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Abstract: 

This study presents a cost-effective Structural Health Monitoring (SHM) approach that integrates machine 

vision, digital twin technology, and machine learning. Machine vision serves as a sensor to capture the 

response of a three-story laboratory structure under base excitation, using the optical flow method and the 

Lucas-Kanade algorithm to track displacements. These measurements are validated against radar and 

accelerometer sensors, demonstrating the effectiveness of radar sensors for vibration-based displacement 

monitoring in SHM. A digital twin is then developed by integrating vibration data with a physics-based 

model to simulate structural behavior, enabling the detection of damage type, location, and severity under 

various conditions. Different machine learning classifiers are trained on data from both simulated and 

physical models, with the Manhattan distance-based classifier achieving the highest accuracy of 92%. The 

results indicate that this digital twin system offers a reliable tool for real-time SHM and predictive 

maintenance, facilitating early damage detection and enhancing structural resilience. 

Keywords: Structural health monitoring, Computer vision, Machine learning, Digital twin, Optical flow 
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1- Introduction  

Structural Health Monitoring (SHM) ensures the safety and durability of structures by continuously 

assessing their condition and identifying damage over time. This real-time data informs maintenance and 

repair decisions, ultimately extending the structure’s lifespan and enhancing safety (Mohseni Moghaddam 

et al., 2024). In recent years, the integration of digital twin technology and computer vision into SHM 

systems has received increasing interest. A digital twin acts as a virtual counterpart of a physical system or 

structure, created by utilizing sensor data, data analytics, and modern technologies. The digital twin 

concept, introduced by Michael Grieves (2014), comprises three key elements: the physical twin, the virtual 

twin, and a data connection that facilitates the exchange of information between the two (Grieves, 2014). 

Establishing a digital twin of a structure enables the simulation of its performance under various conditions, 

allowing for more precise and effective monitoring (Jones, 2020). Advancements in Artificial Intelligence 

(AI) and Machine Learning (ML) have further enhanced the capabilities of digital twins, enabling them to 

process large datasets and predict future structural behavior with greater accuracy (Chakraborty and 

Adhikari, 2021, Hamidian et al., 2022). 

Research into digital twins has expanded across numerous fields, particularly in improving modeling and 

monitoring. Wagg et al. (2020) investigated the use of digital twins to address vibration issues in mechanical 

systems, demonstrating how data augmentation can enhance models to compensate for discrepancies. 

Gardner et al. (2020) applied digital twins to SHM, combining data-driven models with machine learning 

to optimize predictions of structural behavior and detect damage. Johansen et al (2019) explored digital 

twin applications in marine power systems to monitor drivetrains, while Loverdos and Sarhosis (2023) 

utilized computer vision and convolutional neural networks (CNNs) to create geometric digital twins for 

documenting and assessing masonry structures. Wang et al. (2023) proposed a method integrating digital 

twin technology and hierarchical deep learning to identify damage in cable dome structures. Their approach 

accurately captured damage features, validated through analysis of cable forces, demonstrating the 

effectiveness of digital twins for structural representation. Ali et al. (2021) developed an autonomous UAV 

system integrated with a modified Faster R-CNN to detect structural damage in GPS-denied environments, 

effectively identifying small and blurry defects with high precision. Kim and Cha (2024) introduced the 

Attention-based Modified Nerfacto (ABM-Nerfacto) model to enhance 3D reconstruction quality, 

facilitating accurate damage mapping within digital twins. These advancements demonstrate the growing 

role of digital twins in structural health monitoring by combining real-time data acquisition with 

sophisticated AI-driven analysis. 

Computer vision employs algorithms and machine learning to process visual data, making it valuable for 

Structural Health Monitoring (SHM) by analyzing images or videos to detect changes or anomalies 



 

 

indicating damage. It serves as a sensor, capturing even small structural movements, and uses image 

sequences along with techniques such as pattern matching and edge detection to measure structural 

displacements. Various methods for vision-based SHM have been developed, including Digital Image 

Correlation (DIC), template matching, and optical flow. DIC uses grayscale images to measure surface 

displacements in three dimensions and has benefited from advances in high-resolution cameras and 

computing power, enabling precise deformation monitoring even during large-scale movements (Siebert 

and Crompton, 2010). Template matching compares patterns in an image to a reference template, 

identifying areas with close matches through similarity scores (Mondal and Jahanshahi, 2022). Optical flow 

calculates a vector field representing the movement between successive image frames, tracking 

displacements to visualize structural responses (Dong et al., 2019). Recent advancements in motion 

magnification techniques, phase-based optical flow methods, and unscented Kalman filters have enhanced 

displacement measurement and damage detection without requiring physical markers on the structure (Cha 

et al., 2017a). Video cameras, using these techniques, provide a cost-effective way to remotely measure 

structural displacements and vibrations, with the methodology verified against laser vibrometer and 

accelerometer measurements for modal identification (Chen et al., 2015). Additionally, deep learning has 

improved vision-based SHM by enabling automated and accurate structural damage detection. 

Convolutional neural networks (CNNs) are used to identify defects like concrete cracks without relying on 

predefined features, improving robustness under varying environmental conditions (Cha et al. 2017b). 

Region-based models, such as Faster R-CNN, enable simultaneous detection of multiple damage types with 

near real-time performance. These advancements reduce reliance on manual inspections and enhance the 

accuracy and efficiency of structural monitoring (Cha et al., 2018). 

This study investigates the effectiveness of a computer vision algorithm for tracking structural movements 

at different levels of a test structure. An experimental setup was established with targets placed on various 

stories, and the Optical Flow algorithm was employed to monitor their motion over time. The results from 

the computer vision approach were validated by comparing them with data from radar sensors and 

accelerometers attached to the structure. The findings also demonstrate that radar sensors can be effectively 

utilized for vibration-based displacement measurement in SHM and other related fields. Additionally, a 

digital twin of the structure was developed using a machine learning algorithm, which was trained on both 

damaged and undamaged conditions. The input data derived from the computer vision algorithm served as 

features for the model, enabling it to predict the structural state accurately. By training the model with 

labeled data, the system facilitates early detection of damage or degradation. The integration of the digital 

twin with machine learning provides a more accurate and efficient monitoring approach, offering timely 

warnings to inform maintenance decisions and ensure the safety of the structure. In the following sections, 



 

 

the structure’s specifics, the implementation of computer vision techniques, and the process of generating 

the digital twin are explained. A flowchart of the research process is shown in Figure 1. 

 

Fig. 1. Flowchart of the steps in this research 

2- Laboratory Structure Specifications 

In this study, a three-story aluminum structure was used as a case study for developing a digital twin. The 

structure, illustrated in Figure 2, was subjected to external forces applied through a movable plate connected 

to a shaker. The key specifications of the structure are detailed in Table 1. 

To track the structure's movement on different floors, circular and rectangular Aruco markers were 

installed. A stationary mobile camera, positioned at a fixed distance and angle, recorded the structure's 

vibrations with a resolution of 1080p at 60 frames per second. The displacement of the structure was 

calculated by analyzing the movement of the embedded markers in successive video frames, providing the 

input data for assessing the structure's status within the digital twin model. 

 

Table 1. Geometrical and physical properties of the three-story structure 

Damping 

Ratio 

Width of 

plate at 

each level 

Width 

of plate 

at each 

level 

Column 

width 

Column 

thickness 

Column 

height 

Young's 

Modulus 
Material 

ζ D L B H L E Aluminum 



 

 

5% 20 cm 25 cm 30mm 3 mm 150 mm 69 Gpa 

 

 

Fig. 2. View of the laboratory structure connected to the shaker 

3- Machine Vision for Response Measurement  

In this study, the structure was stimulated using white noise force, and its vibrations were recorded across 

various modes with a fixed camera mounted on a stand. Several methods were employed to estimate the 

displacements of the targets installed on each floor of the structure. 

In addition to video-based measurements, accelerometer sensors were installed on the structure's floors to 

validate the displacement data obtained from video processing. A radar sensor was also positioned on a 

stationary stand to further validate and compare the results. The methods for image processing, target 

detection, and motion tracking are outlined in the following section. 

3-1-  Optical Flow for Motion Tracking 

During this process, the optical flow method was employed to calculate floor displacements of the test 

structure. The Lucas-Kanade method (Liu et al., 2015) was chosen due to its effectiveness in assuming 

constant flow within local pixel neighborhoods. Rather than scanning subsequent images for exact pixel 

matches, the algorithm estimates motion by analyzing local intensity changes between frames, making it 

ideal for SHM applications. 

The implementation begins by detecting specific features in each frame for tracking. Here, ArUco markers 

were placed on the structure, serving as trackable reference points for motion calculation. ArUco markers, 

known for their distinctive square patterns and robust detection capabilities, consist of a black border 

enclosing a binary matrix that encodes a unique ID. This design enables easy identification, even in varied 



 

 

lighting, making it suitable for real-time motion tracking in structural applications. Figure 3 shows 

examples of the ArUco markers used. 

 

Fig. 3. Example of ArUco marker images 

To detect these markers, the OPENCV library in Python was employed. The detection process identifies 

each marker’s position (the four corners) and ID. The detection consists of two key stages: 

1. Marker Candidate Detection: The image is analyzed to find square shapes that could be 

potential markers. Additional filters are applied to remove irrelevant shapes (e.g., contours that 

are too small, too large, or too close to each other). 

2. Markers Identification: After candidate shapes are detected, their internal encoding is 

analyzed. A perspective transformation is applied to standardize the shape, and Otsu's method is 

used to apply a threshold that separates black and white bits. The image is divided into cells based 

on the marker’s size, and the number of black and white pixels in each cell is counted to determine 

the marker's binary bits. Finally, the bits are checked against a dictionary to identify the marker. 

Figure 4 shows the Recognition of Aruco markers within video frames. 

Once the markers are detected, the identified feature points (p0) are fed into the Lucas-Kanade algorithm, 

implemented with the `cv2.calcOpticalFlowPyrLK()` function. This algorithm tracks the motion of feature 

points across frames by calculating the optical flow for a set of scattered points. The following parameters 

were used in the algorithm: 

- winSize = (15, 15): The window size used to compute the optical flow. 

- maxLevel = 2: The number of pyramid levels for multi-scale tracking. 

- criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03): The 

termination criteria, based on either the desired accuracy (0.03) or a maximum iteration count (10). 



 

 

 

Fig. 4. Recognition of Aruco markers in video footage 

The processed video, recorded as the structure responded to white noise excitation, yielded frame-by-frame 

displacement data for each floor (Figure 5). This motion data, derived from optical flow, was subsequently 

validated using Fast Fourier Transform (FFT) analysis to compare the detected displacement frequencies 

with the structure’s natural frequency. The resulting FFT plot (Figures 6 and 7) further confirmed the high 

accuracy of the optical flow method, aligning closely with data from accelerometers placed on the structure. 

 

Fig. 5. Displacement graph obtained from each frame using the optical flow method 

The experimental setup involved three MPU-9250 accelerometers positioned on each floor to measure the 

vibrational response. Synchronization between the accelerometers was achieved using the Serial Peripheral 

Interface (SPI) protocol. The Arduino Due microcontroller handled data acquisition, with a sampling 



 

 

frequency of 400 Hz and a time interval of 75 microseconds between data captures from the sensors. This 

setup ensured synchronization and accurate data collection. 

 

Fig. 6. FFT plot of the displacement signal on the third floor, generated using the optical flow method 

 
Fig. 7. FFT plot of the acceleration signal on the third floor, obtained from the accelerometer 

The results showed a high degree of accuracy between the video-based optical flow method and the 

accelerometer data. The first natural frequency peak observed from the video processing occurred at 9.08 

Hz, while the accelerometer data indicated a peak at 9.04 Hz, resulting in a 99.5% conformity between the 

two methods. Furthermore, by modeling the structure as a mass-spring system (Figure 8), the first natural 

frequency was calculated as 9.01 Hz, which closely matches both the accelerometer and machine vision 

results. However, due to the video’s frame rate of 60 frames per second, the optical flow method was limited 

to detecting frequencies below 30 Hz. As a result, only the first natural frequency could be captured using 

this approach. 



 

 

 

Fig. 8. spring-mass model of the structure 

3-2- Radar Sensor for Displacement Measurement 

In this stage, the displacement of the structure is calculated by a multi-input multi-output ground-based2 

radar sensor (Figure 9). The radar sensor operates by continuously emitting electromagnetic waves toward 

the structure and detecting the reflected signals to determine displacement. The reflected waves are 

processed to calculate the relative motion of the structure’s floors, using the Doppler shift to estimate both 

velocity and displacement. The radar sensor’s high sensitivity to movement allows it to track even small 

displacements, making it suitable for structural health monitoring (SHM) (Hosseiny et al. 2023, Hosseiny 

et al. 2024). 

 

Fig. 9. Use of a radar sensor for measuring the displacement of the structure 

 
2 MIMO GBSAR 



 

 

 

Fig. 10. Displacement graph comparison of machine vision sensor (red) and radar sensor (blue) 

The radar sensor’s performance was validated by comparing its results with those from the machine vision 

method and accelerometers. Despite the slight time lag observed between radar-based and vision-based 

results, the overall displacement trend measured by the radar sensor closely aligns with those obtained from 

other methods. Assessing radar-based data in the frequency domain shows that the first mode of the 

structure is accurately captured using this technique to measure displacement. The results demonstrated the 

radar sensor’s effectiveness in displacement measurement. However, the inherent time delay observed in 

radar measurements (as shown in Figure 10) is a key characteristic of this technology. The delay occurs 

because radar sensors process the reflected wave signals to calculate displacement, and this processing 

introduces a latency that is not present in the vision-based system. This time lag should be considered when 

synchronizing data between radar and other real-time monitoring systems. Despite the delay, radar sensors 

offer several advantages in SHM. They are capable of measuring displacement over long distances, are not 

affected by lighting conditions, and can operate in various environmental conditions (e.g., fog, rain). In this 

study, the radar sensor provided reliable measurements of the structure’s displacement, making it a valuable 

complement to the machine vision-based system. 

4- Machine Learning Classifier for Digital Twin 



 

 

To enable real-time damage detection within the digital twin, physics-based models were used to simulate 

diverse damage scenarios, providing data to train a machine learning classifier. This classifier forms the 

core of the digital twin, allowing it to detect, locate, and assess the severity of structural damage. By 

combining physics-based modeling with machine learning, the digital twin achieves greater interpretability 

and accuracy in SHM. 

Damage detection in structures poses an inverse problem: sensor data (inputs) must be interpreted to infer 

the type, location, and severity of damage (outputs). This task is particularly complex in real-time SHM 

(Ritto and Rochinha, 2021, Ghafouri et al., 2024). To address these challenges, a supervised machine 

learning classifier was trained on synthetic data generated from the physics-based model, which represents 

the structure’s dynamic behavior under multiple conditions. The classifier then maps real sensor inputs to 

potential damage scenarios, informed by offline model predictions. 

A successful digital twin for damage detection must fulfill three main objectives: detecting damage 

presence, identifying location, and determining severity. These objectives were achieved by calibrating the 

digital twin’s classifier with both synthetic and real-world data. Initially, a computational model of the 

structure was developed as a three-degree-of-freedom mass-spring system, where each floor represented a 

concentrated mass connected by springs symbolizing the columns' stiffness. This model provided a 

substantial amount of training data at a manageable computational cost while capturing the essential 

dynamic responses of the physical structure (Figure 8). 

Using this model, various damage scenarios were simulated by adjusting mass and stiffness parameters. 

The natural frequencies of the undamaged system were calculated as 9.016 Hz, 25.26 Hz, and 36.5 Hz. 

These simulated datasets, combined with real sensor data, enabled training of the machine learning 

classifier to recognize distinct damage conditions accurately. 

 In summary, the machine learning classifier allows the digital twin to perform real-time SHM, efficiently 

predicting structural conditions by linking sensor data with the pre-modeled damage states. The following 

section details the specific machine learning techniques used and their respective performance. 

5- Training Dataset Creation 

In this study, a supervised learning approach was used to train the machine learning classifier. The dataset, 

referred to as Xdata(features), was constructed from numerous samples of system displacements, while the 

corresponding damage scenarios, ylabel (labels), served as the input-output pairs for the training process. The 

dataset structure consists of n random samples for each of the m damage scenarios. The damage scenarios 

in this study included adding 97.1 grams to each level and removing two or four bolts from each column 



 

 

connection, resulting in a total of ten structural conditions, including the healthy state (Figure 11). A 

detailed summary of these damage scenarios is presented in Table 2. 

There is no strict formula for determining the minimum amount of input data required to train the machine 

learning model. Instead, the dataset size is typically adjusted based on trial and error and data availability. 

In practice, model development often starts with the available data and gradually increases until the desired 

accuracy is achieved. The quantity of data needed for training depends on several factors, including the 

nature of the data, the machine learning model’s objective, and the theoretical framework guiding the 

process. In this study, satisfactory results were achieved using 1000 training samples. These training data 

were generated by applying white noise input to the computational model, while varying mass and stiffness 

parameters to simulate different structural behaviors. For each damage scenario, 100 data points were used 

to train the machine learning classifier. 

In addition to the training data, 15% of the dataset was reserved as test data. These test data were collected 

from the physical structure by applying white noise input to the base of the structure using a shaker and 

recording its movements on video. The recorded videos were processed using the optical flow method to 

extract the displacement data for each floor of the structure. The corresponding structural state, based on 

the applied damage scenario, was used as the correct label and fed into the machine learning algorithm for 

validation. 

 

Table 2. Different damage scenarios considered in this study 

damage scenario Number Damage Scenario Description 

1 97.1 gram mass added to level 1 

2 97.1 gram mass added to level 2 

3 97.1 gram mass added to level 3 

4 2 bolts were removed in level 1 

5 2 bolts were removed in level 2 

6 2 bolts were removed in level 3 

7 4 bolts were removed in level 1 

8 4 bolts were removed in level 2 

9 4 bolts were removed in level 3 

 



 

 

 
                                           (a)                                      (b)                                 (c)     

Fig. 11. (a) Laboratory-scale structure with added mass on the floors. (b) Column connection with two 

bolts in place. (c) Column connection with all four bolts removed. 

 

6- Building the Digital Twin  

This section describes the development of a digital twin for the laboratory structure to monitor and analyze 

its behavior. As mentioned earlier, a computational model was used to simulate system responses under 

different damage scenarios. The dataset generated from these simulations was used to train the digital twin, 

which functions as a machine learning classifier. The classifier is designed to identify the type, severity, 

and location of damage within the structure (Figure 12). 

 

Fig. 12. Physics-based computational model used to generate the dataset for training the machine learning 

classifier. 

The digital twin demonstrated high accuracy in detecting structural damage, including its severity and 

location. The input data, in the form of time series, was processed using statistical features such as mean, 

variance, skewness, and kurtosis to enhance classification efficiency. Several classifiers were tested and 

validated on this dataset, with their performance measured by the percentage of correctly classified inputs. 



 

 

These classifiers use various mathematical approaches to discover relationships in the data. Some rely on 

time series distances, while others utilize statistical features. The varying accuracy of the models stems 

from the differences in the features they consider. The best classifier was the one that identified the most 

relevant feature set for distinguishing damage classes. 

To select the most suitable machine learning method for classifying time series inputs, several well-known 

algorithms were evaluated: 

- Manhattan Distance Feature-Based Dissimilarity Space Classifier (92.67% Accuracy): This 

classifier achieved the highest accuracy by calculating absolute distances between feature sets, 

effectively representing the time-series data for SHM. Its strength in feature-based dissimilarity 

space made it particularly suitable for detecting subtle variations in structural conditions (López-

Iñesta et al., 2015) 

- Feedforward Neural Network by Levenberg-Marquardt Rule (90.00% Accuracy): This neural 

network demonstrated high accuracy, aided by the Levenberg-Marquardt optimization, which 

combined gradient descent with Gauss-Newton methods for efficient parameter tuning. This 

classifier effectively captured complex data relationships, though it required more computational 

resources (Gavin, 2019). 

- Quadratic Classifier (89.33% Accuracy): Using quadratic decision boundaries, this classifier 

handled multi-class problems by allowing each class to have its own covariance matrix, which 

improved accuracy in detecting variations across structural damage classes (Tharwat, 2016). 

- Logistic Linear Classifier (74.67% Accuracy): Though generally effective for binary classification, 

the logistic linear classifier showed limitations in capturing the nuanced responses of this multi-

class SHM dataset (Solainayagi, 2024). 

- Normal Densities-Based Linear (Multi-Class) Classifier (64.67% Accuracy): This classifier applied 

linear decision boundaries based on shared covariance, but it struggled to capture complex 

structural responses as effectively as the quadratic variant (Trentin, 2023). 

- Normal Densities-Based Quadratic Classifier (87.33% Accuracy): By assuming class-specific 

covariance matrices, this classifier provided quadratic decision boundaries, similar to the quadratic 

classifier, enhancing accuracy across multi-class scenarios (Salar, 2022). 

- k-Nearest Neighbor (k-NN) Classifier (36.00% Accuracy): k-NN achieved the lowest accuracy, as 

its reliance on nearest-neighbor voting was insufficient for distinguishing structural damage 

patterns (Cunningham and Delany, 2021) 



 

 

- Decision Tree Classifier (23.33% Accuracy): The decision tree struggled to capture complex 

relationships within the feature space, resulting in significant misclassifications (Salkhordeh et al., 

2021). 

- Naive Bayes Classifier (41.33% Accuracy): Based on probabilistic assumptions, the Naive Bayes 

classifier struggled with feature dependencies in the dataset, resulting in lower accuracy 

(Wickramasinghe and Kalutarage., 2021). 

- Random Neural Network Classifier (52.67% Accuracy): This neural network variant performed 

lower than expected, indicating that the random initialization of network weights was insufficient 

for accurately modeling the complex SHM dataset (Gallicchio and Scardapane, 2020). 

- Support Vector Classifier (54.67% Accuracy): The SVM achieved moderate accuracy by 

maximizing the margin between classes, which was beneficial for distinguishing clear class 

separations but limited for subtle damage detection (Gui et al., 2017). 

As shown in Table 3, the Manhattan Distance-based Classifier achieved the highest classification accuracy. 

This method effectively represented the complex time series data by calculating absolute distances between 

objects. The feedforward neural network with the Lunberg-Marquardt algorithm also performed well, 

optimizing parameters through a combination of gradient descent and Gauss-Newton methods. This 

approach outperformed traditional neural network classifiers that rely solely on gradient descent. 

Table 3. Trained classifiers and their corresponding accuracy 

Accuracy Classifier 

92.67 Manhattan distance feature-based dissimilarity space 

classifier 90.00 Feed forward neural network by Levenberg-Marquardt 

rule 89.33 Quadratic classifier 

74.67 Logistic linear classifier 

64.67 Normal densities based linear (multi-class) classifier 

87.33 Normal densities-based quadratic (multi-class) classifier 

36.00 k-nearest neighbor classifier 

23.33 Decision tree classifier 

41.33 Naive Bayes classifier 

52.67 Random neural network classifier 

54.67 Support vector classifier 

Table 4 presents the classification accuracy of the Manhattan Distance-based Classifier for different damage 

scenarios. The accuracy values represent the percentage of correctly classified inputs for each scenario. As 

shown, the classifier achieves perfect accuracy for several conditions, including the normal state and 

specific stiffness reductions on certain floors. However, accuracy varies for scenarios involving added mass 

and reduced stiffness across different floors. 



 

 

Confusion matrices in Figure 13 highlight the classifier’s precision, particularly in identifying the 

undamaged state with minimal misclassifications. The Manhattan distance classifier effectively identifies 

the undamaged state and severe damage conditions (e.g., stiffness reductions of 90%) with minimal 

misclassification, suggesting robustness in detecting both healthy and significantly altered structural states. 

For minor structural changes, such as small added masses or slight stiffness reductions, the classifier 

occasionally misclassifies these conditions as either less severe or normal. This indicates that while the 

classifier performs well for larger deviations, it may benefit from further training data to improve sensitivity 

to subtle damage. The SVM classifier exhibited superior results when the stiffness change was 10% but 

faced challenges when additional mass was added to the first floor, often misclassifying it as the normal 

condition. Overall, the digital twin demonstrated high accuracy in identifying damage type, location, and 

severity. Future improvements aim to expand the training dataset to capture a broader range of subtle 

damage scenarios, enhancing the model’s sensitivity and detection capabilities, particularly for minor 

structural changes. 

 

 

Fig. 13. Confusion matrix for the most accurate classifiers 

 

 



 

 

Table 4. Classification results of the Manhattan Distance-based Classifier for different damage scenarios. 

Accuracy         Class 

80.00 addedmass-97.1-floor1 

86.67 addedmass-97.1-floor2 

100 addedmass-97.1-floor3 

100 Normal 

100 stiffness90%-floor1 

93.33 stiffness90%-floor2 

100 stiffness90%-floor3 

100 stiffness95%-floor1 

86.67 stiffness95%-floor2 

80.00 stiffness95%-floor3 

 

7- Conclusion  

This study successfully developed a digital twin of a laboratory structure by integrating machine vision, 

physics-based simulations, and machine learning to enable real-time structural health monitoring (SHM). 

The digital twin accurately identified damage type, location, and severity across various scenarios, with the 

Manhattan distance-based classifier achieving the highest accuracy, particularly in detecting significant 

structural changes. This classifier proved to be a powerful tool for SHM applications, offering high accuracy 

in real-world testing. 

The digital twin demonstrated strong alignment with experimental data, and the responses measured 

through machine vision were validated using radar and accelerometer measurements. While the classifier 

performed well for major damage, it showed limitations in detecting subtle changes, such as minor mass 

variations or slight stiffness reductions. Expanding the training dataset to include a wider range of subtle 

damage scenarios could improve sensitivity to early-stage damage, enhancing detection capabilities for 

gradual deterioration. 

Future research could explore advanced feature extraction techniques and hybrid models to further enhance 

classifier accuracy. Scaling the digital twin for full-scale structures and diverse environmental conditions 

would enable broader SHM applications, providing a robust solution for predictive maintenance and real-

time monitoring of civil infrastructure. 

Overall, this digital twin approach holds significant promise for advancing SHM systems through improved 

accuracy, efficiency, and responsiveness, ultimately contributing to safer and more durable structural 

engineering practices. 
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