روش جدید تخمین آلودگی صوتی جاده‌ها
با در نظر گرفتن شرایط آب و هوایی

دکتر محمود صفارزاده پاریزی

کلمات کلیدی:
آلودگی صوتی - جاده‌ها - درجه حرارت - یاد

چکیده:
آثار منفی سر و صدای مراحل آموزش آلودگی صوتی (Noise Pollution) بر روی انسانها بررسی یافته‌ی نیست. نحوه تأثیر آلودگی صوتی بر محیط اطراف و روش‌های محاسبه و برآورد آن از اهمیت خاصی برخوردار است. در این مقاله نشان و اهمیت عوامل آب و هوا و منابع دو قطب حرارت و یاد در افزایش میزان آلودگی و تأثیر شرایط آب و هوایی بر میزان آلودگی صوتی در فضاهای اطراف جاده‌ها تبیین گردیده است.

در روش‌های تبیین افزایش میزان سر و صدا، عوامل محیطی را مورد نظر ترکر نمی‌دانند. در این مقاله روشی جدید با در نظر گرفتن شرایط آب و هوایی برای تصحیح و برآورد میزان آلودگی صوتی در اطراف جاده‌ها توضیح داده شده است. این روش می‌گوید برای محاسبه میزان سر و صدا برخوردار شکل راههای کشور فرانسه مورد استفاده قرار می‌گیرد.

* - استاد دانشگاه تربیت مدرس و مرکز تحقیقات و آموزش.
هکمده:
تا این اواخر در پرواندهایی که برای تعیین میزان آلودگی صوتی ناشی از رفت و آمد در جاده‌ها انجام می‌شود، تأثیر شرایط آب و هوایی، منظر قرار گرفت و فقط شرایط جوی یکنوشته و املاک و انتشار صوت به صورت مستقیم در نظر گرفته می‌شود. تحقیقات اخیر نشان می‌دهد به روش جدید آن‌های فاصله گیرنده و منبع صدا بیش از حد گذشته تأثیر شرایط آب و هوایی بر نحوه انتشار صوت اهمیت می‌باید و هر چه افزایش یابد تأثیر آن بیشتر می‌شود. همچنین هر چه گیرنده و منبع صوت به زیمن نزدیک‌تر باشد، تأثیر آب و هوایی افزایش می‌یابد. اندوه گیاهان در انجام شده در این شرایط نشان دهنده آن است که در فاصله سیستم منع صوت میزان سرو صدا علت تأثیر شرایط آب و هوایی می‌تواند بیش از مقدار ۲۰ دی‌بی‌آی (A) تغییر کند. این پدیده ناشی از تغییر سرعت صوت در فضای انتشار آن است. در شرایت جوی یکنوشته که سرعت صوت در سرسره فضا و پیکسان انتشار امواج صوتی به صورت خط مستقیم حکم می‌کند. در حقیقت بعضی از عوامل جویی مانند باد، آتشفشان و پوشش ابر نیز متناسب با ارتفاع نقاط نسبت به سطح زمین سبب تغییر سرعت صوت می‌شوند. این وضعیت به وقوع پدیده انکسار منجر می‌شود که در این صورت سیستم حکم امواج صوتی به سمت بالا یا پایین می‌شکند. در نتیجه، میزان میزان امواج صوتی به علت انتشار آن در نزدیکی سطح زمین که تحت عوامل تأثیر زمین ناشته می‌شود با میزان میزان در شرایط انتشار مستقیم.

شکل شماره ۱ - مسیر صدا با شیب حرارتی منفی (شرایط نامساعد انتشار صوت)
روش جدید تخمین آلمودگی صوتی جاده‌ها...

شکل شماره ۲ - مسیر صدا با شبیه حرارتی مثبت (شبیه‌سازی انتشار صوت)

در هنگام شب اگر آسانس صاف باشد، زمین گرمایی خود را پس می‌دهد و زودتر از هوا سرد می‌شوید و در نتیجه، لاشهای پایین جوی می‌ازد. اگر آسانس صاف باشد و زمین گرمایی خود را پس می‌دهد و زودتر از هوا سرد می‌شوید و در نتیجه، لاشهای پایین جوی می‌ازد.

این افزایش ارتفاع از سطح زمین، دما افزایش می‌یابد و در نتیجه، حرکت امواج صوتی به سمت پایین تغییر می‌دهد (شکل ۲).

در چنین شرایطی، میزان سرو صدا در اطراف جاده نسبی به جاده، به شکل داده می‌شود. تنها انتشار مستقیم افزایش می‌یابد. شرایط آب و هوایی مذکور را شرایط مطلوب برای انتشار صوت می‌نامند.

هنگام غروب و شب که از نظر میزان از آواردهای سر صدا پیش آمده‌است، منجر به افزایش دمای جاده‌ها از حساب‌شده است. محویت می‌شود، عمل درجه حرارت، آلمودگی صوتی را افزایش می‌دهد. در شرایط غروب، اثر فور صوت‌پذیر نیز آید و مسیر حرکت امواج صوتی مستقیم است.

۳ - تأثیر هنگام باد و درفع حرارت

در حقیقت، تأثیر عوامل درفع حرارت و باد با یکدیگر ترکیب و تلفیق می‌شوند و با این تأثیر آنها، موج افزایش و یا کاهش آلمودگی صوتی می‌شود. بهترین می‌باشد که در آن، امواج در شرایط جوی یک‌واخت متغیر شود. همانطور که قبل شرح داده شد، تأثیر میزان آلمودگی صوتی در شرایط مطلوب و نامطلوب انتشار امواج بسیار نیست.

هنگامی که امواج صوتی در شرایط مطلوب منتشر می‌شوند،
شکل شماره ۲ - پرتوییل مسیر صدا در شرایط وجود باد

گسترهٔ صدا در شرایط نامطلوب است.

یافته‌هایی در شکل شماره ۲ نشان داده شده است که در آن،

چگونگی میزان صوت براساس شرایط انتشار از یک منبع تولید صوت
نسبت به یک ضرط دمای واقعی در فاضلاب ۲۰ متری آن، مشاهده می‌شود. با افزایش شدت در عمل، آثار باد و درجه حرارت به نسبت زمان و مکان، نتیجه‌گیری این است و این نتیجه دقت آنها تقریباً غیر
ممکن است و فقط، تخمین آنها، بر حسب مقادیر میانگین امکان
پذیر است. با توجه به عوامل گویی که شرح داده شده در فرایند
محاسبه آلودگی صوتی، تأثیر عوامل متعدد با یکدیگر دیقیقاً اعمال شوند.

۴ - شیوه جدید محاسبه میزان آلودگی صوتی

همانطور که گفته شد، بر اساس ضوابط جدید، در
تناسی محسوسهٔ مربوط به تعیین میزان آلودگی صوتی جاده‌ای،
می‌باشد. شرایط آب و هوایی واقعی منطقه (در بلندی متری) مورد
ملاحظه قرار گیرد. این میزان آلودگی مربوط به شرایط جوی
یک کنش به، مکان‌بندی‌شان، ابعاد و دریافت‌ها، میزان آلودگی برای یک
قطعه کشانده، میزان آلودگی مربوط به شرایط یکنواخت،
نتاه نسبت سطح حلقه‌ای نیز مورد تأثیر قرار می‌گیرد.

متنی طراحی شده است بر اساس دو اتفاق زیر است:

الف) شیوه استانداردی که بر اساس استاندارد ۲-۱۵۹۷۱۱۳۲-
برای ارزیابی و محاسبه سطح میانگین آلودگی به کار می‌رود؛
ب) برای انتقال آلودگی مربوط به شرایط ویژه (آلودگی صوتی
جاده‌ای) چندان مناسب نبود.
روش جدید تخمین آلودگی صوتی جاده‌ها

شکل شماره ۲ - مقایسه میزان صدا در شرایط مساعد و نامساعد

شکل شماره ۵ - مقایسه مقدار واقعی صدا با مقدار تخمین زده شده با روش جدید

۶۸ درصد از مهم‌ترین هواشناسی در فرانسه، در دوره زمانی روتوان (از صبح تا ۱۰ شب) به شاگردان در زمینه داده است. نتایج حاصل را می‌توان به صورت زیر نشان داد:

• برای یک جهت انتشار مخرب، با استفاده از یک تقسیمی، مقدار آلودگی صوتی، از تعداد میانگین اعداد مربوط به هر یک از استاندارد می‌شود.

• در یک ایستگاه هواشناسی خاص، به وسیله یک نمونه خاص به عنوان منحنی تراز سر و صدا شیب آنچه در فرودگاها به عنوان گلپایگان است، میزان آلودگی صوتی محسوب می‌شود.

(شکل ۷)

از این مقدار فقط در فضاهای مسکن باز و دور از مناطق کوهستانی می‌توان استفاده کرد. در مناطقی که توده‌گزاران

۵ - مطالعه موردی

مقدار آلودگی صوتی بر اساس اندازه‌گیری‌های انجام شده در
شکل شماره ۶ - نقشه رخداد صدا در شرایط مساعده در هنگام روز
روش جدید تخمین آلودگی صوتی جاده‌ها...

سکه شماره ۷- مقایسه نمودار رخ‌داد در شرایط مساعد (درجات نمایانگر جهت گره صدا با توجه به جهت شمال است)

۱۰۷ یستگاه‌های دارد و این نوع تواجه‌گراف رضایتآور است، هر دوی خاصی را ایجاد می‌کند. این مقدار در بر آورن اطلاعات آب و هوایی نمونه‌های مطلق بر داده آورد.

با توجه به تحلیل مقادیر و خطوط میزان، می‌توان تصورات دقیق‌تری از اطلاعات حاصل از ملاحظه شرایط آب و هوایی به‌دست آورد. با احتمال شرایط آلودگی صوتی در تمامی یستگاه‌های هوشتاسی و در تمامی جهات در طول روز، درصد زمانی شرایط مساعد یک توزیع نرمال بین ۳۵ و ۶۵٪ (با مقدار میانگین ۵۵٪) تخمین زده می‌شود (شکل ۷). در نمودار همه شش نیز این توزیع، نرمال است و مقدار آن بین ۶۰٪ و ۹۹٪ (با مقدار میانگین ۸۵٪) است.

مشخص است که در مورد رویدادهای نمادی رسانه و صدا به هنگام شب بیشتر از هنگام روز است. می‌توان حدس زده کرد این تفاوت، بیشتر عوامل حساسی است. نمونه ای نیز برای این شرایط باست.
۷ - بحث در مورد نرخ تأخیر شرایط آب و هوایی

با یک روش محاسباتی ساده و ذکر یک مثال می‌توان دید بهترین در مورد نرخ تأخیر شرایط آب و هواپیمایی به‌دست آورد. به عنوان مثال دو نوع جاده را برش زیر در نظر می‌گیریم:
الف - یک جاده روستایی معمولی (با متوسط ترافیک ۸۰۰ سوار و مسافر در روز که ۱۵ درصد آن کامیون و سرعت بین ۳۰ تا ۹۰ کیلومتر در ساعت است)
ب - یک جاده روستایی غیرضروری (با متوسط ترافیک ۴۰۰ سوار و مسافر در روز که ۲۰ درصد آن کامیون و سرعت بین ۳۰ تا ۹۰ کیلومتر در ساعت است).

در زمان سطح و در زمانی که گیرنده در ارتفاع ۵ متر بالای دیوار یک ساختمان قرار دارد، میزان آلودگی صوتی در فاصله ۳۰۰ متری از گیرنده در جدول شماره ۲ را ملاحظه می‌کنید. در این جدول، فواصل مربوط به دو سطح استاندارد، محدوده ۴۵ تا ۵۰ dB(A) و حداقل ۴۰ dB(A) در طول روز و نیز منظور شده است.

۶ - ارزیابی روش جدید

اندازه‌گیری برای محاسبه میزان آلودگی صوتی در هر مکان مختلط صوتی پذیرفته‌ی‌های یک از این اندازه‌گیری‌ها

حدوده یک هنگ به طول اندازه‌گیری. با حاصل این کار به‌دست آوردن

۴۴ نقطه اندازه‌گیری در فاصله ۳۰۰ تا ۵۰۰ متری کنار گذیده

بد. مختصات جوی (سرعت و جهت) باید در جدول حذف شود.

ارتباط مختصات و غیره به طور همزمان ثبت شود و مورد تجزیه

و تحلیل قرار گرفت. تا به کمک آن یک مدل شرایط انتشار صوت را

در هزمان، بررسی کرد. نهایتاً میزان آلودگی صوتی در

بلند در در نظر گرفتن شرایط مساحت به کمک شیوه جدید

محاسبه شد.

شکل شماره ۱۰ میزان افتراق مناسب آلودگی بلندمدت

اندازه‌گیری سه و نیم‌تنان می‌دهد. با در نظر گرفتن عدم

قطعیتی که معمولاً در پیش بینی آلودگی صوتی جاده‌ای وجود

دارد، چنین اختلافاتی قابل قبول است.
روش جدید تخمین آلودگی صوتی جاده‌ها...

جدول شماره ۱: اثر درصد وقوع شرایط مساعد روی میزان سر و صدا بلندمدت

<table>
<thead>
<tr>
<th>شرایط مساعد (Lp)</th>
<th>شرایط یکنواخت (Lw)</th>
<th>زمان</th>
<th>میانگین وقوع</th>
<th>میزان آلودگی صوتی بلندمدت LLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰dB(A)</td>
<td>۵۵dB(A)</td>
<td>روز</td>
<td>۳۵ درصد</td>
<td>۶/۳۴dB(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>شب</td>
<td>۸۵ درصد</td>
<td>۵/۶۹dB(A)</td>
</tr>
</tbody>
</table>

جدول شماره ۲ - میزان سر و صدا در اطراف در نوع جاده در فواصل زمانی متفاوت

<table>
<thead>
<tr>
<th>نوع جاده</th>
<th>فاصله</th>
<th>هنگام روز</th>
<th>هنگام شب</th>
</tr>
</thead>
<tbody>
<tr>
<td>ألف</td>
<td>۳۰۰ متر</td>
<td>۵۲</td>
<td>۴۷dB(A)</td>
</tr>
<tr>
<td></td>
<td>۹۰۰ متر</td>
<td>۶۰</td>
<td>۵۳dB(A)</td>
</tr>
<tr>
<td>ب</td>
<td>۳۰۰ متر</td>
<td>۵۹</td>
<td>۵۴dB(A)</td>
</tr>
<tr>
<td></td>
<td>۴۵۰ متر</td>
<td>۵۶</td>
<td>۵۵dB(A)</td>
</tr>
</tbody>
</table>

شكل شماره ۱۰ - اختلاف بین محاسبات و اندازه‌گیری‌ها (میانگین: ۰.۶dB(A) - انحراف معیار: ۱.۵dB(A))
محاسبه آلودگی صوتی جاده‌ای هر چه بیشتر احساس می‌شود، در این راستا، باید یک گروهی منظم و کامل و با هماهنگی بخش‌های تخصصی ذیربط صوت را پذیرد. با به کارگیری این شیوه، نه تنها نحوهٔ گذشته‌ای نسبت به آلودگی صوتی تغییر می‌یابد بلکه اصلاحات و نوآوری‌ها در زمینه برخی کارهای عملی و آزمایشگاهی (از جمله نحوه اندازه‌گیری آلودگی صوتی) پیدا می‌کند. در این اثرگذاری آثار آلودگی صوتی شکل ملی جاده‌های کشور فرانسه اجباری است.

مراجع:

نتیجه‌گیری:
با توجه به مطالعات فوق، لرآ به کارگیری شیوه‌گری جدید برای...