B) DTA/TGA () . (-a) 828 °C °C °C .((-b)) (-c) DTA SI 1.2 1.0 0.8 15-10-5-DTA TGA ⁵⁰⁰ 500 700 800 Temperature (°C) 100 400 °C . SHS DTA/TGA (B) : .((-d)) DTA

°C

.

SHS (B) SEM : . °*C*

- Stablein, H. (1982). "Hard ferrite and plastoferrite." *In Ferromagnetic Materilas: A Handbook on Properties of Magnetically Ordered Substances*, edited by Wolfarth (North Holland, Amsterdam), Vol. 3, Ch. 7, PP.442-602.
- 2 Ding, J., Miao, W. F., McCromick, P. G. and Street, R. (1998) "High coercivity ferrite magnets prepared by mechanical alloying." *J. Alloy and Compounds*, Vol. 281, PP.32-36.
- 3 Ataie, A., Harris, I. R and Ponton, C. B. (1995) "Magnetic properties of hydrothermally synthesized strontium hexaferrite as a function of synthesis condition." *J. Materials science*, Vol. 30, PP.1429 1433.
- 4 Ataie, A., Heshmati-Manesh, S. and Kazempour, H. (2002) "Synthesis of barium hexaferrite by co percipitation method using acetate precursor." J. Materials Science, Vol. 37, PP.2125-2128.
- 5 Garcia, R. M., Ruiz, E. R. and Rams, E. E. (2001) "Structural characterization of low temperature synthesized $SrFe_{12}O_{19}$." *Mateials Letters*, Vol. 50, PP.183-187.
- 6 Seyyed-Ebrahimi, S. A., Kianvash, A., Ponton, C. B. and Harris, I. R. (2001) "The effect of hydrogen on composition, microstructure and magnetic properties of strontium hexaferrite." *Ceramics International*, Vol. 26, PP. 379-381.
- 7 Yi, H. C. and Moree, J. J. (1990) "Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials." *J. Materials Science*, Vol. 25, PP.1159-1168.

8 - Surig, C., Hempel, K. A., and Sauer, Ch. (1996) "Influence of stoichiometry on hexaferrite structure." J. Magnetism and Magnetic, Vol. 157/158, PP.268-269.

....

- 9 Elwin, G., Parkin, I. P., Bui, Q. T., Barquin, L. F., Pankhurst, Q. A., Komarov, A. V. and Morozov, Y. Q. (1997) "Self propagating high hemperature synthesis of SrFe₁₂O₁₉ from reaction of strontium superoxide, iron metal and iron oxide powder." *J. Materials Science Letters*, Vol. 46, PP.1237-1239.
- 10 Parkin, I.P., Elwin, G., Komarov, A. V., Bui, Q. T., Pankhurst, Q. A., Barquin, L. F., and Morozov, Y. Q. (1998) "Convenient, low energy routes to hexagonal ferrite MFe₁₂O₁₉ (M=Sr, Ba) from SHS reactions of iron, iron oxide and MO₂ in air." *J. Materials Chemistry*, Vol. 8, No. 3, PP.573-578.

11 - Krick-Othmer, I. (1987). Encyclopedia of chemical technology. John Wiley & Sons, Vol. 3, PP.471-472.

- 12 Towhidi, N. (2002). Direct Reduction, Second Edition, Tehran University Publication.
- 1 Self-propagating High temperature Synthesis
- 2 Vibrating Sample Magnetometry
- 3 Magnetization Curve
- 4 Coercivity
- 5 Saturation Magnetization