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Abstract: 

As the number of high-rise buildings continues to grow in our modern world, there is an increasing demand 

for innovative design methods that enable structures to effectively withstand lateral loads. In response, tube 

structures have emerged as a predominant choice in contemporary high-rise architecture. Nonetheless, the 

phenomenon of shear lag poses a significant challenge for these systems, often leading to inefficiencies in 

their performance. To mitigate the effects of shear lag, several construction techniques for tube structures 

have been devised, particularly the implementation of outrigger and belt wall systems. These systems not 

only enhance lateral stiffness and reduce shear lag but can also be optimized to address axial shortenings 

resulting from time-dependent deformations in concrete. This study focuses on optimizing the positioning 

of outriggers and concrete belt walls in an 80-floor building with core-supported and tube-in-tube structural 

systems, aiming to minimize lateral displacement and the maximum differential axial shortenings. We 

employed an integrated approach using the Genetic-Descent Gradient method, which improves the local 

search capabilities of the genetic algorithm by combining it with the descent gradient technique. 

Additionally, we applied bounding phase and golden section search methods to further enhance the 

convergence rate of the algorithm. The findings reveal that lateral displacements and maximum differential 

axial shortenings in tube-in-tube structures are significantly lower than those in core-supported structures. 

The combined Genetic-Descent Gradient technique also showed superior performance, as demonstrated by 

the improved convergence rates compared to the traditional genetic algorithm. 

 

Keywords: Tall Concrete Structures, Optimization, Outriggers, Genetic Algorithm, Descent Gradient 

method 

 

1. Introduction 



 

 

    The construction of high-rise buildings has long been recognized as a manifestation of strength 

and advancement within the construction industry. These structures not only exemplify superior 

engineering and technological capabilities but also serve as symbols of economic development 

and growth. As the heights of buildings have increased, the associated technical challenges have 

multiplied, necessitating the development of new structural systems to effectively resist lateral 

forces. A novel structural system for high-rise buildings, known as the tubular systems, was 

introduced, which significantly addresses the challenges associated with structural stability (Khan 

and Rankin, 1980). This system is characterized by a perimeter framework composed of closely 

spaced columns, which collectively enables the entire structure to function as a vertical cantilever. 

As the height of the structure increases, the shear lag effect becomes increasingly pronounced; this 

phenomenon results in the uneven distribution of lateral forces among the perimeter columns, 

further accentuating the importance of this design approach in taller buildings. Although tubular 

systems are highly effective for high-rise constructions, their potential to fully capitalize on the 

maximum stiffness and strength capacity of the structure is constrained by the shear lag effects 

prevalent in the perimeter frames. Therefore, while offering substantial advantages in terms of 

structural performance, these systems require careful consideration to optimize their effectiveness 

in the context of increasing heights. Research indicates that the incorporation of a belt wall can 

effectively mitigate the limitations associated with shear lag effects in high-rise buildings (Shin et 

al., 2012; Arshadi and Kheyroddin, 2019). By facilitating a uniform distribution of stress across 

the perimeter columns and interconnecting them, the belt wall within this structural system 

diminishes the shear lag phenomenon. Furthermore, previous studies have shown that the strategic 

placement of outriggers significantly enhances the overall performance of the structure (Khadka 

et al., 2023; Habrah et al., 2023; Kamgar and Rahgozar, 2019; Sun et al., 2023; Tavakoli et al., 



 

 

2022). A simplified methodology was introduced to determine the optimal positioning of 

outriggers, with the objective of minimizing lateral displacement. This approach involved 

calculating the top displacement of the structure as the algebraic sum of displacements resulting 

from external loading and the moment generated by the outrigger. Findings indicated that, under 

uniform lateral loading conditions, the optimal position for the outrigger is located at a distance of 

0.455 times the height of the structure from its top (Taranath, 1975). In a subsequent study, 

nonlinear time history analysis was employed, and it was discovered that the most favorable 

performance of the central core and outrigger systems is achieved when the outrigger is positioned 

at a height of 0.73 times the total height of the structure (Beiraghi and Siahpolo, 2017). These 

results were corroborated by further research, which recommended the installation of two 

outriggers at heights of 0.312 and 0.685 times the height of the structure to optimize performance. 

Additionally, following the installation of an outrigger at the top of the structure, it was determined 

that the optimal location for a second outrigger is situated at 0.75 times the height of the structure 

from its apex (McNabb and Muvdi, 1975). Additionally, following the installation of an outrigger 

at the top of the structure, it was determined that the optimal location for a second outrigger is 

situated at 0.75 times the height of the structure from its apex (Beiraghi and Hedayati, 2021). The 

amount of lateral displacement of the structure can be decreased by 15% to 38% for one to four 

outriggers by installing them in the optimal positions, according to the findings of a study done on 

a concrete frame with 80-floors and tube-in-tube structural system (Safarkhani and Madhkhan, 

2024). An analysis of two buildings with 20 and 25 stories was conducted to ascertain the most 

effective locations for outriggers. The findings, derived from spectral dynamic analysis and time 

history analysis, indicated that the optimal outrigger placement was at a distance of 0.38 and a 

height of 0.5 from the top of the structure, respectively (Haghollahi et al., 2012). A study examined 



 

 

the impact of outriggers on the structural behavior of high-rise buildings. The spectral dynamic 

analysis demonstrated that positioning an outrigger at the midpoint of the structure resulted in a 

56% reduction in maximum lateral displacement. Furthermore, the installation of one outrigger at 

the top in conjunction with another at the midpoint yielded a 65% reduction in maximum lateral 

displacement (Putlaiah and Hanuma, 2019). Another investigation revealed that in structures 

employing a central core system, the lateral displacement could be reduced by up to 35% with the 

installation of a single outrigger brace. Additionally, the use of two outrigger braces further 

decreased lateral displacement, achieving reductions of up to 55%. The implementation of 

outriggers also led to a 45% decrease in story drift compared to structures lacking such systems 

(Salman et al., 2020). A study utilizing time history analysis indicated that in a building featuring 

a central core system, the lateral displacement decreased by approximately 15% with the 

installation of two outriggers located on the 20th and 26th floors (Biradar and Bhandiwad, 2015).  

    Given the extensive application of meta-heuristics methods in structural engineering, several 

important studies in this field are reviewed (Hosseini et al., 2024). An Improved Hybrid Growth 

Optimizer (IHGO) was developed for addressing discrete structural optimization problems, 

enhancing the original Growth Optimizer (GO), a recent and effective metaheuristic for numerical 

and real-world optimization (Kaveh and Hamedani, 2024). 

     In recent years, the evolution of hybrid meta-heuristics—combinations of various optimization 

algorithms—has significantly enhanced optimization capabilities. A notable example is the 

integration of Genetic Algorithms (GAs) with local search techniques, such as gradient descent. 

This combination not only improves convergence speed but also enhances overall solution quality 

by leveraging the global search capabilities of GAs alongside the efficient local refinement offered 

by gradient descent methods. Such hybrid approaches have proven effective in solving complex 



 

 

optimization problems in structural design and other fields, making them a promising area of 

research for further advancements in optimization techniques. However, one of the critical 

challenges in the gradient descent method is determining the optimal value of the learning rate 

parameter. Various studies have been conducted in this area to explore effective methods for tuning 

the learning rate. One of these studies proposes a promising alternative that effectively balances 

automation and performance. The improvements in convergence speed and generalization could 

have substantial implications for various applications in machine learning and artificial 

intelligence. This study provides theoretical explanations for common practices in Stochastic 

Gradient Descent hyper parameter tuning, including the scaling of learning rates with batch size 

and the use of high learning rates in certain scenarios. Their method automatically generates a 

decreasing learning rate during training from a single initial value, thus minimizing manual 

adjustments and facilitating easier experimentation. They propose a uniform formula for the 

learning rate, influenced by historical values, which simplifies the tuning process (Song and Yang, 

2023). Another study presents a learning-rate-adaptive approach that modifies the learning rate 

based on empirical estimates of the objective function being minimized. The researchers 

specifically develop an adaptive variant of the Adam optimizer and apply it to various neural 

network tasks, particularly for deep learning methods addressing partial differential equations. 

Their adaptive method consistently reduces the objective function value more rapidly than the 

standard Adam optimizer with a fixed learning rate. Additionally, the study offers a rigorous 

convergence proof for the learning-rate-adaptive Stochastic Gradient Descent method applied to a 

fundamental class of quadratic minimization problems. This proof is based on the analysis of 

invariant measure laws of Stochastic Gradient Descent and extends to a broader convergence 



 

 

analysis for Stochastic Gradient Descent with random yet predictable learning rates (Dereich et 

al., 2024). 

      Given the limited research on multi-objective optimization of three-dimensional structures 

utilizing tubular structural systems, this study seeks to optimize the configurations of outriggers 

and concrete belt walls in structures incorporating two tube-in-tube and core-supported 

systems. While improving efficiency is often a common objective, this research prioritizes the 

structural security and stability of the buildings through the optimal placement of outriggers and 

concrete belt walls. By doing so, we aim to demonstrate the critical improvements in lateral 

displacement and maximum differential axial shortenings, thereby reinforcing the overall safety 

and integrity of the structure. The primary objective is to minimize the maximum differential axial 

shortenings in vertical elements, as well as the lateral displacement of the structure. To achieve 

this, the study employs a combined Genetic Algorithm-Descent Gradient method, enhancing the 

local search capabilities of the Genetic Algorithm through integration with the descent gradient 

approach. The results of the optimization processes for both single-objective and multi-objective 

scenarios are presented, taking into account varying numbers of outriggers, ranging from one to 

four. 

   2. Characteristics of the models 

    This study employs an analytical model, as illustrated in Fig. 1a, to investigate the impact of 

concrete outriggers and belt walls on tall structures. The configuration consists of 80 floors 

equipped with two lateral resisting systems: a core-supported system and a tube-in-tube system, 

which are depicted in Figs. 1b and 1c, respectively. The loading conditions are in accordance with 

ASCE 7-16 (2016), and seismic analysis is conducted using the dynamic spectral method, with 



 

 

the seismic design category classified as C. To determine the behavior coefficient, a conservative 

approach is adopted due to the lack of precise values for such structural systems in the design 

codes. Based on insights from previous studies (Kakde and Desai, 2017; Hong et al., 2010), the 

behavior coefficient is selected conservatively, without accounting for the potential benefits and 

effects of tubular performance on the nonlinear behavior of the structure. Specifically, equivalent 

systems for the tube-in-tube configuration are considered in accordance with the provisions 

specified in existing design codes. Structural modeling and analysis are conducted following the 

guidelines of ACI 318-19 (2019) and utilizing the ETABS finite element software. Furthermore, 

to evaluate the various axial shortenings, the model is analyzed in accordance with CEB-FIP 

(1990) to estimate the long-term behavior of concrete. Normal cement is employed as the cement 

type, with an assumed relative humidity of 50%. The construction duration for each floor is 

established at 7 days, with the dead load of the columns applied 3 days after the casting of the 

concrete for both the columns and the walls of the structure. The differential axial shortenings are 

calculated over a 10,000-day period following the completion of the structure. For reinforcement, 

S400 is utilized for longitudinal reinforcements, while S340 is used for transverse reinforcements. 

The concrete grade applied to the shear walls, beams, and columns is C60. Furthermore, Table 1 

outlines the specifications for the beam and column sections, as well as the thickness of the shear 

wall core for tube-in-tube and core-supported systems. 



 

 

 

(a) 3D view 

 

(b) Plan measurements of model with core-supported system 

 

(c) Plan measurements of model with tube-in-tube system 

Fig. 1: Analysis models with an outrigger and belt wall. 

 

 



 

 

       Table 1. 

The cross-sections of beam and columns, as well as the thickness of shear walls for both of tube-

in-tube and core-supported systems. 

Steel ratio 

(%) 

Section size width × depth (m x m) 

 

Floor level Member 

 Core-supported 

system 

Tube-in-tube 

system 

  

3% 1.7x1.7 1.5x1.5 1-20 Interior Columns 

3% 1.6x1.6 1.3x1.3 21-40 

3% 1.4x1.4 1.2x1.2 41-60 

3% 1.2x1.2 1.0x1.0 61-80 

3% 1.0x1.0 1.2x1.2 1-20 Exterior Columns 

3% 0.9x0.9 1.1x1.1 21-40 

3% 0.8x0.8 1.0x1.0 41-60 

3% 0.7x0.7 0.8x0.8 61-80 

- 0.6x 0.9 0.6x 0.9 1-20 Beams 

- 0.6x 0.8 0.6x 0.8 21-40 

- 0.55x 0.7 0.55x 0.7 41-60 

- 0.5x0.65 0.5x0.65 61-80 

1% 1.1x11.0 1.0x11.0 1-30 Shear walls 

1% 1.0x11.0 0.8x11.0 31-50 

1% 0.9x11.0 0.7x11.0 51-70 

1% 0.7x11.0 0.6x11.0 71-80 

 

3. The formulation of optimization problem  

The formulation of the optimization problem is represented by Eq. (1).  
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       Where f1(x) and f2(x) represent the objective functions for the lateral displacement of the roof 

and the maximum differential axial shortenings, respectively. x denotes the vector of variables 

representing the positions of outriggers and wall belts. ∆roof  signifies the lateral displacement of 

the roof, H is the total height of the structure, N is the number of stories, δk represents the 

differential axial shortenings in the kth floor, wall

ku  and col

ku  denote the vertical displacement of the 

wall and column in the kth floor, respectively. ∆hk represents the height of the kth floor, ∆k 

signifies the lateral displacement in the kth floor, xi, xi,min, and xi,max denote the position of the ith 

outrigger, its lowest, and highest possible positions, respectively. 

    This study utilizes finite element analysis to evaluate the objective functions. In assessing axial 

shortenings in concrete structures, especially when considering construction sequences and long-

term behavior, numerical analysis is favored over analytical equations for determining lateral 

displacements. For estimating column shortening in concrete structures, the CEB-FIP 1990 

guidelines (1990) provide the most effective approach. The equations outlined in this code offer a 

straightforward and widely accepted method for predicting the long-term behavior of concrete, 

valued for their simplicity and ease of calculation. Specifically, Eqs. (2) and (3) can be employed 

to compute the modulus of elasticity and the increase in mean compressive strength, respectively. 
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   (3) 

     Where ECi and fcm represent the elasticity modulus of concrete and average compressive 

strength at the age of 28 days, respectively. t denotes the concrete age in days, and S is the 

coefficient dependent on the cement type, with a value of 0.25 for normal cement. A linear 

relationship is established for creep strain and stress when the absolute value of the axial stress is 

less than 0.4 of the average concrete compressive strength after 28 days. Eq. (4) provides the creep-

induced strain at constant stress (t, t0) in this state (ACI 318-19 (2019)). 
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    Where Ec(t0) reresent the elasticity modulus during the loading, and 1/Ec(t0) represents initial 

strain per stress unit, and J(t,t0) is the creep function or the creep function or creep compliance. 

The notional creep coefficient ),( 0tt is calculated using Eq. (5).  
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The shrinkage strain, denoted as εcs(t,ts) is calculated using Eq. (6) (ACI 318-19 (2019)). 
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(6) 

    Where t0 is the concrete age during the loading in days, ts is the concrete age in the time of 

shrinkage commencement which starts by ending the wet curing period, RH is the relative humidity 

of the ambient environment in ]%[, βsc is the coefficient depending on the used cement type (CEB-

FIP 1990, (1990)) which is equal to 5 for normal or rapid curing cement and h is the theoretical 

dimension of the element in mm, which is obtained from Eq. (7).  

(7) uAh
c
/2 

   Where Ac is the cross sectional area and u is the perimeter of the member in contact with the 

atmosphere in ]mm[. 

 

4. Multi-objective optimization problem  

    Eq. (8) illustrates the formulation of scalarized objective functions through the weighted sum   

approach, applied to two conflicting objective functions: 

(8) 
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In this case, Z is the set of integer numbers and ω is the weight factor between 0 and 1.    

    When the weight factor is set to zero, only maximum differential axial shortenings are 

considered, neglecting the lateral displacement of the structure. Consequently, the optimization 



 

 

results for maximum differential axial shortenings will closely resemble those obtained from 

single-objective optimization. Conversely, when the weight factor is set to 1, the optimization 

outcomes for the lateral displacement of the structure will match those of the single-objective 

function. The optimization process iterates until the weight factor increments to 1 in ∆ω intervals, 

generating numerous Pareto solutions. Furthermore, the lateral displacement and maximum 

differential axial shortenings are calculated using finite element analysis, where integer design 

variables denoted as x are employed. The optimization problem is then tackled using the Genetic-

Descent Gradient approach, aimed at examining the performance of the Genetic algorithm 

alongside local search algorithms. In this study, we selected the Genetic-Descent Gradient method 

as our primary optimization strategy due to its effective balance between exploration and 

exploitation during the optimization process. The Genetic Algorithm is known for its proficiency 

in navigating large and complex solution spaces, making it ideal for problems with nonlinear and 

non-derivative objective functions. However, the Genetic Algorithm often struggles with local 

search capabilities, which can limit its effectiveness, particularly when fine-tuning solutions is 

essential. To address this limitation, we combined the Genetic Algorithm with the Descent 

Gradient method, which improves local search efficiency by focusing on promising regions of the 

solution space. This hybrid approach facilitates rapid convergence toward optimal solutions and 

enhances the overall robustness of the optimization process. While each method has its merits, 

their integration offers a compelling combination of global search capabilities and swift local 

refinement, making it particularly well-suited for optimizing structural configurations that require 

careful management of both lateral displacements and differential axial shortenings. This synergy 

results in faster convergence rates and improved performance in achieving our optimization 

objectives. 



 

 

    Gradient-based optimization methods are generally unsuitable for addressing the non-

constrained nonlinear optimization problem presented in Eq. (1) due to the inclusion of integer 

variables. These methods typically require objective functions to exhibit continuity and 

differentiability to facilitate effective minimization. To address this limitation, interpolation 

techniques can be employed to derive differentiable approximations of the objective functions. In 

this context, piecewise square interpolation is utilized. By transforming the nonlinear optimization 

problems characterized by integer variables from Eq. (1) into differentiable nonlinear problems 

with interpolated polynomial objective functions, they can be reformulated as depicted in Eq. (9): 

(9) 
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Where x is the released vector of X and R is the integer numbers series.  

 

4.1. Genetic- Descent Gradient method 

   The descent gradient method is a widely utilized optimization technique in neural networks, 

recognized for its effectiveness. This iterative first-order optimization method is employed to 

identify the minimum or maximum values of a given function. In this study, we propose a hybrid 

approach that combines the descent gradient method with a genetic algorithm to enhance the local 

search capabilities of the genetic algorithm, thereby leveraging the strengths of both algorithms to 

identify a global optimal solution and accelerate convergence. Specifically, the descent gradient 

method is employed to refine the current optimal solution at the conclusion of each generation of 

the genetic algorithm. If an improvement is identified during this process, it is carried forward to 



 

 

the subsequent generation. Eq. (10) delineates the search direction utilized at each specific 

point x(k) when applying the descent gradient method. 

(10) ( ) ( ( ))s k f x k  

   This search direction, which minimizes function values most effectively, is known as the steepest 

descent method. Eq. (11) outlines the unidirectional search conducted in the negative direction of 

the derivative. The derivative is computed at the current point to identify the minimum along this 

direction. 
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   The search then advances from the identified minimum point, updating the current point 

accordingly. The algorithm continues to iterate until a point is located where the gradient exhibits 

a sufficiently small magnitude. However, a significant challenge for the descent gradient algorithm 

is determining an appropriate value for α, which represents the learning rate in the aforementioned 

equations. The following sections will elucidate the methods employed in this study to ascertain 

the optimal value of α. 

 

4.1.1. Determining the optimal value of the learning rate  

    Many multivariable optimization algorithms employ consecutive unidirectional search methods 

to identify the minimum point along a specified search direction. The unidirectional search 

evaluates function values along this direction to perform a one-dimensional search. Typically, the 

unidirectional search commences at the point x(t) and progresses in the indicated direction s(t). 



 

 

This approach implies that points along the search direction s(t)—which forms a line in an N-

dimensional space and passes through the point x(t)—are considered during the search process. 

Each target point along this search path can be mathematically expressed using Eq. (12). 

(12) ( ) ( ) ( )x x t s t   

    The parameter α is a scalar quantity that defines the relative distance between the point x(α) and 

x(t). For a given value of α, the corresponding point x(α) can be determined. When α is equal to 

zero, the point corresponds to the current position x(t). By substituting xi(α) for each variable xi 

and utilizing Eq. (12), one can construct the multivariable objective function as a function of the 

variable α to identify the minimum point in the specified direction. 

    The search space for the optimal value of α was bracketed using a bracketing technique, 

followed by the application of a method for extracting the optimal value within this space. Among 

the strategies employed in this study to bracket the search space was the bounding phase approach. 

Subsequently, the golden section search method was utilized to refine the search space and identify 

the optimal value. A detailed discussion of the bounding phase method and the golden section 

search approach is presented in the following sections. 

    The search space for determining the optimal value of α was constrained using a bracketing 

technique, followed by the application of a method to eliminate portions of the search space. In 

this study, the bounding phase approach was employed as one strategy to bracket the search space, 

after which the golden section search method was applied to refine the search space further. A 

detailed discussion of these methods is provided in the subsequent sections. 

- Bounding phase and golden section search methods 



 

 

     The minimum of a function can be bracketed using the bounding phase approach. This strategy 

guarantees the existence of at least one minimum for a single-variable function within the 

established bracket. As outlined in Eq. (13), the procedure initially estimates the function value at 

the first guess and employs two evaluations to ascertain the search direction. Subsequently, an 

exponential search method is utilized to reach the targeted limit. 

(13) ( 1) ( ) 2kx k x k    

    While bracketing can be executed more swiftly, the accuracy of the bracketed minimum point 

is compromised due to the large value of Δ. Conversely, a smaller Δ enhances the precision of the 

bracketing process; however, it may necessitate evaluating additional function values to effectively 

bracket the minimum point. Following the application of the bounding phase approach to constrain 

the search space, it is advisable to employ one of the methods for eliminating the search area to 

locate the minimum. These algorithms operate on the principle of systematically narrowing down 

the bracketed regions until the optimal solution is attained. Based on the evaluation of function 

values at two points and the presumption that the function is single-variable within the specified 

search space, it is possible to conclude that the minimum point cannot be located within a certain 

region. The methodology for eliminating search areas begins with the consideration of two points, 

x1 and x2, situated within the interval (a,b), such that x1 < x2. If the function value at x1 is greater 

than that at x2, it indicates that the minimum point x* cannot lie to the left of x1, thereby allowing 

for the elimination of the interval (a,x1). This action effectively narrows the search range 

from (a,b) to (x1,b). Conversely, if f(x1) < f(x2), it suggests that the minimum point does not exist 

within the interval (x2,b), allowing for the removal of this region as well. In this study, the golden 

ratio optimization method is utilized as one of the techniques for area elimination. A flowchart 



 

 

illustrating the steps of the Genetic-Descent Gradient method, alongside the bounding phase and 

golden section search techniques, is presented in Fig. 2. 

  

Fig. 2: Flowchart of the steps of Genetic-Descent Gradient algorithm along with two bounding phase and golden 

section search methods. 

5. Optimization results 

5.1. Influence of Outriggers and Belt Walls on Lateral Displacement 

    Before addressing the optimization results, we investigated the effects of outriggers and belt 

walls on the structure's lateral displacement. The findings, presented in Table 2, detail the 

maximum lateral displacement for different numbers of outriggers. As indicated in Table 2, the 

maximum lateral displacement diminishes with an increasing number of outriggers.  
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                   Table 2. 

                   Maximum Lateral Displacement for Varying Numbers of Outriggers and Belt Walls. 

Lateral displacement (mm) Configuration 

CSOR                           TinT                           

93.2566  120.7824 Without outriggers and belt walls 

77.4029  101.4572 One outrigger and belt wall 

71.8076  96.62592 Two outriggers and belt walls 

68.0773  91.79462 Three outriggers and belt walls 

64.3471  85.75551 Four outriggers and belt walls 

 

 

5.2. Cost Calculation for Outriggers and Belt Walls 

      Incorporating outriggers and belt walls into structural design presents both advantages and 

financial implications. Understanding these costs is crucial for effective project budgeting and 

resource allocation. To assess the economic feasibility of implementing the outrigger and belt wall 

systems in high-rise concrete structures, we analyzed the costs associated with the materials and 

labor required to implement outriggers and belt walls compared to traditional reinforcement 

techniques. Specific cost factors included structural materials such as concrete and steel, 

formwork, and the added labor for installation of these systems. The calculated costs for the 

outrigger and belt wall system are detailed in Table 3. 

              Table 3. 

               Detailed Cost Calculation for Outriggers and Belt Walls. 

  Cost 



 

 

Materials  Concrete 90-115 $/m3 

Steel Reinforcement 0.35-0.55 $/kg 

Formwork 0.3-0.75 $/m2 

Labor  -                                                        50-70 $/hour 

Design and Engineering Fees -                                         5-10% of the total construction costs 

 

       In summary, the estimated cost for implementing four outriggers and belt wall systems in an 

80-story high-rise building—covering materials, labor, and engineering fees—would be 

approximately $30,000. The optimized design of the outrigger and belt wall system enhances 

lateral stiffness and reduces lateral displacements, contributing to lower maintenance costs. 

Structures with improved lateral load resistance encounter fewer issues related to cracking and 

deformation, ultimately decreasing the need for expensive repairs. While the initial investment in 

outriggers and belt walls may be considerable, the advantages of enhanced structural stability and 

reduced lateral displacement make it a worthwhile investment. To apply a source data table, even 

if they were taken from the literature. 

 

5.3. Single objective optimization results    

     The optimization problem is approached by integrating Genetic Algorithm and Descent 

Gradient methods, utilizing a population size of 150 over 100 generations. After each generation 

of the genetic algorithm, the descent gradient method is employed if an improvement in the optimal 

point is observed. This strategy enhances the convergence rate of the genetic algorithm by allowing 

for the exploration of solutions in the vicinity of the current optimal point. Any improvements 

achieved through the descent gradient method are subsequently incorporated into the next 



 

 

generation of the genetic algorithm. Prior to conducting multi-objective optimization for an 80-

story structural model, single-objective optimization was performed independently for maximum 

differential axial shortenings and lateral displacements. Figs. 3a and 3b present the results for the 

80-story model applying tube-in-tube and core-supported lateral resisting systems, respectively. 

The results indicate that with the optimal placement of 1, 2, 3, and 4 outriggers and wall belts, the 

reductions in lateral displacement for the tube-in-tube system are 20%, 31%, 35%, and 37% lower, 

respectively, compared to the structure without outriggers. Analogous reductions for the core-

supported system are noted at 19%, 25%, 32%, and 35%, respectively. Furthermore, the maximum 

differential axial shortenings of the tube-in-tube system before and after optimization for the four 

configurations of belt walls and outriggers are recorded as 31%, 39%, 49%, and 55%. The 

corresponding values for the core-supported system are 31%, 35%, 47%, and 52%. These results 

clearly demonstrate that the tube-in-tube system achieves a greater rate of reduction in lateral 

displacement than the core-supported system. Additionally, it is observed that the reduction in the 

maximum differential axial shortenings objective function is considerable compared to the lateral 

displacement objective function. However, it is noteworthy that the addition of more belt walls 

and outriggers results in a diminished reduction rate in both objective functions. It should be noted 

that the terms “CSOR” and “TinT" refer to the Central Core System with Outrigger and Tube-in-

Tube system, respectively. 



 

 

 

(b) tube-in-tube model  
(a) core-supported model 

Fig. 3: Normalized values of objective functions before and after optimization for lateral displacement and 

maximum differential axial shortenings. 

 

5.4. Multi-objective optimization results 

    Multi-objective optimization was conducted for belt walls and from one to four outriggers. Figs 

4a and 4b present the results of the multi-objective optimization process for the Pareto front, as 

well as for two structural configurations: the core-supported system and the tube-in-tube system. 

It is observed that reducing the maximum differential axial shortenings leads to an increase in the 

lateral displacement of the structure. 

    Moreover, both objective function values decrease as the number of belt walls and outriggers 

increases. The results of the single-objective optimization are clearly represented at the two ends 

of the Pareto front in each of the four configurations. Specifically, ω=0 corresponds to the single-

objective optimization results for maximum differential axial shortenings, while ω=1 reflects the 

single-objective optimization results for lateral displacement. As the weight factor increases, the 

optimal solution for maximum differential axial shortenings gradually supplants the optimal 

solution for lateral displacement. 
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(a) core-supported model 

 
(b) tube-in-tube model 

         

 Fig. 4: Pareto-front solutions representing the trade-off between maximum differential axial shortenings and lateral 

displacement for two models. 

 

5.5. Optimal positions of outriggers and belt walls for the entire set of Pareto-front 

    Figs. 5 and 6 illustrate the optimal positions for the entire Pareto set across various 

configurations, including one to four outriggers and belt walls, for structures using core-supported 

and tube-in-tube lateral systems, respectively. The normalized values of the objective functions, 

which include lateral displacement and maximum differential axial shortenings, are presented for 

each configuration. It is observed that as the weight factor increases, the maximum differential 

axial shortenings decrease while the lateral displacement of the structure increases. Notably, 

when ω equals zero or one, these values correspond to the outcomes of single-objective 

optimization for lateral displacement and maximum differential axial shortenings, respectively. 
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(b) two outriggers-belt walls  

 

(a) one outrigger-belt wall   

 

     (d) four outriggers-belt walls 

 

(c) three outriggers-belt walls 

Fig. 5: Optimal positioning of outriggers and belt walls within the core-supported structural system for varying 

weight factors (ω) across one to four outriggers. 

 

 

(b) two outriggers-belt walls  

 

(a) one outrigger-belt wall    
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     (d) four outriggers-belt walls 

 

(c) three outriggers-belt walls 

Fig. 6: Optimal positioning of outriggers and belt walls within the tube-in-tube structural system for varying weight 

factors (ω) across one to four outriggers. 

 

   6. Comparison of the convergence of Genetic algorithm and Genetic- 

Descent Gradient algorithm 

     The optimization problem in this study was addressed using a Genetic Algorithm (GA), selected for its 

ability to explore vast search spaces and its flexibility in handling optimization problems with discontinuous 

and non-derivative objective functions. However, due to the inherent limitations of the GA in local search, 

it was combined with the descent gradient method, a local search technique. This combination allows for 

circling around current optimal points during each iteration of the GA, thereby accelerating convergence 

rates. Furthermore, enhancing the learning rate parameter through the bounding phase and golden section 

search approaches contributed to a faster convergence rate in the descent gradient method. Fig. 7 shows the 

convergence curves for Genetic Algorithms and Genetic-Gradient Descent algorithms. The convergence 

curve for the Genetic-Gradient Descent method is plotted once using both the Bounding Phase and Golden 

Section Search methods, and once without employing these two methods. It is important to note that the 

terms "GA-GRADIENT (Simple)" and "GA-GRADIENT (Combined)" refer to the Genetic-Gradient 

Descent method in its simple form (without the Bounding Phase and Golden Section Search methods) and 
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in its combined form (with these methods), respectively. The results indicate that each model experiences 

rapid convergence during the early stages of the optimization process, followed by stable convergence in 

the later stages. Specifically, for a structure with one outrigger and a belt wall, convergence occurs by 

generation 50 when using the Genetic Algorithm. The corresponding values for structures with two, three, 

and four outriggers and belt walls are 48, 37, and 53, respectively. In contrast, the Simple Genetic-Gradient 

Descent algorithm converges at generations 46, 45, 34, and 43, while the Combined Genetic-Gradient 

Descent achieves convergence at generations 32, 27, 29, and 41 for similar configurations. The results 

indicate that the Composite Genetic-Gradient Descent method performs better than both the Genetic 

Algorithm and the Simple Genetic-Gradient Descent method, demonstrating a higher convergence speed. 

Therefore, by combining the two methods, the Bounding Phase and Golden Section Search, with the 

Gradient Descent method, a better performance is achieved. As outlined in our findings, the optimal 

selection of the α parameter using both the Bounding Phase and Golden Section Search methods has 

significantly increased the convergence speed of the Genetic-Gradient Descent method. This improvement 

reflects the effectiveness of incorporating these methods into our optimization framework, which allows 

for a more precise adjustment of the alpha parameter, leading to faster and more stable convergence. 

 

                                            (b) two outriggers-belt walls  

 

(a) one outrigger-belt wall    
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                                 (d) four outriggers-belt walls 

 

(c) three outriggers-belt walls 

Fig. 7: Convergence curve of lateral displacement with two methods of Genetic algorithm and Genetic-Gradient 

Descent for 1-4 outriggers and belt walls. 

7. Conclusion 

     This study utilized the integrated Genetic-Descent Gradient method to optimize the positions 

of outriggers and concrete belt walls, aiming to minimize lateral displacement and maximum 

differential axial shortenings in two structural systems: core-supported and tube-in-tube. The 

optimization results for a 3D, 80-story building indicate that the core-supported system 

experiences greater lateral displacement compared to the tube-in-tube system. This difference can 

be attributed to the tube-in-tube system's more uniform behavior, which is facilitated by its closely 

spaced perimeter columns that enhance the structural elements' ability to cooperate effectively 

against lateral loads. When additional belt walls and outriggers were incorporated into the core-

supported system, the reduction in lateral displacement occurred more rapidly than in the tube-in-

tube system. This enhanced reduction could be due to the optimal connection achieved between 

the exterior tube and the central core at the appropriate number of outriggers, leading to greater 

reductions in lateral displacement compared to the tube-in-tube structure. The tube-in-tube system 

exhibits a more uniform force distribution in its perimeter columns, resulting in lower maximum 
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differential axial shortenings than those observed in the core-supported system. Furthermore, the 

combined Genetic-Descent Gradient method improved the convergence rate of the Genetic 

Algorithm by better balancing exploration and exploitation. By selecting the current optimal 

solution from each generation of the Genetic Algorithm as the starting point for the descent 

gradient method, the speed of convergence was enhanced, as the choice of the starting point is 

critical for reaching the global optimal solution. The learning rate parameter also plays a significant 

role in the effectiveness of the descent gradient approach. Therefore, determining the optimal 

learning rate through bounding phase and golden section search methods is essential for 

maintaining the continuity of the descent gradient method in the local optimum. Overall, the 

combination of stochastic optimization techniques, such as the Genetic Algorithm, with local 

search algorithms like the descent gradient method has been shown to accelerate convergence 

significantly. 

On behalf of all authors, the corresponding author states that there is no conflict of interest. 
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