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Abstract 

The present study investigates the frequency-amplitude relationship of a 

nonlinear oscillator in fractal space, focusing on the dynamics of a bead 

sliding along a rotating wire with inhomogeneous angular velocity. Utilizing 

the two-scale fractal theory, the original fractal differential equation is 

transformed into an equivalent linear damped system in continuous space, 

thereby enabling the derivation of an exact analytical solution that does not 

rely on perturbation methods. A novel frequency formula is proposed that 

integrates fractal parameters and system constants. The establishment of 

these expressions is achieved through the application of energy conservation 

principles and Taylor series approximations, thereby providing explicit 

expressions for the fractal parameters. Numerical simulations were 

conducted to verify the analytical results and to demonstrate the influence of 

the parameters on damping behavior and oscillation profiles. The proposed 

framework is a versatile analytical tool for the study of fractal-mediated 

dynamics in mechanical systems, with potential applications in resonant 

engineering and multiscale materials design. 

Keywords: Fractal space mechanics; nonlinear oscillator; two-scale fractal theory; frequency-amplitude 
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1. Introduction 

Differential equations represent a foundational component of scientific and engineering disciplines, providing a 

crucial framework for the modeling of a wide array of physical phenomena. Of particular importance are nonlinear 

oscillator models in mechanical systems, quantum physics, and astrophysics, where second-order nonlinear 

differential equations are central to dynamic simulations and control applications. Despite their ubiquity, exact 

analytical solutions for such equations remain elusive in most cases, requiring the development of sophisticated 

approximation techniques or numerical methods. Differential equations represent a foundational component of 

scientific and engineering disciplines, providing a crucial framework for the modeling of a wide array of physical 

phenomena. Of particular importance are nonlinear oscillator models in mechanical systems, quantum physics, and 
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astrophysics, where second-order nonlinear differential equations are central to dynamic simulations and control 

applications. Despite their ubiquity, exact analytical solutions for such equations remain elusive in most cases, 

requiring the development of sophisticated approximation techniques or numerical methods. Recent advancements 

in nonlinear sciences have led to an escalation in research endeavors focused on fractal-influenced oscillatory 

systems, with a pivotal emphasis on deriving exact solutions for fractal nonlinear oscillators without resorting to 

perturbation methods. This challenge is further compounded by the inherent complexity of obtaining analytical 

approximations compared to numerical counterparts. Recent advancements in nonlinear sciences have prompted a 

surge in research endeavors centered on fractal-influenced oscillatory systems. A pivotal emphasis has emerged on 

deriving exact solutions for fractal nonlinear oscillators, eschewing the use of perturbation methods. This challenge 

is further compounded by the inherent complexity of obtaining analytical approximations compared to numerical 

counterparts. 

The interplay between nonlinear dynamics and fractal geometry has yielded profound insights into complex 

systems characterized by self-similarity and scale invariance. Since its inception, fractal theory has transcended 

mathematical abstraction to address real-world phenomena in fluid mechanics, materials science, and energy 

transport. Notable applications include the modeling of thermal conductivity in branched networks [1, 2], the 

characterization of the properties of composite materials [3], and the description of the rheological behavior of non-

Newtonian fluids [4]. The advent of two-scale fractal theory has further expanded this paradigm, facilitating 

multiscale analysis of both continuous and discrete systems [5-7]. He et al. advanced this field by proposing a two-

scale fractal oscillation model and demonstrated its effectiveness in addressing complex fractional systems [8]. 

Fractal nonlinear vibrations are notable for their mathematical elegance and capacity to serve as a bridge between 

theoretical constructs and practical engineering challenges. These systems inherently capture the nonlinear essence 

of real-world phenomena. In this regard, scholars have employed fractal-based formulations to analyze complex 

dynamic behaviors in diverse systems. For instance, Elias-Zuniga et al. [9] investigated the dynamic response of 

non-Gaussian polymer chains using fractal equations, thereby underscoring the adaptability of fractal frameworks in 

modeling intricate interactions. In a related context, Song [10] developed a thermodynamic framework for packed 

dynamical systems by integrating fractal principles. Furthermore, Bayat et al. [11] systematically reviewed 

advancements in asymptotic methodologies, emphasizing their utility in addressing nonlinear vibration problems, 

which has significantly enriched the theoretical exploration of fractal-related mechanisms. The critical relationship 

between frequency and amplitude in such systems has driven methodological innovations, including the homotopy 

perturbation method [12-15], the variational iteration method [16, 17], and the harmonic balance method [18, 19]. 

Conventional techniques for analyzing nonlinear oscillators have proven effective in many cases. Notably, the 

advent of fractal calculus and conservation principles has had a profound influence on contemporary methodologies, 

facilitating solutions to nanoparticle vibrations [20, 21] and nonlinear MEMS dynamics [22-25]. Despite these 

advancements, existing frequency-amplitude formulations frequently lack iterative refinement capabilities. This 

limitation is addressed by El-Dib’s progressive frequency formula [26, 27], which facilitates successive 

approximations for nonlinear vibrations. 

This study presents a systematic investigation of fractal nonlinear oscillators through frequency-amplitude 

analysis, building on the basic framework. The approach adopted in this study eliminates the necessity of 

perturbation techniques by transforming the fractal oscillator into an equivalent linear damped system. This 

transformation facilitates the derivation of exact analytical solutions. The fractal parameters are estimated with a 

high degree of accuracy, and explicit amplitude-frequency relationships are established through the application of 

energy conservation principles. The proposed methodology circumvents the limitations of traditional approaches 

and provides a versatile tool for analyzing fractal-mediated dynamics in various engineering applications. By 

elucidating these relationships, this work advances both the theoretical understanding and practical manipulation of 

complex vibrational systems in fractal spaces. 

2. Frequency-amplitude analysis of a nonlinear oscillator 

Consider a general nonlinear oscillator as follows 

2

2
( ) 0, ( 0) , ( 0)

d z
h z z a z b

d
+ = = =   (1) 

where h(z) is defined as the nonlinear restoring force, and z as the displacement. a and b are constants. 

The linearized form of Eq. (1) is a second-order linear differential equation as  
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0

d z
z

d



+ =    (2) 

The corresponding frequency formulation is given by [28-32] 

2

1

2

( )
l i m
z A

dh z

dz


→

=    (3) 

Its solution that satisfies the initial conditions is 

cos si n cos( )
b

z a A   


= + = +   (4) 

Obviously, the amplitude A and the angle   in the above formula have the following form 

2
2

2

b
A a


= +    (5) 

ar ct an( )
b

a



= −    (6) 

While formula (3) has been extensively validated for cubic polynomials of the function h(z), its applicability is 

inherently constrained by the exclusion of velocity terms z    or z  , and their nonlinear combinations. To address 

these limitations, He [33] introduced an enhanced formulation that enables systematic investigation of frequency-

amplitude relationships in nonlinear oscillators characterized by irrational nonlinearities. 

Consider a more general form of a nonlinear oscillator described by the equation 

2 2

2 2
( , , ) 0, ( 0) , ( 0)

d z dz d z d
H z z a z b

d dd d  
+ = = =   (7) 

where H represents a function of z and its derivatives. The corresponding frequency formulation is given by 

2
2

2

2

1 3 1
, ,

2 2 2

l i m
dz d z

z A A A
d d

dH

dz 
 


→ →− →−

=

 

 (8) 

This method provides new insights into the complex dynamics of nonlinear oscillators and offers practical 

implications for fields such as spanning physics, mechanical engineering, and nonlinear applied mathematics. The 

developed framework collectively enables a paradigm shift from idealized oscillator models to functionally adaptive 

systems with embedded intelligence capabilities. 

3. Frequency-amplitude analysis for fractal nonlinear oscillation 

The fractal theory, with its inherent capacity to formulate governing equations within geometrically complex 

fractal spaces, has emerged as a pivotal research frontier across applied mathematics and mechanical engineering 

disciplines. This paradigm provides rigorous mathematical frameworks for analyzing multiscale phenomena, from 

porous media transport to nonlinear vibration analysis in heterogeneous materials. 

The two-scale fractal derivative [34] is defined as follows 

0

0

0 , 0
0

( ) ( )
( ) (1 ) l i m

( )t t t t

z t z tdz
t

dt t t 


− → 

−
=  +

−
  (9) 
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where z(t) is a function, Γ denotes the Gamma function, and Δt signifies the lowest hierarchical time level. This 

fractal derivative is conceptualized as the natural development of the Leibniz derivative, specifically for 

discontinuous fractal media.   represents the fractal dimension in the time-direction. It quantifies the degree of 

temporal non-uniformity or "fractalness" of the underlying space.  

Two-scale fractal theory provides an indispensable analytical framework for reconciling macroscopic continuity 

with microscale discontinuity in dynamical systems. This dual-perspective approach enables rigorous quantification 

of scale-dependent transitions between smooth and fragmented spatial-temporal patterns, offering unprecedented 

precision in multiscale system characterization, ranging from porous media dynamics to quantum-classical interface 

phenomena. 

The conventional continuous space model of a nonlinear oscillator posits the assumption that the medium is 

uniform and the dimension is an integer. However, for certain dynamic processes, the interpretation of continuous 

space models can present significant challenges. This necessity has prompted the exploration of nonlinear oscillators 

within the framework of fractal space. The fractal space exhibits characteristics such as fractal dimension, self-

similarity, and multi-scale nesting, which are not present in continuous space. To establish an oscillator model in 

fractal space, it is necessary to assume (0 1)t  =   , we have 

 
d d

d dt 
→  , 

2 2

2 2

d d

d dt 
→   

The following is the transformation of the governing equation with fractional temporal variation from the original 

Eq. (7) 

2 2

2 2

( 0)
( , , ) 0, ( 0) ,

d z dz d z dz
H z z a b

dt dt dt dt   
+ = = =  (10) 

It is noteworthy that the two-scale fractal derivative agrees with the traditional differential derivative when the 

fractal dimension, designated by the symbol  , is a positive integer. It exhibits the following properties:  

0

0

1 1, 0
0

( ) ( )
(1 1) l i m

( )t t t t

z t z tdz
z

dt t t− → 

−
=  + =

−
. 

A critical inquiry emerges concerning the dynamics in fractal space. Considering the properties delineated below, 

it can be inferred that  

( ) ( )
dz

p z q z
dt 

  = +    (11) 

The analysis is set up to tackle the unknowns p(0)→1, q(0)→0, p(1)→0, and q(1)→1. Based on El-Dib’s studies 

[35, 36], the following proposal is put forward:  

1cos si n
2 2

dz
S z S z

dt

 



 − = +    (12) 

where S is a real constant indicating a fractalness parameter (non-homogeneity parameter) of the medium, 

depending on the fractal dimension   to be determined later. The parameter S emerges as a crucial link between the 

fractal description and the equivalent continuous dynamics. 

Consequently, Eq. (10) can be verified that 

*( , , ) 0z H z z z  + =    (13) 

This is the alternative form of the fractal Eq. (10) in continuous space. The alternative initial conditions in the 

continuous space are performed in the form 
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1( 0) , ( 0) cot
2 2

z a z bS scs aS  −= = −   (14) 

The transformation technique presented here fundamentally converts the fractal temporal derivative into an 

equivalent system in continuous space featuring both an effective conservative force term and an effective linear 

damping term. This exemplifies a fundamental strength of the approach, as it inherently accommodates dissipative 

behavior arising from the fractal nature of time or space. 

In the context of systems that possess intrinsic or native damping terms, the applicability of the aforementioned 

procedure necessitates meticulous examination. The transformation defined by Eq. (12) is applied to the entire 

governing equation (Eq. (10)). If Eq. (10) contains an explicit velocity-dependent damping term, the transformation 

will map this term into the continuous space equation (Eq. (13)) as well. The resulting transformed equation would 

then combine the effective damping from the fractal transformation and the transformed native damping term. 

Subsequent frequency-amplitude analysis (Eq. (15)) and solution derivation would need to account for this 

combined dissipative effect. While the fundamental transformation principle remains valid, the specific forms of 𝑃, 

𝑄, and the frequency expression may become more complex. The subsequent expansion of the method to encompass 

native damping necessitates dedicated investigation in future studies. This investigation will build upon the 

foundational work presented here, focusing on the undamped case and the intrinsic dissipation modeled by fractal 

time. 

The corresponding frequency formulation is given by 

2

*
2

1 3 1
, ,

2 2 2

( , , )
l i m

z A z A z A

dH z z z

dz 


 → →− →−

 
=   (15) 

where  

2
2

2

( ( 0) )
( ( 0) )

z
A z




= +    (16) 

The frequency-amplitude relationship has been a central subject of extensive investigation in the field of 

nonlinear dynamics. Throughout its theoretical development, this relationship has undergone numerous refinements. 

This formula has evolved into a powerful analytical tool for characterizing nonlinear oscillatory systems. Eq. (15) 

proposes an innovative frequency-amplitude formulation that demonstrates particular effectiveness in the rapid 

exploration of fractional-order system properties. Building upon this foundational framework, we subsequently 

apply the proposed formulation to obtain a precise analytical solution for a fractal nonlinear system. We specifically 

examine the dynamics of a bead sliding along a wire shaped like a vertical parabola, as illustrated in Fig. 1.  

 

Fig 1: sketch for a bead sliding on a wire 
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The trajectory of the bead is circular, with a radius designated as r, and the wire undergoes rotation with an 

angular velocity, denoted as ω(t), around its vertical symmetry axis. Here, ω(t) is equivalent to a constant angular 

velocity, designated as ω0. The coordinates that delineate this scenario are cylindrical in nature (r, θ, z). The explicit 

temporal dependence on angular rotation is represented by 
0

  = . The constant c, representing the rate of 

rotation, enables the parabola’s equation to be expressed as z = cr2. The equation of motion in the smooth wire 

conserves the independent variable   in continuous space, while it is necessary to investigate the impact of non-

homogeneous spatial variation on the sliding bead motion. In numerous practical engineering scenarios, the 

assumption of constant angular velocity (ω(t)= ω0) may not be valid. Non-homogeneous angular velocity ω(t) can 

emerge from a variety of sources, including variable-speed machinery, micro-electro-mechanical systems (MEMS), 

granular flow and particle separation, and geophysical analogs. Components of rotating machinery, including 

turbines and centrifuges, are susceptible to fluctuations in driving torque or load, which can result in variations in 

operational speed. In the context of MEMS gyroscopes and resonators, the presence of rotating elements renders 

them susceptible to external vibrations or control signals that induce speed modulations. In the context of scientific 

inquiry, the phenomenon of particles sliding on rotating surfaces, as observed in cyclones or spiral separators, is of 

particular interest. The dynamics of flow and the interactions between surfaces are known to induce non-uniform 

rotational motion, thereby creating a complex and dynamic environment for study. The model simplified aspects of 

motion along fault lines or geological structures exhibiting fractal roughness under non-uniform tectonic stresses. 

It is imperative to comprehend the dynamics of a bead under such non-uniform rotation ω(t) within a fractal 

space framework, as elucidated in this study, to facilitate the analysis and design of systems where friction, wear, 

particle transport, or resonant behavior occurs under complex rotational conditions and multiscale geometries. 

Assuming the angular rotation is expressed in fractional form 
0

, 0 1t   =   . The governing equation of 

motion for a smooth wire with fractional temporal variation is [37, 38] 

22 2
20

2 2 2 2 2 2

0

2 4 (0)
( ) 0, ( 0) , 0

(1 4 ) 1 4

gcd r c r dr dr
r r a

dt c r c r dt dt  





−
+ + = = =

+ +
 (17) 

Eq. (17) involves several key parameters. The parameters a, ω₀, g, and c are initial conditions or fundamental 

physical constants that define the specific mechanical system under study. The parameter a denotes the initial radial 

displacement of the bead, measured in the Imperial System of Units as feet (ft). It represents the amplitude of the 

initial perturbation. The base angular velocity, designated as ω₀, is measured in radians per second (rad/s), and it 

characterizes the nominal rotational speed of the wire. In the non-homogeneous case, the symbol often represents a 

characteristic scale or average value. g represents the acceleration due to gravity on Earth (Imperial units: ft/s², as 

used in simulations). This quantity represents the constant gravitational force acting on the bead. The parameter c is 

the parabolic constant, measured as ft⁻¹. The parabolic wire’s shape is defined by the equation z = cr², and its 

steepness is determined by the equation's parameters.  

In the domain of physics, the objective is to approximate a suitable solution to Eq. (17) within the context of 

fractal space. A pragmatic approach entails the conversion of this equation into a form that employs the 

conventional derivative in continuous space. This necessitates converting the assignments of the traditional 

derivative, as delineated in Eq. (12), into the format of the equation of motion (17) coupled with the initial 

conditions, resulting in a formulation that can be expressed as 

*( , , ) 0, (0) , (0)r H r r r r a r aP   + = = = −  (18) 

where H*  has the form 

2

* 2 2 2 3 2 2 2 2 2 20

2 2

0

2
( , , ) ( ) 8 2 r 16 4 4

gc
H r r r P r P c r P Pc r r c r r c r r

Q





−
     = + + + + + +  (19) 

The notation P and Q are given by  

1cot , si n
2 2

P S Q S −= =    (20) 
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The frequency form (15) can be used to obtain 

2*
2 2 2 2 2 2 20

2 2

0

2 2 2 2

2( , , )
24 4 ( 8 ) r 16

2 (1 8 ) 4

gcdH r r r
P P c r c Pr r c r r

dr Q

r r
P c r c r

r r






− 
  = = + + + + +

 
+ + +

 

 (21) 

Substituting these expressions 
2

2

2

( )aP
A a


= + , 

1 3 1 32 3= , = , = ,
2 2 2 2

r A r A r A r A    − − =  into 

Eq. (21) yields 

2

2 2 4 2 2 3 2 2 2 20

2 2 2

0

2 2 3 2 2 4

220 2
(1 2 ) ( ) [ (1 4 ) ]

3 3

20
6 0

3

gc
c a c a P c a P

P Q

c a P c a P


  





−
+ + − − + +

+ − =

 (22) 

The determination of the parameter S is necessary to ascertain the expressions of P and Q. Given that Eq. (18) is 

a counterpart of Eq. (17), a comparison of the linear frequency of this transformed equation with the linear 

frequency of the original nonlinear oscillator yields a significant relation. This relation intricately connects the 

constant c and the angular frequency ω0 in terms of the fractal parameter  , illustrating a critical linkage between 

these fundamental parameters within the context of the fractal space. To select the coefficient of the first term of r in 

Eq. (17), Taylor’s representation of 1/(1+4c2r2) is used to obtain the coefficient of the first term as (2gc-ω0
2)/ω0

2. 

The coefficient of the first term of r in Eq. (18) is P2+(2gc-ω0
2)/(ω0

2Q2) . By equating these coefficients, we derive  

22 2

0

2 2

0

2

1

gcP Q

Q





−
=

−
  (23) 

Combining the relationship between P and Q in Eq. (23), Eq. (22) becomes 

2

2 2 4 2 2 3 2 2 2 2 2 2 3 2 2 40

2

0

220 2 20
(1 2 ) ( ) ( 4 ) 6 0

3 3 3

gc
c a c a P c a P c a P c a P


   



−
+ + − − + + − =  (24) 

It can be reduced  

2

2 2 2 2 2 2 2 2 0

2

0

210 2
2 ( ) ( 3 ) ( ) 0

3 3

gc
c a P P P P


     



−
+ + − + − − =   (25) 

To make Eq. (25) physically meaningful, the inequality 

2

2 2 2 0

2

0

210 2
( 3 ) ( ) 0

3 3

gc
P P P


   



−
+ − − −  must be satisfied. Solving this inequality yields the 

permissible range of  as: 
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2

2 0

2

0

234 5 1 1

33 3

gc
P P P






−−
  + +  (26) 

Substitution of Eq. (20) into (23) yields 

2 2

2 2 2 2 20 0

2 2

0 0

2 2
t an ( ) sec ( ) 0

2 2

gc gc
S S   

 

−− −
− + =  (27) 

The parameter S is represented in a complicated transcendental manner, contingent on the parameter   and the 

coefficient of the original equation. Once the value of the parameter of interest is ascertained, the value of the 

parameter S will be established. As illustrated in Fig. 2, the relationship between   and S is depicted for various 

values of 2 2

0 0
(2 ) /gc  − , ranging from 0.01 (weak coupling) to 100 (strong coupling). Key observations are as 

follows: 

Weak Coupling ((2gc-ω0
2)/ω0

2 1): For (2gc-ω0
2)/ω0

2=0.01, 𝑆 remains nearly constant over a wide range of 𝜑, 

as the small coefficient suppresses the nonlinear terms in Eq. (27). A slight rise in 𝑆 at larger 𝜑 is attributed to the 

residual influence of the sec2 term. 

Intermediate Coupling ((2gc-ω0
2)/ω0

2=1): At (2gc-ω0
2)/ω0

2=1, the solution transitions smoothly, with 𝑆 

increasing monotonically as 𝜑 increases. The interplay between tan2 term and sec2 term introduces a gradual 

curvature, reflecting the competition between exponential and trigonometric dependencies. 

High Coupling Regime ((2gc-ω0
2)/ω0

2 1): For (2gc-ω0
2)/ω0

2=100, 𝑆 exhibits a sharp increase as 𝜑 approaches 

1. This behavior arises from the dominance of the tan2 term in Eq. (27), which diverges at 𝜑→1, necessitating 𝑆→1 

to balance the equation. 

Notably, all curves converge to 𝑆→1 as 𝜑→1, consistent with the asymptotic singularity of 2t an ( / 2) . These 

results highlight the sensitivity of 𝑆 to both 𝜑 and the coupling parameter (2gc-ω0
2)/ω0

2, underscoring the need for 

precise parameterization in applications such as resonant systems or nonlinear oscillators where such equations 

commonly arise. 

 

 

 
Fig 2: the relationship between φ and S of Eq. (27) 
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However, it should be noted that the aforementioned formula is incapable of yielding the display solution of S. 

Consequently, the analytical expressions of P and Q remain elusive. Employing the definition of P given in Eq. (20), 

it yields 

2 2
2 2 20

2 2

0

2 1
t an ( ) ( 1)

2

gc Q
S Q

Q

 



− −
=    (28) 

Eq. (28) is then substituted into the definition of Q, 

2

1 2 2 2 10

2 2

0

2 1
( ) t an ( ) cos ( ) (1 )

2 2

gc
Q

Q

    



− −−
= −

 (29) 

By Taylor series, 1

2 2

1 1
(1 ) 1 ( 1)

Q Q

 −− = + − + , it yields  

2

2 1 2 20

2

0

2
( ) t an ( ) cos ( ) 1

2 2

gc
Q    




−−
= + −   (30) 

So, the expression of P is 

2

2 0

2 2

1 2 20 0

2

0

2 1
[1 ]

2
( ) t an ( ) cos ( ) 1

2 2

gc
P

gc  



   




−

−
= −

−
+ −

 (31) 

4. Graphical illustration 

The ensuing figures offer a visual representation of the precise solution to Eq. (18), which corresponds to Eq. 

(17) in fractal space. Fig. 3 presents a comparative analysis of results under varying 𝜑 values, emphasizing the 

influence of 𝜑 on the system’s dynamic behavior. The system parameters are g=32 ft/s2, ω0=1.0 rad/s, a=0.2 ft, and 

c=0.1 ft-1. As the value of 𝜑 increases, the analytical solution exhibits enhanced nonlinear effects or damping 

adjustments, manifested through convergence variations in waveform amplitudes or adaptive changes in oscillation 

frequencies. The utilization of color or line style to differentiate curves corresponding to different 𝜑 values 

underscores the pivotal role of parametric sensitivity analysis in elucidating the system’s dynamical mechanisms. 

 
Fig.3: A comparative analysis of Eq. (18) under varying 𝜑 values with g=32 ft/s2, ω0=1.0 rad/s, a=0.2 ft, and 

c=0.1 ft-1 
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The effect of the parameter c on damping and wave profile has been shown in Fig. 4. This graph significantly 

contributes to the visual interpretation of Eq. (18), and shows that damping behavior is influenced by variations in c. 

Different c values leads to distinctive damping curve shapes. Fig. 5 shows the periodic solutions for different values 

of a. 

  
Fig.4: A comparative analysis of Eq. (18) under varying c values with g=32 ft/s2, ω0=1.0 rad/s, a=1.0 ft,  and 

𝜑=0.1  

 
Fig.5: A comparative analysis of Eq. (18) under varying a values with g=32 ft/s2, ω0=1.0 rad/s, c=0.1 ft-1 and 

𝜑=0.1 

The linearized version of Eq. (18) is designed to preserve the fundamental dynamical attributes of the original 

system while simplifying its complexity, as illustrated below: 

2 0, (0) , (0)r r r a r aP + = = = −   (32) 

The primary objective of this paper is to ascertain the conservative frequency 2 , which is a crucial factor for 

accurately understanding and representing the dynamic behavior of the system. We have derived expressions for P 

and Q, as presented in the Eqs. (30) and (31). The precise solution to Eq. (32), which concurrently serves as an 

approximate solution to Eq. (18), exhibits the following form.  

= ( cos si n )
P

r a t t 


−   (33) 
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However, the periodic solution exhibited in Eq. (33) signifies a constant amplitude of motion, while the 

amplitude of the periodic motion of the system is subject to variation, as demonstrated in Figs. 3 and 4. To ascertain 

a more precise approximate periodic solution, Eq. (18) is rewritten as 

2 2 * *2(1 8 ) ( , , ) 0, (0) , (0)r c r Pr H r r r r a r aP    + + + = = = −  (34) 

where H** has the form 

2

* * 2 2 2 3 2 2 2 20

2 2

0

2
( , , ) ( ) 8 4 4

gc
H r r r P r P c r c r r c r r

Q





−
   = + + + +  (35) 

The linearized version of Eq. (34) is designed to preserve the fundamental dynamical attributes of the original 

system while simplifying its complexity, as illustrated below: 

2 0r r w r + + =    (36) 

The symbols   and w2 are utilized to denote the damping coefficient and the conservative frequency, 

respectively. The total frequency is denoted by w2, which has the expression 
2

2 2

4
W w


= − . They can obtain by 

Eq. (15), 

2

2 2 2 2 2
2 2

21 3 1
, ,

2 2 2

[ 2(1 8 ) Pr ]
| 2 (1 10 10 )
r A r WA r W A

d c r c a P
P c a

dr W


 = =− =−

+
= = − −


  (37) 

 

2

2* * 2 2 4
2 2 2 2 2 2 20

2 2 2 21 3 1
, ,

02 2 2

2( , , )
| [ (1 4 ) ] 6 2
r A r WA r W A

gcdH r r r c a P
w c a P c aW

dr P Q W



 = =− =−

− 
= = + + + −   (38) 

Substituting Eqs. (37) and (38) into the expression 
2

2 2

4
W w


= −  and combining it with Eq. (23) leads to the 

following simplified equation 

2

2 2 6 2 2 4 4 2 40

2 2

0

4 4 2 2 4 2 4 4 6

2
(1 2 ) (1 24 100 )

(200 26 ) 100 0

gc
c a W c a c a PW

P

c a c a P W c a P





−
+ + − + −

+ − + =

  (39) 

The proposed Eq. (36) is characterized by its simplicity, which is expressed in a specific form that reflects the 

direct nature of the equation. The capacity to derive an accurate solution from such a simplified equation is 

advantageous because it provides a clear insight into the behavior of the system and helps validate the effectiveness 

of the linearization and approximation methods used in the analysis. This exact solution form is a pivotal component 

in comprehending the dynamics and properties of the system delineated in Eq. (36). The solution has the following 

form 

2
( 2 )

= ( cos si n )
2

t P
r ae Wt Wt

W


− −

+   (40) 
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Fig. 6 compares the numerical solution of Eq. (18) with the analytical solution and shows the agreement. These 

visualizations are crucial in demonstrating the precision and effectiveness of the analytical solution derived using 

the frequency method. 

  
Fig.6: A comparison between the numerical solution for Eq. (18) (solid line) and the exact solution (40) 

(dashed line) with g=32 ft/s2, 
0

 =2.0 rad/s, a=1 ft, and c=0.08 ft-1 

5.  Conclusion 

This study employs a systematic approach to analyzing fractal nonlinear oscillators through frequency-amplitude 

relationships. The investigation has yielded significant insights into the intricate dynamics of such systems. A novel 

frequency formula for fractal systems is derived by transforming the governing equation into a linearized form, 

circumventing the conventional limitations imposed by perturbation theory. The explicit dependence of fractal 

parameters (S, P, Q) on 𝜑 and coupling strength is rigorously quantified. The numerical results obtained from this 

study demonstrate that the fractal dimension, denoted by the parameter 𝜑, exerts a substantial influence on 

oscillation damping and frequency. Furthermore, it is observed that the magnitude of coupling has a direct impact on 

the sensitivity of the fractal parameter S to parameter 𝜑. The analytical solution (39) exhibits a high degree of 

congruence with numerical simulations, thereby substantiating the efficacy and precision of the method employed. 

This framework is adaptable to engineering systems involving fractal geometries, such as porous media transport or 

MEMS resonators. While the current formulation successfully handles the effective dissipation induced by fractal 

time, extending the methodology to explicitly incorporate native damping terms into the original fractal governing 

equation represents a valuable direction for future research. Future endeavors should explore time-dependent fractal 

dimensions and experimental validation in physical systems such as variable-speed rotating MEMS devices or 

particle transport systems exhibiting fractal interfaces. Furthermore, extending this approach to higher-dimensional 

fractal spaces has the potential to further bridge the gap between theoretical models and real-world applications. 
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