کاربرد پروفیل های سه بعدی تغییر شکل و فشار اطراف تونل در تحلیل پایداری فضاهای زیرزمینی

محمدتقی همزبان قراملکی -مهدی موسوی

- - (// · // · · //)

چکیدہ FLAC^{3D}

واژه های کلیدی: FLAC^{3D}

.

() . () .

.[] () ()

. () .[].

.[]

) .[] () (

مقدمه

تحلیل پایداری بر اساس مفهوم کرنش بحرانى

.[] موقعیت تونل های پردیس . σ_{c} Ε + -. :

 $\varepsilon_{cr} = \frac{\sigma_c}{E}$ ()

:[] $\log \varepsilon_{cr} = -0.251 \log E - 1.22$ () Ε \mathcal{E}_{cr} .

% .[].

 P_i .[]. .

() .

.

.

_

.

.

. .

. + +

+ + .

1 .

.

• () .[]

Support type	Flange width - mm	Section depth - mm	Weight – kg/m	Curve number	Maximum support pressure prmax(MPa) and average maximum strain smaxer for a tunnel of diameter D (m) and a support spacing of s (m)	
\sim					$p_{imax} = 19.9 D^{-1.23}/s$	
	305	305	97	1	$p_{1} = 13.2D^{-1.3}/s$	
	203	203	67	2	$p_{\rm max} = 7.00^{-1.4}/c$	
	150	150	32	3	$p_{imax} = 7.0D$ /S	
Wide flange rib					$S_{\text{max}, dv} = 0.30\%$	
					1.00 /	
	203	254	82	4	$p_{i \max} = 17.6 D^{-1.29} / s$	
	152	203	52	5	$p_{i\max} = 11.1D^{-1.33}/s$	
L section rib					$s_{\text{max .av}} = 0.26\%$	
1 Section nD						
	171	138	38	6	$p_{i \max} = 15.5 D^{-1.24}/s$	
	124	108	21	7	$p_{i\max} = 8.8D^{-1.27}/s$	
					s _{max.av} = 0.55%	
TH section nb	+					
	220	190	19		D = 8 6 D-1.03/c	
- HESS	140	130	18	8	$p_{\rm max} = 0.00$ /3	10
					Smax.ov = 1.5570	
3 bar lattice girder	-					
	000	200	200			e
	220	280	29		$p_{i} = 18.3 D^{-1.02}/s$	W.
C. C.	140	200	26		Frimax ,	Xa
					s _{max.av} = 1.30%	P _{ii}
4 bar lattice girder				L		nre 1
	34 mm	rock	bolt	10	$p_{i \max} = 0.354/s^2$	pres
	25 mm	rock	bolt	11	$p_{i \max} = 0.267/s^2$	ort
スト	19 mm	rock	bolt	12	$p_{i \max} = 0.184/s^2$	ddns
met.	17 mm	rock	bolt	13	$p_{imax} = 0.10/s^2$	Ę
	5530	Solit s	et	14	$p_{\rm inter} = 0.05/s^2$, ži
Grouted rockbolts or		opni a			$p_{max} = 0.11/c^2$	Wa
s metre grid.	=	welle	×	15	$p_{i \max} = 0.11/5$	
strain is approximately	20mm	rebar		16	$p_{i \max} = 0.1 / s^2$	
0.2%, excluding setting ; strain for faceplates	22mm	fibreg	lass	17	$p_{i \max} = 0.26/s^2$	
and anchors and fibre- glass rods and cables.	Plain c	able		18	$p_{i \max} = 0.15/s^2$	
1	Birdca	ge ca	ble	19	$p_{j \max} = 0.30/s^2$	
	Ē					
	L - S	As	Ба	mpe	Maximum support pressure	
Support type	knes	- da	N.	/0 U(diameter D (metres)	
	Thic	Age	ñ	Cun		
with the	1-	28	25	20	$P_{\rm res} = 57.8 D^{-0.92}$	
	200	20	25	20	$P_{\rm max} = 19.10^{-0.92}$	
	300	28	35	21	$P_{1 \max} = 19.10$	
A Contraction	150	28	35	22	$P_{i\text{max}} = 10.0D^{-0.00}$	
Shotcrete or concrete	100	28	35	23	$p_{i \max} = 7.3D^{-0.00}$	
erage strain (Smax.av)	50	28	35	24	$p_{i \max} = 3.8D^{-0.99}$	
0.1%.	50	3	11	25	$p_{i \max} = 1.1D^{-0.97}$	
	50	0.5	6	26	$p_{i \max} = 0.6 D^{-1.0}$	
	1	-		1		

.....

شکل ۱: ظرفیت باربری حداکثر تقریبی برای سیستم های نگهداری مختلف نصب شده در تونل های دایروی [۱۱].

.

$$P_{i} = \frac{\sigma_{x} + \sigma_{z}}{2} + \frac{\sigma_{x} - \sigma_{z}}{2} \cos 2\theta + \tau_{xz} \sin 2\theta$$
()

.

 P_i ()

جدول ۱: پارامترهای ژئومکانیکی و نسبت تنش های افقی به قائم در زمین اطراف تونل [۱۲].

-				
	E (MPa)	C (KPa)	ø (°)	K
				1
				1

توصیف مدل های عددی

· FLAC^{3D}

[] PLAXIS 3D TUNNEL

.

.

. .

شکل ۴: پروفیل طولی فشار های اطراف تونل در عمق روباره ۴۵ متری در کنگلومرا.

.

.

شکل ۶: مقادیر فشارهای محاسبه شده به ازای سیستم های نگهداری مختلف در روباره ۳۰ متری.

روباره ۴۵ متری

جدول ۲: مقادیر کرنش ها و همگرائی های بحرانی در کنگلومرا و رس.

.

()

.

.

•••••					
	E (Kg/cm^2)	E _{cr} (%)	(cm)		
		1	1		
	1	1	1		

تحلیل پایداری واحد کنگلومرائی روباره ۳۰ متری

.

جدول ۵: سیستم های نگهداری پیشنهادی برای

روباره ۶۰ متری.				
	(<i>cm</i>)	(<i>m</i>)		
		1		
		1		
		-		

شکل ۹: مقادیر همگرائی های محاسبه شده به ازای سیستم های نگهداری مختلف در روباره ۶۰ متری.

شکل ۱۰: مقادیر فشارهای محاسبه شده به ازای سیستم های نگهداری مختلف در روباره ۴۵ متری.

.

.....

جنون ۱۰ سیستم های صفحهدری پیستهادی برای روباره ۴۵ متری

شکل ۷: مقادیر همگرائی های محاسبه شده به ازای سیستم های نگهداری مختلف در روباره ۴۵ متری.

() ()

()()

شکل ۱۱: پروفیل های همگرائی در لایه رسی در حالت بدون شناژبندی.

شکل ۱۲: پروفیل های فشار در لایه رسی در حالت بدون شناژبندی.

شکل ۱۵: زون های پلاستیک اطراف تونل در لایه رسی در حالت الف) بدون شناژبندی ب) شناژبندی شده.

.....

شکل ۱۶: شبکه عددی تغییر شکل یافته در حالت الف) بدون شناژبندی ب) شناژبندی شده.

•

•

•

.

.

()

بحث و نتیجه گیری

- 1 Pan, X. D. and Hudson, J. A. (1988). "Plain strain analysis in modeling three-dimensional tunnel excavations." *Int. J. Rock Mech. & Min. Sci. & Geomech. Abstr.*, Vol. 25, PP. 331-337.
- 2 Bloodworth, A. G., Houlsby, G. T., Burd, H. J. (2001). "Three dimensional modeling of the interaction between buildings and tunneling operations." *Proc. Conference on Response of Buildings to Excavation-Induced Ground Movements*, London, PP.189-199.
- 3 Augrade, C. E., Burd, H. J. and Houlsby, G. T. (1995). "A three dimensional finite finite element model of tunneling," *Proc. Fourth International Symposium on Numerical Methods in Geomechanics*, Davos, PP. 457-462.
- 4 Lee, K. M., Ng, C. W. W. and Tang, D. K. W. (2004). "Three-dimensional numerical investigations of new Austrian tunneling method (NATM) twin tunnel interactions." *Canadian Geotechnical Journal*, Vol. 41, PP. 523-539.
- 5 Hoek Evert. (2004). Numerical modeling for shallow tunnels in weak rock, available on www.rocscience.com
- 6 Yoo Chungsik, (2002). "Finite element analysis of tunnel face reinforced by longitudinal pipes." Computers and Geotechnics, Vol. 29, PP. 73-94.
- 7 Yoo, C. and Shin, H. K. (2003). "Deformation behavior of vthe tunnel face reinforced with longitudinal pipes – laboratory and numerical investigation." *Tunneling and Underground Space Technology*, Vol. 18, PP. 303-319.
- 8 Shin, H. K. and Ng, C. W. W. (2002). "A three-dimensional parametric study of the use of soil nails for stabilizing tunnel faces." *Computers and Geotechnics*, Vol. 29, PP. 673-697.
- 9 Sakurai. (1993). "Back analysis in rock engineering." *Comprehensive Rock Engineering* (Edited by John A. Hudson), Vol. 4 Chap. 19, Pergamon Press, London.
- 10 Evaluation of the mechanical stability of underground excavations, available on www.jnc.go.jp

.(

11 - Hoek, E. (1999). "Support for very weak rock associated with faults and shear zones." *In. Proc. Rock Support & Reinforcement Practice in Mining*, Villaescusa, Edited by indson & Thompson, PP. 19-32.

) ,

13 - Plaxis Bulletin, available on www.plaxis.nl

.(

واژه های انگلیسی به ترتیب استفاده در متن

".

- Geomechanics
 Axisymmetry
 Stress Path
- 10 Plastic Zone
- 13 Lee
- 16 Yoo
- 19 Adachi
- 22 Rigidity
- 25 Lattice Grider

- 2 Plain Strain
- 5 Pan
- 8 Elastic
- 11 Bloodworth
- 14 Hoek 17 - Shin
- 20 Critical Strain
- 23 Brown
- 23 Brown

3 - Plain Stress

- 6 Hudson 9 - Elasto Plastic
- 12 Augrade
- 15 Umbrella Methods
- 18 Sakurai
- 21 Modulus of Elasticity
- 24 Brady