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An improvement on the pathfollowing technique of the
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Abstract

In order to approximate the solution of an analytic function by homotopy cont -
inuation method, one follows a curve starting from a trivial system and numerically moves
along this curve to find the solution of the given function.

In this paper a new technique is developed to determine the orientation of the

movement along the path by computing of the vector field of the corresponding differential

- equation. Namely as a main result we show that the orientation is derived from computation

- of the corresponding vector field.
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1. Inrtoduction

- Let F be a smooth function from R to R®, In this
paper we shall .irst consider the problem of finding the
solution of F(x) =0, by homotopy continuation method.
The term «continuation method» is derived .rom a
class of numerical methods dating at least back to
Lahaye (1934 & 1935), and also known as «embedding
methody,, Detailed discussion of these methods can be
found in articles by Wacker (1978), and Allgower &
George (1980). One starts with a trivial equation, cne
to which the solution is obvious and immediately known
Then the system is deformed continuously to F(x)=0.
In general, the solurion of the trivial system will prescribe
under this de.ormation, a smooth curve which i1s conne
eted to the solution of F(x)=0. Our discussion hers is

limited to following the curve. As a main result, we

show the determination of the orientation of the curve
is a by - product of the computation of the vector field

of the ordinary differential eqation.

2. Homotopy and path existence

In early 1950’s, Davidenko (1953a & b) introduced
a method of solving F(x) =0. where F 1s a smooth -
function from R® to R® . Let H : R? x [o, 1] - R" be
deaned as .

H(x, t)=(1 - t) (x - a) }+tF(x) (2. 1)

with a € R? given. It is clear that H(x, 0) =x - a and
H(x, 1) =F(x), Suppose.

(A): the partial derivarive H is always nonsingular.

Then by application of the Implicit Function Theorem,-

there exists a curve x(t), as a function o: t, such that
H(x(t),t) =0. (2. 2)

we diuerentiate (2. 2) with respect to t, to get the

diuerential equation

_ a?': "'"H_l-th’ .

- x(0) =a.

Thus, finding a zero of F(x) is equivalent to solving'

the initial value problem(2. 3), and finding its value at

(23

t=I1, The assumption (A) is rather strong, and hence
the power of Davidenko’s merthod is restricted.

Let us consider the homotopy

H:R* XxR? x (0,1)-R" (2. 4)

* deiined by

H(x,a, t) = (1 -t) (x-a) + tF(x)
withx e R?, aeR%, t € (0, 1). For a fixed a € R, deiine
H :R* x({0,1)-R" . (2. 5)
by H, (x, t)=H(x, a, t).

The .ollowing thorem may be found in Transversal
mapping and ilows, by Abraham and Robbin (1967).
Theorem 2.1 (Generalized Sard’s Theorem)

Let VC R, W C R™ be open and let

G:Vx W-RP
be smooth If o € RPis a regulaf valué for G, then for

almost every a €V (int he sense of either Baire category

or Lebesgue measure), 0 is a regular value for
G,(.) = G(a,.).
For our homotopy defined in (2. 4) we have the

following.

Lemma 2.2

For almost every a € R , zero is a regular value of
H, : R" X (0. 1) - R%
Where H, is given in (2. 5) .
- The overall idea is to start from a trivial solution

of H,(.,0)=0, and follow the path generated in H,(.,t)

~as t goes from zero to one. we hope the trivial solution

~ deforms into the solution of the original sysetm, and

hence we would be able to follow the connected path
rrom the trivial system to the solution of F(x)=0.

- of course this is quite an idealized process, and there

- are a number of diuiculties. First of all, in general, a
~ path need not exist. Second, if one exists, 1t might be

very ill - behaved. In other words the set

{(x t) : xe R", te (0, 1), Hy(x. t) =0}

" may-consist of different solutions, such as isolated points,

self - convergings, bifurcations, endless spirals, closed
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orbit, and smooth paths. But we are interested only
in smooth paths,

- Let a be choosen so that 0 1s a regula; value for
H, (x. t) (because of Lemma (2. 2) this can be done with
probability one). Then repeated use of the Implicit,
function Theorem implies that H,—!(0) consists o1 one
dimensional mani:olds. Dt’;tailcd discussion :0or the |
existence of paths are given by Garcia 'a.nd Zangwill
(1978), Garcia (1979a & b) and Chow, Mallet - Paret
and Yorke ( 1978). Let I, be the component of H,—1(0)
with a as one endpoint. Also let us assumc this

component 1s parameterized by s. For notational conv-

enience we reser to H, (x t) by H (x.'t). Thérefore,
H(x(s), t(s))=0, _
x(0) =a. (2. 6)

Differentiation of H with respect to parameter s yields

H, (x(s), t(s)). x+H(x(s), t(s)) =O.
x(0) =a. . (2. 7)
Here H,, and H, are respectively the partial derivative

of H with respect to x and t. The ordinary differential

equations (2. 7) can be written in the following matrix

form _
[er Ht] }f =V,
t
x(O). _ a |
t(0) | | 0 - 25

The integral curve of this differential equation, namely
(x(s), t(s):)' is a simple curve starting form (a. 0). In the
next section we carefully examine the movement along

this curve.

3. Movement along the Path

We have seen that H,~1(0) consists of only arcs

and closecl curves. These curves are the solutions of the

ordinary differential equations

. x(0) RER
o |~ o} 3.1

where H, is an n Xn matrix, H, is an n X1 matrix and
.==d/ds for some paramerer s. For the remainder of
this section, we will let s be the arc length. since 0
1s a regular value of H, [Hy H,] is of full rank. Hence

the kernel of [H, H,] is one - dimensional, by above

the vector [x, t] lies in this kernel.

X
Let A=[H, H,] and y= .Then (3. 1)simplifies to
t
& . a
AY==0, Y(O) — . (3. 2)
0

with ”;’” o=1, where|| |9 is the ordinary Euclidean

norm. The equation A};—-—-—O means that y 1S
perpendicular to the row space of A. Let At = QR
where () 1s an (n-+1) X (n+1) orthogonal matrix andR
1s an (n--1) X n upper triangular matrix with r;; > 0

(i:= ,-:-,n)-
Suppose for some s, );(s) is kﬁown, hence A1s known.

The following lemma enables us to find y.(s—I—As) and
trace the path bv an ordinary differential equation

solver.

Lemma 3.‘ 1
Let q, .1 be the last column of the orrhogonal

matrix (), then
Y = & Gpay- o (3. 3)
Proof :
Since At ----- QR, énd Ay: = 0, we have
- Rt Qty = 0. o
Since matrix R has rank n, we get

rli # O i_———“l, 2, “see, 1n.

Suppose QF y = (B> By ers B['I“H)t, then we have
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r;1B=0
rigB)+roofo=0

L 4
L
&

rlnBl + r2nl32+ *re + rnan::O.

Because of (3. 4) this system implies

Bi =Bz =+ =By =0.

Hence

Qty = (O: 0, + v oy Bur)™
So

y=0Q (0,0, « v+, Bs1)e

‘Therefore y is a scalar multiple of the last column of Q).

Since ||57||2 = 1, we get

Y==qp+1"
In order to determine the orientation of y, we

give the following theorem which can be found in Garcia

and Gould (1978).

Theorem. 3.2
Let H : R*+l s R" be a Cl map, and let z(s) =

(z1(s), * ++, Zy41((s))be a Cl curve in Ro+1 satisfying
H(z(s)) = 0.
Then for all s either
sgn z'; (s) = sgn det H' (z(s)) - (3. 5)

or
sgn z'; (s) = —sgn det Hi(z(s))  (3.5. 1)

d . '
where z'; (s) = -a—sf— and H! is the Jacobian of H with

ith column deleted.

Applying this theorem to our homotopy, we get
either
sgn , (s) = sgn det H,(x(s), t(s)) (3. 6)
or
sgn t (s) == — sgn det HL (x(5), t(5)) (3. 6. 1)
for all s. However at s = 0. H; 1is the nXn 1identity

matrix and hence det H =1. We may assumet (0) >0,

therefore(3.6)holds for all s. Thus sgn ;rin (3. 3). isdeter

minde as soon as we know sgn t (s), and to this end we

prove the following proposition :

Proposition 3. 3
Let Q_= (qu)’ then
sgnt (s) = (—1" sgn (9,,1,90+7)>  (3:7)

Proof
Lete ., € R+1 be the (n+1) th unit vector .
That 1s
Catl1 ™ (03 Oy0 oo :l)
then
QA ep ] =Q[QR e 1 =[R Qeyyl
By property of the Houscholder transformations (For

detail see Raleston, 1978) .
det Q' = det p, det p,—;+ » + det p;= (—1)™. '
Where Py, « » +, p_ is a sequence of Houscholder tran -

sformations such that

P, Popse v+ P A=K,

Hence
der [R Qfe_,j] = det Q. det[Ae 1]
Ht, 0
-—-:(—l)ndct ==(-— l)ndet th-
Ht, 0

On the orher hand, since R is an upper triangular -
matrix with r ;; > 0, we have

sgn det [R Qtyyy] = sng(dgitsnsr)e (3-8

There.ore

SgM. t = sgn det H,*=(—1)" sgn (dn+1s ar1) (3.9
From the above discussion we see that in order to follow
the curve I',, namcly; finding the solution of homotopy
equation (2. 6) at t=1 can be summarized as follows :

We start at t=0O and compute H,, H, and factorize

Ht_
Ht,

At —

as a product o: an (n+1) X (n+41) orthogonal matrix
Q= (q; j) and an (n41) Xn upper triangular

x (s)

t(s)

Q with a possible sign change, and the sign of this -

matrix R. Then is given by the last column of

vector is given by (3. 7). Next we solve the differential

equation (2. 8) and continue this process until t==1.
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