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Abstract 

This paper Presents a comprehensive finite element method (FEM) study of 

the free vibration behavior of auxetic and honeycomb beams, using Euler–

Bernoulli beam theory (EBBT). For the first time, a systematic parametric 

analysis is conducted to investigate the impact of unit cell (UC) geometry, 

including connection angle, link length, and thickness, on the natural 

frequency of both beam types by considering more than 22,000 different UC 

geometries. In this regard, a novel and adjustable UC design is employed to 

directly compare the auxetic and honeycomb configurations. The study also 

explores the influence of UC row numbers and orientations on the natural 

frequency of these beams. The results declare that variations in each of them 

lead to nonlinear increases or decreases in natural frequencies. As well, for 

most cases under identical conditions, the natural frequencies for honeycomb 

beams are found to be higher than those for auxetic beams. These findings 

address a significant gap in the literature and provide valuable insights for 

the design of lightweight, vibration-resistant structures in applications such 

as aerospace, automotive, and smart systems. Furthermore, this work 

contributes to the advancement of parametric design in auxetic and 

honeycomb beams, offering a framework to support dynamic and vibration 

performance improvements in engineering applications. 

Keywords: Free vibration, Auxetic beam, Euler-Bernoulli beam theory, Finite element method, Natural 

frequency, Honeycomb beam 

1. Introduction 

Lattice beams, such as honeycomb beams (positive Poisson’s ratio) and auxetic beams (negative Poisson’s ratio) 

have been employed in a great many structures and buildings due to their extraordinary properties such as high specific 

stiffness, lightweight, reliable flexural properties, and acceptable energy absorption capability [1-9]. In the aerospace 

industry, these lattice beams are integral to components such as engine vanes, thermal protection systems, aircraft 

nose cones, and wing panels. Honeycomb and auxetic beams diminish weight while keeping structural integrity under 
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aerodynamic and thermal loads, thereby enhancing fuel efficiency and performance  [10]. Additionally, these beams 

function as vibration absorbers, modifying dynamic stresses in aircraft and spacecraft. In automotive applications, 

they are incorporated into bumpers, cushions, thermal protection components, sound and vibration absorbers, and 

fasteners, offering lightweight solutions with high impact resistance and noise reduction capabilities [1, 2]. In 

mechanical engineering, auxetic and honeycomb beams also demonstrate superior energy absorption and are essential 

in the design of lightweight components [11-13].  

Both auxetic and honeycomb beams are made from the simplest repeating parts that are named unit cells (UCs). 

Furthermore, UCs play a vital role in the mechanical properties of lattice beams such as Young and shear moduli [14-

18]. For instance, Bodaghi et al. [19] studied reversible energy absorption of 3D printed polymer auxetic structure 

under static compressive load. They found that auxetic structures can be used in energy absorbing application. Finally, 

they proposed a FE method to model the experimental test. Rezaei et al. [20] optimized some types of auxetic lattice 

structures to develop efficient designs with negative Poisson’s ratios, aiming to enhance mechanical performance. 

They also experimentally investigated potential instabilities, such as buckling, in the designed structures. Lotfi et al. 

[21]  conducted a comprehensive study on honeycomb and auxetic UCs by analyzing both micro-mechanics and macro-

mechanics. The results demonstrated that when the angle between the links (connection angle) in both auxetic and 

honeycomb UCs exceeds 18°, Young's modulus in the X direction is consistently smaller than in the Z direction. 

Additionally, they revealed that regardless of the dimensions of the UCs, the auxetic UC is softer in the Z direction 

and stiffer in the X direction compared to the honeycomb UC. Furthermore, the honeycomb UC exhibits a higher 

shear modulus than the auxetic one. Bora et al. [22] presented a mathematical solution to establish the relationship 

between elastic properties, such as Poisson's ratio, and the geometry of the UC. Their results discovered that an 

increase in the connection angle leads to higher stiffness. Additionally, the dimensions of all UC links are crucial in 

determining the elastic properties. 

By focusing on the applications of auxetic and honeycomb beams highlighted earlier the determination of the 

natural frequencies (when external forces are zero) of these beams is important. In a critical state, resonance can occur 

when the frequency of dynamic loads (including wind and earthquakes) matches one of the beam's natural frequencies. 

This phenomenon can lead to excessive vibrations, potentially resulting in structural collapse [23, 24]. In this context, 

Şakar et al. [25]  studied the natural frequencies for honeycomb beams both numerically and experimentally. The study 

revealed that reducing either the unit cell thickness or the connection angle results in a decrease in frequency. Chen et 

al. [26] conducted a numerical investigation of a thin laminated plate embedded with auxetic layers subjected to 

dynamic loads. Euler–Bernoulli beam theory (EBBT) was employed to derive formulation and determine the natural 

frequencies. It was observed that the natural frequency values decrease nonlinearly as the absolute value of Poisson’s 

ratio approaches zero. Zamani et al. [27] proposed a novel design for auxetic UCs and presented an exact solution for 

determining their elastic properties. Dynamic analysis revealed that incorporating these UCs as the core of sandwich 

structures significantly increased their natural frequencies. Furthermore, the results demonstrated that using the 

proposed UCs as the core, enhanced the specific modulus (stiffness-to-weight ratio) of the sandwich structure. 

Kushwaha et al. [28] investigated numerically the first three natural frequencies of a few lattice beams including both 

auxetic and honeycomb beams. Their findings showed that the honeycomb beam had higher 1 st  and 3rd  natural 

frequencies compared to the auxetic beam. Jiang et al. [29] presented both analytical and numerical (FEM) models to 

determine the natural frequencies of composite auxetic sandwich plates. They concluded that, for sandwich plates of 

equal weight, the natural frequencies increased by raising both the connection angle and UC thickness. Finally, the 

results were validated using experimental data. Hosseini et al. [30] investigated the influence of a limited number of 

auxetic cores on the natural frequency of 3D-printed sandwich beams. Their findings indicated that increasing the 

connection angle led to an increase in the natural frequency. Quan et al.[31]   proposed an analytical solution to 

accurately calculate the natural frequency of sandwich plates with a honeycomb core. The study employed the First-

Order Shear Deformation Theory (FSDT), assuming small deformations and small rotations, to derive the strain field. 

It was also supposed that the sandwich plate was supported by Winkler-Pasternak elastic foundations. The results 

showed that the natural frequencies diminished when either the connection angle or the link length-to-thickness ratio 

was reduced.  

A review of the existing literature reveals that only a limited number of studies have investigated the influence of 

UC geometry on the natural frequencies of auxetic and honeycomb beams. Furthermore, these studies typically 

examine only a few discrete configurations, often focusing exclusively on either the connection angle or the link 

length, without conducting a comprehensive analysis of their combined effects [25, 28, 30, 31]. This indicates a 

significant research gap and emphasizes the necessity for more systematic and parametric investigations in this field. 

Addressing this gap is particularly crucial, as understanding the vibrational behavior and natural frequencies of auxetic 

and honeycomb beams is essential for optimizing their dynamic performance and ensuring structural reliability. These 

core structures are extensively utilized in aerospace, mechanical, and civil engineering applications. For instance, they 

are used in lightweight, high-performance aircraft wings and vibration-damping systems for bridges, due to their 
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superior mechanical properties mentioned earlier [14, 16]. In response to this identified gap, the present study employs 

a novel and adjustable UC design to enable a direct and consistent comparison between auxetic and honeycomb beam 

configurations. For the first time, a comprehensive and systematic parametric analysis is conducted, simultaneously 

investigating the influence of all major geometric parameters, including connection angle, link length, and link 

thickness, across a wide range of both UC types. Additionally, the effects of the number and orientation of UC rows 

and columns on the natural frequencies are explored. To achieve this, a dynamic finite element model based on energy 

methods and Euler–Bernoulli beam theory is employed. Natural frequencies are calculated by solving the eigenvalue 

problem using a robust program developed on the standard version of MATLAB®, and the results are validated against 

exact solutions of Euler-Bernoulli beams (EBB).  The results, including trends in the natural frequency and the 

frequency ratio between honeycomb and auxetic beams, are illustrated using detailed contour plots and response 

curves. Through this approach, the study effectively addresses the existing research gap and offers valuable insights 

for the dynamic optimization of auxetic and honeycomb beam structures. 

2. Modelling 

2.1. Geometrical design 

Lattice beams, such as auxetic and honeycomb beams with negative and positive Poisson's ratios respectively, are 

constructed from the simplest repeating unit cells (UCs), where the members are modeled as beam elements [15]. 

Therefore, it is essential to begin by providing a clear definition of the UC for both auxetic and honeycomb beams, 

based on data from the literature. Bodaghi [15, 19, 32], and Ahsan [33] separately presented the UC for auxetic and 

honeycomb beams. However, as shown in Fig. 1, Lotfi [21] introduced innovative UCs with only three links for both 

auxetic and honeycomb configurations, which can be transformed into one another by altering the connection angle 

(𝛽). These UCs are selected to construct lattice beams in the present work.  

 

(a) (b) 

 

 

Fig. 1. Geometry and dimensions of (a) honeycomb unit cell, and (b) auxetic unit cell with only 3 links (Marked with solid lines) and a 

connection angle (𝜷). 

In the selected UCs, 𝑙1 equals 𝑙2, reducing the parameters to be defined to two link lengths and the value of 𝛽. 

Therefore, to supply a comprehensive numerical study, the non-dimensional parameter is defined as follows: 

𝜓 =
𝑙1
𝑙

 (1a) 

𝜒 =
𝑙

𝑡
 (1b) 
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2.2.  FE formulation 

The EBBT can be regarded as a specific case of the general beam theory (finite strain beam theory), applicable 

when the beam is sufficiently long and slender. This ensures that the effects of shear deformations are typically 

negligible [34, 35]. In simpler terms, the beam's length-to-thickness ratio must be sufficiently large for the assumptions 

of EBBT to hold valid [36]. Hence, Fig. 2 illustrates the EBB element, characterized by a length 𝑙, thickness ℎ, and 

width 𝑏, as well as represented with two nodes. The coordinate system (𝑋, 𝑌, 𝑍)  is fixed at the mid-left of the beam 

element to provide a consistent reference frame. Based on the assumptions of both small axial and small transverse 

displacements (𝑢, 𝑤) and small rotation (𝜃), the displacement vector (𝑼) can be described as follows [36]: 

𝑼 = {
𝑍𝜃 + 𝑢(𝑋)

0
𝑤(𝑋)

} (2) 

where  𝜃 = −
𝜕𝑤(𝑋)

𝜕𝑋
  

(a) (b) (c) 

 

Fig. 2. Coordinate systems and a standard beam element, (a) deformed beam element, (b) the geometry of cross-section, and (c) 

typical 2-node beam element. 

Based on Eq. (2), and assuming the lattice beam material to behave as a homogeneous, isotropic, and linearly 

elastic solid, the strain energy can be defined as [36]:  

𝑊 =
1

2
∫ 𝐸 (𝐴 (

𝜕𝑢

𝜕𝑋
)

2

+ 𝐼 (
𝜕2𝑤

𝜕𝑋2
)

2

)
𝑙

0

𝑑𝑋 (3) 

where 𝐸  indicates Young's modulus, while 𝐴, and 𝐼 denote, the area and the second moment of area that can be 

determined for the beam shown in Fig. 2b as: 

𝐴 = 𝑏ℎ (4a) 

𝐼 =
1

12
𝑏ℎ3 (4b) 

It is also evident that strain energy can be divided into two distinct components, axial energy, and bending 

energy, which are associated with axial stiffness (𝐸𝐴) and bending stiffness (𝐸𝐼), respectively (Further information is 

available in [37, 38]). Moreover, the kinetic energy of an EBB is: 
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𝑇 =
1

2
∫ 𝜌(𝐴(𝑢̇2 + 𝑤̇2) + 𝐼𝜃̇2)

𝑙

0

𝑑𝑋 (5) 

where 𝜌 denotes density and a superposed dot (.) indicates time derivative. By employing Equation (2), it can be seen 

that 𝜃̇  =  (−
𝜕𝑤(𝑋)

𝜕𝑋
)

̇
 thus confirming that the effects of rotary inertia is neglected, consistent with EBBT. Considering 

an EBB as depicted in Fig. 2c with two nodes located at 𝑋 = 0 and 𝑋 = 𝑙 , the FE formulation is subsequently 

employed. The displacement functions (𝑢, 𝑤) are obtained by employing linear and cubic polynomial shape functions, 

respectively as [39]: 

𝑢 = [𝑁1𝑢 𝑁2𝑢] [
𝑢1

𝑢2
] (6a) 

𝑤 = [𝑁1𝑤 𝑁2𝑤 𝑁3𝑤 𝑁4𝑤] [

𝑤1

𝜃1
𝑤2

𝜃2

] (6b) 

where 𝑢𝑖, 𝑤𝑖 , and 𝜃𝑖 (𝑖 = 1,2) are nodal displacement values at the 𝑖𝑡ℎ node, while:  

[𝑁1𝑢 𝑁2𝑢] = [1 −
𝑋

𝑙

𝑋

𝑙
] (7a) 

[𝑁1𝑤 𝑁2𝑤 𝑁3𝑤 𝑁4𝑤] = [1 −
3𝑋2

𝑙
+

2𝑋3

𝑙3
 𝑋 −

2𝑋2

𝑙
+

𝑋3

𝑙2
3𝑋2

𝑙2
−

2𝑋3

𝑙3
−

𝑋2

𝑙
+

𝑋2

𝑙2
] (7b) 

In the present work, Hamilton's principle, expressed in its variational form, is utilized to derive the dynamic 

FE governing equation as [40]:  

∫ (𝛿𝚲𝐞𝑷𝒆 + 𝛿𝑇 − 𝛿𝑊)𝑑𝑡
𝑡1

𝑡0

= 0 (8) 

where 𝛿 is the variational operator, while 𝑇 and 𝑊 denote the kinetic energy and strain energy of an EBB as defined 

in Eq. (3) and Eq. (5), respectively. Additionally, 𝜦𝒆  and 𝑷𝒆  signify the total nodal displacement vector and the 

external forces acting on the nodes of an EBB element.  

𝚲𝐞 = [𝑢1 𝑤1 𝜃1 𝑢2 𝑤2 𝜃2] (9a) 

𝑷𝒆 = [𝐹1 𝑉1 𝑀1 𝐹2 𝑉2 𝑀2] (9b) 

where 𝐹𝑖, 𝑉𝑖, and 𝑀𝑖 represent the axial force, transverse force, and bending moment, respectively, acting on the 𝑖𝑡ℎ 

node. Next, by substituting Eq. (3) and Eq. (5) into Eq. (8) and utilizing Eq. (6) for 𝑢 and 𝑤, the dynamic FE governing 

equation can be obtained as: 

𝒌𝒆𝚲𝐞 + 𝒎𝒆𝚲̈𝑒 = 𝑷𝒆 (10) 

where 𝒌𝒆 and 𝒎𝒆 are the stiffness matrix and mass matrix that is determined for each element as follows: 

𝒌𝒆 = ∫ 𝛀T𝑬𝛀
𝑙

0

𝑑𝑋 (11a) 
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𝛀 =

[
 
 
 
𝜕𝑁1𝑢

𝜕𝑋
0 0

𝜕𝑁2𝑢

𝜕𝑋
0 0

0
𝜕2𝑁1𝑤

𝜕𝑋2

𝜕2𝑁2𝑤

𝜕𝑋2
0

𝜕2𝑁3𝑤

𝜕𝑋2

𝜕2𝑁4𝑤

𝜕𝑋2 ]
 
 
 
 

𝑬 = [
𝐸𝐴 0
0 𝐸𝐼

] 

𝒎𝒆 = ∫ 𝝆𝑨𝚪𝑇𝚪
𝑙

0

𝑑𝑋 

(11b) 

𝚪 = [
𝑁1𝑢 0 0 𝑁2𝑢 0 0
0 𝑁1𝑤 𝑁2𝑤 0 𝑁3𝑤 𝑁4𝑤

] 

It should be mentioned that the superposed 𝑇 (T) signifies the transpose of a matrix. The stiffness and the mass 

of each element are derived as symmetric 6×6 matrices by evaluating the integrals in Eq. (11). 

𝒌𝒆 =
𝐸

𝑙3

[
 
 
 
 
 

𝐴𝑙2 0 0 −𝐴𝑙2 0 0
0 12𝐼 6𝑙𝐼 0 −12𝐼 6𝑙𝐼
0 6𝑙𝐼 4𝑙2𝐼 0 −6𝑙𝐼 2𝑙2𝐼

−𝐴𝑙2 0 0 𝐴𝑙2 0 0
0 −12𝐼 −6𝑙𝐼 0 12𝑙𝐼 −6𝑙𝐼
0 6𝑙𝐼 2𝑙2𝐼 0 −6𝑙𝐼 4𝑙2𝐼 ]

 
 
 
 
 

 (12a) 

𝒎𝒆 =
𝜌𝐴𝑙

420

[
 
 
 
 
 
140 0 0 70 0 0
0 156 22𝑙 0 54 −13𝑙
0 22𝑙 4𝑙2 0 13𝑙 −3𝑙2

70 0 0 140 0 0
0 54 13𝑙 0 156 −22𝑙
0 −13𝑙 −3𝑙2 0 −22𝑙 4𝑙2 ]

 
 
 
 
 

 (12b) 

 In the following, the 𝒌𝒆 and 𝒎𝒆  matrices must be mapped to the global coordinate system. Afterward, they are 

assembled for the entire lattice beam, and boundary conditions are applied  (details of these steps can be found in [15, 

36]). By following these steps, Eq. (10) can be rewritten as: 

𝑲𝚲 + 𝑴𝚲̈ = 𝑷 (13) 

where 𝑲, 𝑴, 𝚲, and 𝑷 denote the stiffness matrix, mass matrix, nodal displacement vector, and external forces, 

respectively, after assembly and the application of boundary conditions. Finally, for free vibration analysis, where 

external forces are absent (𝑷 = 𝟎), consider a harmonic solution of the form:  

𝚲 = 𝚲̂𝑒√−1𝜔𝑡 (14) 

where 𝚲̂, 𝜔, and 𝑡 signify the mode shape vector, the natural frequency, and time, respectively. Substituting Eq. (14)  

into Eq. (13), 𝜔 and 𝚲̂ are obtained by solving the following eigenvalue problem [41]: 

(𝑲 − 𝜔2𝑴)𝚲̂ = 𝟎 (15) 

It is important to highlight that all calculations are performed using a robust program developed on a personal 

computer (PC) with the home version of MATLAB®. 
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3. Numerical results and discussion 

This section begins with the verification of the proposed FE solution for determining the first five natural 

frequencies of the EBB and comparing it to the exact analytical solution. After verification, a parametric study is 

conducted on honeycomb and auxetic beams (based on the UC configuration in Fig. 1), focusing on their first natural 

frequency. The study examines the influence of UC geometry, including the connection angle (𝛽) and non-dimensional 

parameters (𝜓, 𝜒) as defined in Eq. (1), as well as the effect of UC number and orientation. Understanding the effect 

of these parameters is crucial for optimizing and designing structural performance [41]. It also plays a key role in 

tailoring mechanical properties for engineering applications, such as aerospace and automotive. It should be 

emphasized that, based on the author's understanding, this parametric study addresses and fills  a significant gap in the 

existing literature. 

3.1. Verification of the Proposed FE Solution 

The first five natural frequencies obtained from the proposed FE solution of the 2D beam element, by solving 

Eq. (15), are presented. These frequencies are then compared with the natural frequencies derived from the exact 

solution of EBB using the following relation [41]. 

𝜔𝑛 =
𝜅𝑛

2

2𝜋
√

𝐸𝐼

𝜌𝐴𝐿4
  (16) 

where 𝐸,𝐼,𝜌,𝐴, and 𝐿 represent Young's modulus, the second moment of area, the density of the beam material, the 

cross-sectional area of the beam, and the beam's length, respectively. Additionally, 𝜅𝑛 is the constant associated with 

the 𝑛𝑡ℎ mode shape, which can be derived from the exact solution [41]. Therefore, its corresponding values for EBBs 

under both clamped-free (called cantilever beam) and clamped-clamped (called simply clamped beams) boundary 

conditions are provided in Table 1. 

Table 1. The values of  𝜿𝒏 (dimensionless) for clamped-free and clamped-clamped EBBs [41] 

Boundary conditions 𝜅1 𝜅2 𝜅3 𝜅4 𝜅5 

Clamped-free  1.87 4.69 7.85 11.0 14.13 

Clamped-Clamped 4.73 7.85 11.0 14.13 17.3 

The required mechanical properties (𝐸 , 𝐺, and 𝜌) of EBB are adopted from the authors previous work, which 

investigated both auxetic and honeycomb structures under static conditions [21]. As discussed in the literature review, 

that study used 3D-printed TPU. Furthermore, to ensure compliance with EBBT assumptions, the beam's length-to-

thickness ratio (𝐿/𝐻) is selected to be large enough. In summary, the properties of EBB are listed in Table 2. 

Table 2. The EBB mechanical and geometrical properties used for exact and FE solution [21] 

Mechanical/geometrical 

properties 
𝐸 (𝑀𝑃𝑎) G (𝑀𝑃𝑎) 𝜌 (

𝑘𝑔

𝑚3
) 𝐿 (𝑚𝑚) 𝑏 (𝑚𝑚) ℎ (𝑚𝑚) 

Values 86.5 29 1082 100 10 2 

where 𝐿, 𝑏, and ℎ are the length, width, and thickness of the considered EBB for Verification, so 𝐴 = 𝐵𝐻. Table 3 

presents the first five natural frequencies (𝜔𝑛, 𝑛 =  1 − 5) of the EBB under clamped-free and clamped-clamped 

boundary conditions. 

Table 3. The first five natural frequencies of both clamped-free and clamped-clamped EBBs 
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Boundary conditions Solution 𝜔1 (𝐻𝑧) 𝜔2 (𝐻𝑧) 𝜔3 (𝐻𝑧) 𝜔4 (𝐻𝑧) 𝜔5 (𝐻𝑧) 

Clamped-free 

FE 9.13 57.25 160.3 314.12 519.27 

Exact 9.1 57.15 160.1 314.37 518.73 

Discrepancy (%) - 0.3 0.17 0.12 0.08 0.1 

Clamped-Clamped 

FE 58.13 160.23 314.12 519.27 775.73 

Exact 58.13 160.1 314.37 518.73 777.58 

Discrepancy (%) - 0 0.08 0.2 0.1 0.23 

As can be seen, the presented FE solution is validated through its reasonable agreement with the exact EBB 

solution.  

3.2. Parametric study 

The parametric study commences by considering general auxetic and honeycomb beams with UCs shown in 

Fig. 1 under a clamped-free boundary condition. The mechanical properties of all auxetic beams (𝐴𝛽, 𝛽 < 0) and 

honeycomb beams (𝐻𝛽, 𝛽 > 0), are defined as mentioned in Table 2 (𝐸 = 86.5 𝑀𝑃𝑎 and 𝜌 =  1082
𝑘𝑔

𝑚3 ). Moreover, 

in this section, to confirm that all beams (whether 𝐴𝛽 or 𝐻𝛽) are adequately long and slender (EBB), as well as to 

investigate the UC’s geometry itself, the following conditions are considered: 

• The width of the beam (or UC) is fixed at 10 𝑚𝑚. 

• The UC length (𝑙, see Fig. 1) is constantly set to 5 𝑚𝑚 (𝑙 = 5 𝑚𝑚) 

• The border thickness of the beams is equal to the UC thickness (𝑡, see Fig. 1) 

• The number of UCs is fixed at 40 along the X-axis (X direction) and only 1 row along the Z-axis (Z 

direction ). 

Additionally, to prevent physical contact between adjacent links in auxetic beams, specific geometric 

constraints are enforced, as outlined below.  

𝑙 (𝜓cos (
𝜋

2
− 𝛽 ) +

1

2
)  >  0  (17) 

Furthermore, for better clarity, a representation of the auxetic and honeycomb beams is shown in Fig. 3. In 

these beams, the UC geometry is defined as 𝑙 = 5𝑚𝑚, 𝜓 = 0.5, and 𝜒 = 10 for both auxetic and honeycomb beams. 

However, 𝛽  is −12° for auxetic beams (𝐴−12) and +12° for honeycomb beams (𝐻12 ). It should be noted that these 

beams are meshed using beam elements, as described in Section 2. 

To guarantee the accuracy and reliability of the FE solution, a mesh sensitivity analysis (mesh convergence 

study) is performed for the first five natural frequencies. This analysis is conducted for the beams illustrated in Fig. 3. 

These results are detailed in Table 4. Given these findings, it is evident that selecting 406 elements provide an optimal 

balance between computational cost and solution accuracy. 

 

(a) 

𝑋 

𝑍 
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(b) 

 
Fig. 3. Lattice beams with different types of UC; (a) honeycomb beams (𝑯𝟏𝟐 ), and (b) auxetic beams (𝑨−𝟏𝟐). In both beams 𝒍 = 𝟓𝒎𝒎, 

𝝍 = 𝟎.𝟓, and 𝝌 = 𝟏𝟎, and the number of UCs along the X-axis is set 𝟒𝟎. Additionally, a single UC is highlighted in green and all 

dimensions are in 𝒎𝒎. 

Table 4. The mesh sensitivity analysis for the first five natural frequencies (𝝎𝟏-𝝎𝟓) 

Beams type  Element number  𝜔1 (𝐻𝑧) 𝜔2 (𝐻𝑧) 𝜔3 (𝐻𝑧) 𝜔4 (𝐻𝑧) 𝜔5 (𝐻𝑧) 

𝐻12  

105 7.8 31.2 65.6 102 136 

287 8.0 32.9 69.1 105.1 142.0 

406 8.06 33.36 69.72 105.38 142.06 

570 8.06 33.36 69.72 105.38 142.06 

683 8.06 33.36 69.72 105.38 142.05 

890 8.06 33.36 69.71 105.35 142.03 

𝐴−12 

105 6 25.4 57.52 88.5 120.12 

287 6.65 28.87 61.0 92.66 125.19 

406 6.8 29 61.23 93.24 126.15 

570 6.8 29 61.23 93.24 126.15 

683 6.8 29 61.23 93.25 126.15 

890 6.8 29 61.21 93.24 126.15 

Next, the first natural frequency (𝜔1) is examined over a wide range of 𝜓 values for various beams. These 

include 𝐻𝛽 with positive 𝛽 values and 𝐴𝛽 with negative 𝛽 values. The present study considers a total of 150 values 

for 𝜓 (0.2 ≤ 𝜓 ≤ 1.2) and 150 values for 𝛽 (−72° < 𝛽 < 72° ), resulting in 150 × 150 cases encompassing both 

𝐴𝛽 and  𝐻𝛽. Fig. 4a shows the influence of different UC geometry (𝜓,𝛽) on the 𝜔1 response, with 𝜒 held constant at 

10 to ensure uniformity for comparison purposes. It should be mentioned that the UC geometries violating the 

condition specified in Eq. (17) have been omitted from Fig. 4. Notably, when either 72° < 𝛽 < 90° or -90° < 𝛽 <

−72°, links 𝑙1 and 𝑙2  become very close, causing the UC to gradually transform from its original geometry. Therefore, 

these values of 𝛽 are neglected in the present work. Upon looking at Fig. 4a, it can be observed that for all values of 

𝜓, by increasing absolute 𝛽 (|𝛽|), 𝜔1 grows nonlinearly in both auxetic and honeycomb beams. This broad trend 

supports the results in [29, 31], where only a few cases were considered. On the other hand, according to the 

fundamental vibration theory, 𝜔1 is directly related to the square of the structure or beam stiffness. Therefore, it can 

be concluded that the beam’s stiffness is improved by increasing |𝛽|, this fact is consistent with [21] that investigated 

the stiffness of auxetic/ honeycomb UCs in a general form.  
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(a) (b) 

 
Fig. 4. The variation of (a) 𝝎𝟏 in terms of 𝜷 and 𝝍 for both types of beams (𝑨𝜷 and 𝑯𝜷), and (b) the normalized ratio (𝝎𝟏

∗ ) in terms 

of |𝜷| and some values of 𝝍, where 𝝌 = 𝟏𝟎. 

For a more comprehensive analysis, |𝛽| is divided  into three 24-degree intervals including 0° − 24°, 24° −

48°, and 48° − 72°, as shown in Fig. 4. Regardless of beam type (𝐴𝛽 or 𝐻𝛽), it can be seen that the increase in 𝜔1 in 

the 3rd interval is greater than in the 1st interval. For instance, by considering 𝜓 = 0.2, in the 1st interval of 𝐻𝛽, 𝜔1 

experiences around 23% increase (from 35 𝐻𝑧 to 45 𝐻𝑧), while in the 3rd interval, growth reaches about 166% 

(71 𝐻𝑧 to 189 𝐻𝑧), about 7 times greater. Likewise, in 𝐴𝛽, the 1st interval shows only around 5% increase in 𝜔1 

(from 35 𝐻𝑧  to 37 𝐻𝑧 ), whereas the 3rd interval exhibits a growth of about 179%  (from 54 𝐻𝑧  to 151 𝐻𝑧  ). 

Although the 𝜔1 values are lower in 𝐴𝛽 compared to 𝐻𝛽 , the growth in the intervals is more pronounced in 𝐴𝛽. In 

addition, Fig. 4a reveals that not only 𝛽, but also 𝜓 has an effect on 𝜔1, a key point that fewer studies have explored. 

The contour plot shows that for both types of beams, and any values of 𝛽, reducing 𝜓 leads to a nonlinear increase in 

𝜔1 . The maximum and minimum values of 𝜔1  for the honeycomb beam are 189 𝐻𝑧  and 1.4 𝐻𝑧 , respectively, 

occurring at (𝛽 = 72°, 𝜓 = 0.2) and (𝛽 = 0.5°, 𝜓 = 1.2). In comparison, the corresponding values for the auxetic 

beam are 151 𝐻𝑧  and 1.2 𝐻𝑧  happening at (𝛽 = −72° , 𝜓 = 0.2 ) and (𝛽 = −23° , 𝜓 = 1.2 ). These values are 

approximately 1.25  and 1.16  times smaller than those for the honeycomb beam, respectively. Furthermore, the 

normalized ratio (𝜔1
∗) is another crucial parameter in designing and choosing auxetic and honeycomb beams for 

various applications. This is defined as the ratio of 𝜔1 in the honeycomb and auxetic beams when 𝜓 and |𝛽| are equal 

for both. Undoubtedly, if 𝜔1
∗ > 1, the 𝜔1 for the honeycomb beam with specific 𝜓 and |𝛽| values will be greater than 

that of the auxetic beam with the same 𝜓 and |𝛽|, and vice versa. Fig. 4b demonstrates 𝜔1
∗ with respect to |𝛽| for 

various values of 𝜓 (0.2, 0.3, 0.4, and 0.5), as the geometric constraint mentioned in Eq. (17). It is essential to 

emphasize that 𝛽 = 0° is unstable, as even small changes in 𝛽 can alter the sign of Poisson’s ratios [21], thus in Fig. 

4b, |𝛽| > 0. It can be observed that all curves have the same trend but the maximum value of 𝜔1
∗  (1.8) occurs at 𝜓 =

 0.5 and |𝛽|  =  66°. This indicates that the value of 𝜔1 for the honeycomb beam at 𝜓 =  0.5 and |𝛽| =  66° is 80% 

greater than that for the auxetic beam. These honeycomb and auxetic beams are shown in Figs. 5a and 5b, respectively, 

and a single UC is highlighted in green color. Overall, the maximum values of 𝜔1
∗ for all considered values of 𝜓 are 

summarized in Table 5. It can be seen that, while the maximum values of 𝜔1 for both beam types occur at 𝜓 =  0.2 

(see Fig. 4a), switching the beam from honeycomb to auxetic results in a maximum improvement of only 28% in 𝜔1 

(at 𝛽 =  60°). Furthermore, the highest value of 𝜔1
∗ is founded within the domain 60° ≤  𝛽 ≤  67°, depending on 

𝜓, and also 𝜔1
∗ decreases if 𝛽 is either increased or decreased from that domain.   

Table 5. The maximum values of the normalized ratio (𝝎𝟏
∗ ) 
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𝜓 |𝛽| 𝜔1
∗ 

0.2 60° 1.28 

0.3 64° 1.45 

0.4 65° 1.6 

0.5 66° 1.8 

Finally, Fig. 4b reveals that only in a few beams where 𝛽 <  3°, the 𝜔1
∗ is less than 1, which indicates that 𝜔1 

for the honeycomb beam is lower than that for the auxetic beam. Despite several studies [42-44] focusing just on the 

superiority of auxetic beam` the honeycomb and auxetic beams with 𝜓 = 0.2 and 𝛽 = 3° where 𝜔1
∗ = 1. It can be 

seen that the UC of these beams is very similar. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 5. Lattice beams (a)𝑯𝟔𝟔, (b) 𝑨−𝟔𝟔 with 𝝍 = 𝟎.𝟓  which have a maximum value of  𝝎𝟏

∗ = 𝟏. 𝟖, and (c)  𝑯𝟑 , (d) 𝑨−𝟑 with 𝝍 = 𝟎.𝟐 

that 𝝎𝟏
∗ = 𝟏, where 𝝌 = 𝟏𝟎. A single UC is highlighted in green and all dimensions are in 𝒎𝒎. 

Fig. 6, presents the influence of 𝜒 (Eq. (1b)), on 𝜔1 with 𝜓 =  0.5 for both types of beams, while |𝛽| = 12°. 

As it can be seen, 𝜔1  for various 𝜒  values are denoted by different markers for both 𝐴−12  and 𝐻12 . Lagrange 

interpolation which involves the definition of the polynomial that passes accurately through all determined values, is 

employed to fit the curve to 𝜔1 and 𝜒 values [45]. In this context, the 𝜔1 is determined by solving Eq. (15) for specific 

𝜒 values of both beams, after which the Lagrange interpolating polynomial (𝐿∗ (𝜒𝑛)) is defined as: 

𝑋 

𝑍 
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𝐿∗ (𝜒𝑛) = ∑ (𝜔1 )𝑖 . (∏ (
𝜒−𝜒𝑖

𝜒𝑖−𝜒𝑗
)𝑛

𝑗=0,𝑖≠𝑗 )𝑛
𝑖=0      (18) 

where n is the number of 𝜒𝑖  and 𝜒𝑖 =[10, 15, 20, 25, 40, 50, 60,  80, 90 ]. However, it can be observed that for all 

considered values of 𝜒, the 𝜔1 for the honeycomb beam is greater than that for the auxetic beam. This is a noteworthy 

result, indicating that the effect of thickness cannot neutralize the other geometric impacts (𝜓 and 𝛽). Furthermore, 

the smallest discrepancy between the beams is only 0.2 𝐻𝑧 and happens at 𝜒 = 90. It is also evident that the 𝜔1 values 

for both beams exhibit a nonlinear decrease as χ increases. Finally, by summarizing Figs. 4-6, it is highlighted that the 

results found from the parametric study are of utmost importance for the design of both auxetic and honeycomb beams 

(or structures). These results have to be investigated and optimized for each specific engineering application. 

 
Fig. 6. The effect of 𝝌 on 𝝎𝟏 for 𝑯𝟏𝟐 and 𝑨−𝟏𝟐, where 𝝍 = 𝟎.𝟓. 

3.3. UC number and their orientation 

In this section, the study of the first natural frequency for both auxetic and honeycomb beams is developed. 

The effect of the number of UC rows along the Z direction (Z-axis) and their orientation is investigated separately 

under a clamped-free boundary condition with mechanical properties that are provided in Table 2.  

Fig. 7 displays the effect of the number of UC rows in the Z direction (𝑁𝑧) for both auxetic and honeycomb 

beams in which the UC geometry is  𝑙 = 5𝑚𝑚, 𝜓 = 0.5, |𝛽| = 12°, and 𝜒 = 10, also the beam’s width is fixed on 

10 𝑚𝑚. It should be emphasized that the number of UCs in the X direction has been extended to 80, thus confirming 

that the beams (whether 𝐻12 or 𝐴−12 ) remain long, and the assumptions of the EBBT still hold valid. At first glance, 

Fig. 7 shows that 𝜔1 increases for both 𝐻12 and 𝐴−12 when an additional row is added in the Z direction, signifying 

that the beam becomes stiffer. It can also be observed that the intensity of the 𝜔1 increase is highest at first, gradually 

decreasing with higher rows. Specifically, for 𝐻12 , adding the 2nd row increases 𝜔1 by approximately 103% (from 

2.23 𝐻𝑧 to 4.54 𝐻𝑧). In contrast, for the 𝐻12 with four rows, 𝜔1  increases by about 18% (from 6.1 𝐻𝑧 to 7.2 𝐻𝑧) 

compared to the beam with three rows. Likewise, for the 𝐴−12 , the addition of the 2nd  row increases 𝜔1 by roughly 

100% (from 1.85 𝐻𝑧 to 3.7 𝐻𝑧). However, changing from three rows to four rows results in an 18% increase in 𝜔1 

(from 5 𝐻𝑧 to 5.9 𝐻𝑧). In conclusion, the trend of increasing 𝜔1 is approximately the same for both types of beams. 

From a comparative viewpoint, the values of 𝜔1  for 𝐴−12  are consistently smaller than those for 𝐻12  when the 

number of UC rows in the Z direction is equal. This result is a general development from the previous section's 

outcomes, which considered only one row. However, it is evident that this result may be violated in some cases with 

unequal rows. For instance, the value of 𝜔1 for 𝐴−12  with two rows is approximately 66% more than 𝜔1 value for 

𝐻12  with only one row. 
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Fig. 7. The effect of the number of UC rows along the Z direction (𝑵𝒛) on 𝝎𝟏 for 𝑯𝟏𝟐 and 𝑨−𝟏𝟐 , where 𝒍 = 𝟓𝒎𝒎, 𝝍 = 𝟎. 𝟓, |𝜷| = 𝟏𝟐°, 
𝝌 = 𝟏𝟎, and 𝟖𝟎 UCs along X direction. 

In addition to the geometry and number of UCs, their orientation is also crucial in the mechanical properties of 

lattice beams (or structures). It is important to note that the details regarding the orientation of the UCs in lattice beams 

can be found in [21, 46]. In the present work, a different orientation of both auxetic and honeycomb UC is investigated. 

These oriented UCs are created by a 90-degree rotation of both types of the presented UCs in Fig. 1 around a central 

point, where three links are connected. Then to compare beams with two different UC orientations, new auxetic (𝐴90
𝛽

) 

and honeycomb (𝐻90
𝛽

) beams with oriented UCs are defined. It should be noted that the geometric conditions are 

identical to those beams as shown in Fig. 3 (𝑙 = 5 𝑚𝑚, 𝜓 = 0.5, |𝛽| = 12°, and 𝜒 = 10) as well the width is 10 𝑚𝑚. 

As can be seen in Fig. 8, by controlling the number of UCs in the X direction (𝑁𝑥), both 𝐴90
−12 and 𝐻90

−12 exhibit an 

approximately identical length to that of 𝐴−12  and 𝐻12 . 

 

(a) 

 

(b) 

 
Fig. 8. Lattice beams with different types of  oriented UC; (a) honeycomb beams (𝑯𝟗𝟎

𝜷
), and (b) auxetic beams (𝑨𝟗𝟎

𝜷
). In both beams 𝒍 =

𝟓𝒎𝒎, 𝝍 = 𝟎.𝟓, and 𝝌 = 𝟏𝟎. Additionally, a single UC is highlighted in green and all dimensions are in 𝒎𝒎 

In the subsequent, the first five natural frequencies (𝜔1 − 𝜔5) of these beams (𝐴−12 , 𝐻12 , 𝐴90
−12, 𝐻90

−12) under 

clamped-free boundary conditions along with the mechanical properties listed in Table 2, are determined and given in 

Table 6.   

Table 6. The first five natural frequencies for 𝑨−𝟏𝟐 , 𝑯𝟏𝟐 , 𝑨𝟗𝟎
−𝟏𝟐, 𝑯𝟗𝟎

−𝟏𝟐 

 𝑁𝑥 𝐿 (𝑚𝑚) 𝐻 (𝑚𝑚) 𝜔1(𝐻𝑧)  𝜔2(𝐻𝑧) 𝜔3(𝐻𝑧) 𝜔4(𝐻𝑧) 𝜔5(𝐻𝑧) 

𝑋 

𝑍 
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𝑯𝟏𝟐  40 195.6 6 8.06 33.36 69.72 105.38 142.06 

𝑨−𝟏𝟐 ,  40 195 5 6.8 29 61.23 93.24 126.15 

𝑯𝟗𝟎
−𝟏𝟐 18 193.7 4.9 7.4 36.5 82 129.8 178.1 

𝑨𝟗𝟎
−𝟏𝟐 22 193.1 4.9 7.1 34.6 77 121.5 166.35 

As shown in Table 6, whilst the beam length (𝐿) is nearly the same across all beams, both the 𝐴90
−12 and 𝐻90

−12 

show remarkably lower 𝑁𝑥  values compared to the 𝐻12  and 𝐴−12 . In other words, when the orientation of the 

honeycomb and auxetic UCs is rotated to 90 °, 𝑁𝑥 decreases by approximately 45% for 𝐴90
−12 and 55% for 𝐻90

12. This 

is a key result for manufacturing purpose, as a smaller value of 𝑁𝑥  reduces geometric complexity, minimizes 

fabrication errors, and leads to faster and more reliable production. Table 6 data exposes that in spite of  [28], not only 

1st and 3rd but also all of the first five natural frequencies for 𝐻12  are consistently higher than those for 𝐴−12 . 

Similarly, these frequencies for  𝐻90
−12 are greater than those for 𝐴90

−12. To put it another way, rotating the UCs does 

not result in the frequencies of 𝐴90
−12 surpassing that of 𝐻90

−12. It is worth mentioning that this trend aligns with the 

general pattern detected in Figs. 4a and 4b, where 𝜔1 is investigated for 𝐻12 and 𝐴−12 . By comparing the orientations 

of the auxetic beams, 𝐴−12  and 𝐴90
−12 , it is evident that all considered natural frequencies improve in 𝐴90

−12 . The 

maximum and minimum improvements are approximately 32% and 4.4%, occurring for 𝜔5 and 𝜔1, respectively. 

Furthermore, examining the natural frequencies for both honeycomb beam configurations (𝐻12 and 𝐻90
12) reveals that, 

except for 𝜔1, the other frequencies are enhanced by rotating the UCs in 𝐻90
12. As previously mentioned, the natural 

frequency is directly related to the stiffness-to-weight ratio, which is a critical parameter in mechanical engineering. 

Finally, it is observed that the values of variation in natural frequencies, whether increasing or decreasing, are 

nonlinear for both types of beams and orientations. Therefore, the study of free vibrations in auxetic and honeycomb 

beams demands considerable attention. 

4. Conclusions 

In this paper, a comprehensive FEM study of the free vibration behavior of auxetic and honeycomb beams 

based on EBBT was presented.  The governing equation for free vibration was derived by employing Hamilton's 

principle, and the natural frequencies were determined by solving the eigenvalue problem. Then, the first five natural 

frequency values of the beam under both clamped-free and clamped-clamped boundary conditions were validated 

through the exact solution. Furthermore, the study examined the effects of UC geometry, the number of UC rows, and 

UC orientation on the first natural frequency of both auxetic and honeycomb beams. This parametric analysis provides 

valuable insights into free vibration of these beam structures, addressing a significant gap in the existing literature. In 

conclusion, the key findings are as follows:  

1- By considering a wide range of connection angles (−72° ≤  𝛽 ≤  72°) and length ratios (0.2 ≤  𝜓 ≤

 1.2), it can be observed that both increasing |𝛽| and reducing 𝜓 caused the omega to increase nonlinearly 

in both auxetic and honeycomb beams. 

2- The maximum values of the 𝜔1  in the honeycomb and auxetic beams were 189 𝐻𝑧  and 151 𝐻𝑧 , 

happening at (𝛽 =  72°, 𝜓 =  0.2) and (𝛽 =  −72°, 𝜓 =  0.2), respectively.  

3- In most cases, for identical UC geometries, the 𝜔1 for honeycomb beams was greater than that for auxetic 

beams. The maximum discrepancy was observed at 𝜓 =  0.5  and | 𝛽|  =  66° , where 𝜔1  for the 

honeycomb beam was 80% greater. 

4- For both honeycomb and auxetic beams, decreasing UC thickness (or increasing 𝜒 =
𝑙

𝑡
) resulted in a 

gradual decrease in 𝜔1 values. 

5- The value of 𝜔1 increased with the addition of rows to both honeycomb and auxetic beams. However, the 

effect of adding a second row was significantly more obvious than adding a third row. 
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6- The use of oriented UCs, created by a 90-degree rotation, did not cause the auxetic beams to surpass the 

honeycomb beams in frequency. 

7- In most cases, the first five natural frequencies were enhanced by using oriented UCs, nonetheless, this 

enhancement was nonlinear, which suggests the need for a careful optimization study. 

Finally, the present work offers a detailed  set of results for the free vibration analysis of auxetic and honeycomb 

beams. These results can assist engineers in designing lightweight and vibration-resistant structures for aerospace, 

automotive, and smart systems by optimizing the geometry of auxetic and honeycomb beams. 
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