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Abstract 

The extant corpus of literature pertaining to optimal control problems with 

partial differential equation (PDE) constraints is extensive. This paper 

introduces a novel variational approach to optimal control problems 

constrained by fractal-fractional differential equations. Utilizing the shallow 

water wave as a case study, the semi-inverse method is employed to establish 

the variational formulation. This approach not only exemplifies a novel 

mode of thinking but also has significant ramifications for the field. This 

novel approach to optimal control paves a promising path for further 

research and provides researchers and practitioners with a novel perspective 

and potential avenues for further exploration. By exploring this alternative 

approach, researchers and practitioners can develop a more profound 

understanding of the fundamental nature of optimal control problems and 

identify more effective solutions for a wide range of applications. 
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1. Introduction 

Optimization with partial differential equation (PDE) constraints is of paramount importance in both the domains 

of mathematics and engineering [1], Tindano, et al. focused on nonlinear elliptical evolution equations with 

incomplete data [2], Garg & Rani applied differential equations to optimize maintenance schedules in a coil shop, a 

critical component of manufacturing systems [3], Zambelongo, et al. integrated optimal control theory to determine 

harvesting efforts that maximize yield while preventing species collapse [4].  

In the field of economics, it plays a crucial role in helping decision-makers make strategic decisions and 

optimize resource allocation [5]. By applying optimization with PDE constraints, economists can analyze complex 

economic models and systems, taking into account various factors and constraints. This enables them to develop 

more effective economic policies and strategies, leading to improved economic outcomes. 

In the realm of drug therapy, it can be utilized to design optimal treatment plans [6]. By considering the complex 

biological processes and constraints described by partial differential equations, researchers and clinicians can 

develop more personalized and effective treatment plans. This can lead to better patient outcomes and improved 

quality of life. 
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Medical image analysis also benefits significantly from it for enhancing diagnostic accuracy [7]. By 

incorporating the physical and biological properties of imaging processes into the optimization framework, it is 

possible to improve the quality and accuracy of medical images. This can lead to more accurate diagnoses and better 

treatment decisions. 

In mechanical engineering, it aids in optimizing designs for better performance [8]. By considering the 

mechanical properties and constraints described by partial differential equations, engineers can design more efficient 

and reliable structures and systems. This can lead to improved performance, reduced costs, and increased safety. 

Additionally, numerical methods for optimal control problems have been the subject of extensive research [9, 

10]. Scholars and researchers have been constantly exploring and developing new numerical techniques to solve 

optimal control problems with PDE constraints. This research has led to significant advances in the field and has 

opened up new possibilities for applications. Non-classical optimal control problem [11], nonsmooth optimal control 

problem [12] and indirect optimization [13] were appeared in various practical applications. 

The above research has exemplified the versatility of optimal control theory in addressing interdisciplinary 

challenges. From industrial maintenance and economic policy to ecological conservation and nonsmooth dynamical 

systems, the studies highlight innovative methodologies—such as hybrid optimization, data imputation, and 

ecological modeling—to solve real-world problems. Each contribution underscores the critical role of differential 

equations and control frameworks in advancing both theoretical and applied research. However, the variational 

method for the optimal control problem within the shallow water equations in a fractal space remains uncharted 

territory in the open literature. In this paper, we aim to shed light on its unique advantages, opening up new avenues 

for research and application. 

The variational principle is a fundamental concept that holds great significance in both physics and mathematics.  

It asserts that the true path or state of a physical system is the one that extremizes a certain functional. This principle 

serves as a powerful and essential tool for analyzing and understanding a wide variety of phenomena. 

In mechanics, for instance, the principle of least action is a variational principle that determines the governing 

equations.  By minimizing the action functional, one can derive the equations of motion for a mechanical system. 

This principle has been widely used in classical mechanics and has led to many important discoveries and insights. 

Variational principles are also employed in fields such as electromagnetism, quantum mechanics, and fluid 

dynamics. They frequently lead to elegant mathematical formulations and offer insights into the underlying nature of 

physical systems. In electromagnetism, variational principles are used to derive Maxwell's equations. In quantum 

mechanics, the variational method is often used to approximate the ground state energy and wave function of a 

quantum system. In fluid dynamics, variational principles can be used to analyze and understand fluid flow 

phenomena. 

Many new variational formulations have emerged for incompressible flow [14], tsunami waves [15], various 

shallow waves [16, 17], lubrication [18], MEMS systems [19, 20]. These new formulations have provided new 

perspectives and methods for analyzing and understanding these complex phenomena. They have also led to new 

applications and technological developments. 

2. Optimal control problems constrained by a variational principle in a fractal space 

The variational principle holds tremendous potential for application in optimization problems that are 

constrained by differential equations. The overarching goal in such scenarios is frequently to substitute the 

constraints with a meticulously crafted variational formulation. This approach is aimed at transforming the 

optimization problem into a matter of extremizing a specific functional. By doing so, it becomes possible to utilize 

powerful mathematical techniques such as the calculus of variations to painstakingly search for the optimal solution. 

The variational principle also presents several distinct advantages. For instance, it offers a global perspective on 

the problem at hand, enabling a more comprehensive understanding. Additionally, it allows for the careful 

consideration of constraints, which is crucial in many real-world applications. With its ability to handle complex 

problems involving multiple variables and constraints, it emerges as a highly valuable tool in the realm of 

optimization. 

Optimization in a fractal space represents a truly unique and exceptionally challenging area of study. Fractal 

spaces possess extremely intricate and self-similar structures, which significantly add to the complexity of the 

optimization process. In such spaces, traditional optimization methods may not be directly applicable due to the 

unique characteristics and challenges presented by the fractal nature. 

The optimal control problems constrained by a variational principle in a fractal space are designed to thoroughly 

investigate the variational method for the optimal control problem. This area of research holds great promise for 

uncovering new approaches and solutions to complex optimization challenges in fractal environments. 

Once again, the variational principle has significant potential application to optimization problems constrained 

by differential equations. The common objective is often to replace the constraints with a precisely formulated 
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variational formulation. By formulating an optimization problem in terms of a variational principle, we can 

effectively transform it into a problem of extremizing a particular functional. This, in turn, allows us to employ 

mathematical techniques like the calculus of variations to diligently seek out the most optimal solution. 

The variational principle continues to offer a host of advantages. It provides a panoramic view of the problem, 

facilitating a deeper understanding. Moreover, it enables the incorporation of constraints, which is essential for 

addressing practical optimization issues. Its capacity to handle complex problems with numerous variables and 

constraints solidifies its status as a valuable asset in optimization. 

Optimization within a fractal space remains a one-of-a-kind and arduous area of study. The fractal spaces boast 

elaborate and self-similar architectures that greatly enhance the complexity of the optimization task. In these spaces, 

traditional optimization methods might not be readily applicable, necessitating the exploration of alternative 

approaches. 

The optimal control problems constrained by a variational principle in a fractal space is to investigate the 

variational method for the optimal control problem: 

2 2
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2 2
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where J(u,w) is the objective functional, du
is a desired state， w is the control variable，the subscriptions in Eq.(2) 

imply the two-scale fractal derivatives [21, 22],   is the two-scale fractal dimensions [23]. The two-scale fractal 

geometry has been widely used in practical problems, for examples, porous concretes [24, 25], porous beams [26], 

Clover-Inspired Fractal Architecture [27], nanofiber members [28], fractal super-ropes [29]. The fractal-fractional 

models are now widely using for dealing with complex problems, e.g., heat transfer [30] and fractal vibration system 

[31-33]. 

The main challenge resides in handling the complexity of variational principles and formulating efficient 

optimization algorithms. Researchers employ the semi-inverse method [34-36] to address the establishment of a 

variational formulation. By optimizing systems with variational principal constraints, we can enhance performance, 

design better structures, and solve complex engineering problems. This area of study continues to develop, 

presenting new opportunities for innovation and improvement. 

Minimizing Eq. (2), we can obtain the Euler-Lagrange differential equation 

( ) ( ) 0

t x

L L L

u t u x u 

 

 

    
− − + =

    
                                              (3) 

When  = 1, optimal control problems constrained by Eq. (3) have been the subject of extensive study in the 

literature [9, 10]. 

3. Shallow Water equations and variational formulation  

Shallow water waves, as mentioned in [37], have a profound impact on safety along the coastline. In particular, 

tsunami waves pose a significant potential threat to the biological environment as well as the security of people's 

lives and properties. These waves are characterized by the fact that their behavior is greatly influenced by the 

surface morphology of the seabed.  

The traditional models for shallow water waves are typically differential equations. However, these equations are 

often unable to fully describe the effects of an unsmooth seabed. Chinese mathematician Yan Wang and his team 

have made remarkable discoveries. They have revealed that fractal boundaries play a crucial role in the prevention 

of tsunami-like waves, as documented in [38, 39]. This finding offers new perspectives and potential solutions for 

understanding and mitigating the risks associated with these powerful natural phenomena. 

Considering the fractal boundary of the seabed, we consider the following shallow water equations:  
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where a, b, m, n and p are constants.  

The semi-inverse method, as indicated in [34], is an extremely valuable and highly useful approach for the 

establishment of a variational formulation. This remarkable method offers a systematic and well-structured way to 

deal with complex problems by effectively reducing the complexity involved in deriving variational principles. 

It commences by making an educated and informed guess or assumption about the form of the solution or certain 

crucial aspects of the problem. This initial educated guess serves as a guiding light and helps to significantly narrow 

down the extensive search space. Then, by employing a variety of mathematical techniques and fundamental 

principles, the semi-inverse method proceeds to skillfully manipulate and transform the problem in order to fit it 

within a variational framework. 

This approach can be particularly useful and highly beneficial when dealing with problems that prove to be 

extremely difficult to solve using traditional methods. It allows for a more intuitive and flexible way of finding 

solutions, enabling researchers and practitioners to explore different possibilities and perspectives. The semi-inverse 

method has found extensive applications in various diverse fields such as mechanics, physics, and engineering. In 

these fields, it has played a crucial role in helping to solve complex problems related to partial differential equations 

and optimization. Overall, it provides a powerful and essential tool for establishing variational formulations and 

gaining a deeper understanding of complex systems. 

The semi-inverse method, as mentioned in [34], is extremely applicable to the establishment of variational 

formulations for Shallow water equations, as demonstrated in [40-42]. It can also be utilized for finding a variational 

principle for MEMS, as indicated in [43].  

Following a similar way as that in Ref. [34] `, we re-write Eqs. (5) and (6) in the form 
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According to the semi-inverse method [34], we construct a trial-variational formulation in the form  
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where F is an unknown function.  

The Euler-Lagrange equations of Eq. (10) with respect to u and v are, respectively, as  
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where uF
 and vF

 are variational derivatives with respect to u and v, respectively. In view of Eq. (8), we have  
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In order to identify F from Eqs.(13) and (14), it requires that  
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Eq. (16) implies 

n a=                                  (17) 

Under the requirement of Eq. (17), F can be determined as  
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So we obtain the following variational formulation  
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and the following constrained variational principle 
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The variational principle of Eq. (30) is under constraints of Eq. (8).  

4. Variational method for optimal control problems 

The variational method for the optimal control problem now can be expressed as 
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s.t 
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This type of optimization is truly groundbreaking as it has not been seen in the literature before. It stands out for 

its mathematical rigor, ensuring a solid theoretical foundation. The approach is not only mathematically sound but 

also provides physical insights, helping to better understand the underlying phenomena. Moreover, it is numerically 

simple, making it accessible and practical for implementation. This combination of qualities makes it a valuable 

addition to the field of optimization. It has the potential to open up new avenues of research and application, 

inspiring further exploration and innovation. With its unique characteristics, it is poised to make a significant impact 

on various disciplines that rely on optimization techniques. 

The above optimization has still constraints of differential equations, and the following optimization can be 

easily obtained: 
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s.t.  
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This optimization eliminates the constrains with differential equations, now it is constructed an optimization 

using Lagrange multiplier in a single object function:  

8 6 7( , , , ) ( , , , ) ( , , )J u v w J u v w J u v   = +
                                                           (25) 

where   is the Lagrange multiplier.  

5. Discussion and Conclusion  

The variational principle can be effectively utilized to solve optimization problems with partial differential 

equation (PDE) constraints in the following manner: First and foremost, by formulating a meticulous variational 

formulation for the partial differential equation, the overarching goal is frequently to replace the PDE constraint 

with a precisely crafted variational formulation. By doing so, it becomes possible to apply the variational-based 

analytical methods and numerical methods. This enables the determination of the optimal solution by painstakingly 

finding the path or state that extremizes the functional. 

The variational principle offers several distinct advantages in this context. It provides a comprehensive global 

perspective on the problem at hand. This means that it can consider the overall behavior of the system rather than 

being confined to just local aspects. Additionally, it allows for the effortless consideration of constraints, as these 

can be directly incorporated into the variational formulation. 

For problems that are constrained by PDEs, the variational principle can adeptly handle complex systems with 

multiple variables and constraints. This makes it an extremely valuable tool in the realm of optimization, as it can 

effectively deal with the complexity introduced by the partial differential equations. 

In conclusion, this paper's in-depth exploration of optimal control problems constrained by a variational 

formulation truly represents a remarkable breakthrough. By using the shallow water wave as an illustrative example 

and employing the semi-inverse method, it has opened up a brand-new door to the world of optimal control. This 

novel approach not only offers researchers and practitioners a fresh perspective but also holds the promise of 

uncovering more efficient solutions for a wide range of applications. 

What makes this work even more significant is that this particular type of optimization has not been witnessed in 

the literature before. It fills a crucial gap and paves the way for further research and innovation. As we continue to 

delve deeper into this alternative path, we can look forward to gaining deeper insights into the nature of optimal 

control problems. A future filled with innovative solutions that will reshape the field is on the horizon. This 

discovery has the potential to inspire new lines of inquiry and open up unexplored territories in both the theoretical 

and practical aspects of optimization. It holds the promise of driving progress and advancing our understanding of 

complex systems and optimization techniques. 
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