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Effective urban traffic management relies on a thorough understanding of traffic behavior 

patterns. Traditional methods often struggle to capture the dynamic and complex nature of 

modern traffic. This research addresses this challenge by utilizing online traffic data from the 

Mapbox platform to analyze and forecast traffic behavior patterns in Tehran. Autoregressive 

Integrated Moving Average (ARIMA) and Seasonal Autoregressive Integrated Moving 

Average (SARIMA) time series models were employed to analyze traffic volume, vehicle speed, 

and travel time data. The models were evaluated using criteria such as the Akaike Information 

Criterion (AIC) and Root Mean Square Error (RMSE). The results indicate that these models 

can accurately simulate both temporal and periodic trends. Specifically, the Moving Average 

(MA) coefficient (ma.L1) shows a positive and significant impact of the first lag (p-value = 

0.000). The analysis reveals that the Autoregressive (AR) coefficient (ar.L1) is -0.0270, 

indicating a negative impact of the first lag; however, a p-value of 0.588 rejects the 

significance of this impact. On the other hand, the Moving Average (MA) coefficient (ma.L1) 

is 0.2028, showing a positive and significant impact of the first lag (p-value = 0.000). 

Furthermore, the AIC and BIC criteria are -18070.697 and -18036.730, respectively. The 

study's interpretation of negative values indicates a robust model fit and no extra parameters 

needed. Additionally, this research analyzed traffic behavior in Tehran by examining modeling 

results across different hours to capture variations in traffic patterns. The study highlights the 

effectiveness of using online traffic data and time series modeling to identify factors 

influencing traffic, improve urban traffic management, and support transportation planning. 

Overall, it promotes detailed traffic analysis and behavior prediction, contributing to 

intelligent and sustainable transportation systems, enhanced urban resilience, and improved 

infrastructure and traffic flow. 
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1. Introduction 

The increasing complexity of urban environments, driven 

by population growth, environmental crises, and 

disruptions, highlights the urgent need for resilient urban 

planning, particularly in transportation systems. Cities face 

multifaceted challenges such as traffic congestion, which 

directly impacts functionality, air quality, and quality of life. 

Addressing these challenges requires a holistic approach 

that integrates advanced traffic data analysis, behavioral 

prediction models, and adaptive infrastructure design. Such 

an approach not only enhances traffic coordination but also 

contributes to broader goals of sustainability and resilience 

reducing emissions, improving safety, and ensuring reliable 

access to urban services. These outcomes address 

environmental crises by reducing greenhouse gas emissions 

and improving air quality, while improving quality of life by 

minimizing delays, reducing stress, and ensuring reliable 

access to services. Ultimately, urban resilience in 

transportation planning serves as an essential tool to 

address contemporary challenges and crises, paving the 

way for smarter, more sustainable cities (Datola, 2023; 

Dianat et al., 2022). Urban resilience in the transportation 

domain means the ability of the transportation system to 

effectively respond to challenges and unexpected changes, 

such as accidents or climate change, and even to optimally 

manage urban traffic (Chen et al., 2022). 

Online traffic data is of fundamental importance to the 

functioning of resilient urban transportation systems. This 

data, collected from various sources such as sensors, GPS 

devices, and smartphones, offers a unique opportunity to 

analyze traffic patterns in real time. By examining this data, 

cities can make informed decisions to mitigate potential 

disruptions and respond proactively to crises, including 

accidents and extreme weather events (Chen et al., 2022). 

The analysis of this data can provide a deeper 

understanding of traffic patterns, enabling informed 

decisions to improve traffic flow, reduce accidents, and 

enable urban planners to manage traffic effectively during 

peak hours and special events (Datola, 2023; N. 

Moghaddam et al., 2021). Researchers have explored 

various applications of traffic data in their studies, 

including specific applications in traffic light automation 

and traffic flow management. Furthermore, a comparative 

analysis of traffic data before and after the implementation 

of improvement plans facilitates a precise assessment of 

their effectiveness (N. Moghaddam et al., 2021), and these 

data facilitate the optimization of public transportation 

systems and the identification of areas susceptible to 

accidents (Chen et al., 2022). 

In addition to gathering traffic data, machine learning 

algorithms can be used to develop traffic prediction models 

to help engineers predict future traffic and take necessary 

actions to improve traffic flow (Boukerche and Wang, 2020). 

However, collecting, processing, and analyzing large 

datasets demand robust infrastructure and advanced tools, 

alongside addressing privacy and security concerns. Traffic 

data studies have evolved significantly over the decades; 

while initial data was gathered by sensors and analyzed 

manually, modern data processing algorithms allow for 

more accurate automatic analyses, particularly with the 

influx of data from smartphones and GPS systems 

(Boukerche and Wang, 2020). Recent research has focused 

on various topics including short-term and long-term traffic 

prediction, identification of traffic patterns, and developing 

navigation systems based on traffic data. These analyses 

have demonstrated substantial contributions to reducing 

travel times, enhancing safety, and improving public 

transportation efficiency. Specific studies have investigated 

optimizing traffic signals, the traffic flow control, and 

designing transportation networks using these data sources 

(Karami and Kashef, 2020; Wu et al., 2023). 

This study focuses on the application of online traffic 

data and machine learning algorithms in traffic modelling 

and using it in urban transportation planning. The 

significance of this research lies in its potential to improve 

traffic prediction, and boost urban efficiency, thereby 

contributing to urban traffic management and intelligent 

transportation systems. Traffic modeling and time series 

construction from traffic data are essential for analyzing 

complex traffic behaviors. Traffic data, including volume, 

vehicle speed, and travel time, helps in understanding 

patterns and predicting future conditions. Autoregressive 

Integrated Moving Average (ARIMA) models are effective 

for studying traffic behavior due to their capability to 

analyze and forecast non-stationary time series by 

incorporating autoregressive, differencing, and moving 

average components to identify temporal dependencies and 

periodic patterns. ARIMA models can account for various 

influencing factors, such as time of day, day of the week, and 

weather conditions. Additionally, Seasonal ARIMA 

(SARIMA) models are better suited for periodic data, 

effectively simulating fluctuations in traffic datasets. The use 

of these models enhances prediction accuracy and reveals 

underlying trends and patterns, providing valuable insights 

for traffic management and urban planning decisions. 

This section examines similar studies related to traffic 

data, highlighting existing gaps, shortcomings in this field, 

and the need for new research directions. Yang et al. (2021) 

introduced a network traffic prediction method that 

integrates Simulated Annealing (SA) optimization with 

ARIMA models and Backpropagation Neural Networks 

(BP). Their hybrid framework combines the predictive 

capabilities of ARIMA with the learning advantages of 

neural networks, demonstrating significant improvements in 

prediction accuracy, which aids network managers in 

resource planning (Yang et al., 2021). Wang et al. (2022) 

proposed an ARIMA model integrated with multi-instance 

learning for analyzing and predicting vehicle speed time 

series. This research emphasizes the combination of 
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traditional statistical models with machine learning 

techniques to enhance prediction accuracy, providing 

valuable insights for traffic management and transportation 

planning (Wang et al., 2022). Additionally, Nassiri et al. 

(2023) examined temporal trends in road accidents in Iran, 

utilizing macro-scale traffic flow characteristics to identify 

patterns influencing road safety. Their findings could inform 

policymakers and support preventive measures in traffic 

planning (Nassiri et al., 2023). Deretić et al. (2022) applied 

a SARIMA modeling approach to predict traffic accidents, 

analyzing historical data to forecast trends in accident 

occurrences. Their results are expected to improve traffic 

management and safety policies, providing a framework for 

reducing accidents and injuries in sustainable 

transportation (Deretić et al., 2022). Another study by Wang 

et al. (2022) introduced a traffic flow prediction method 

based on periodic features and the SARIMA-NAR model, 

which enhances prediction accuracy through the analysis of 

periodic patterns. The findings support traffic managers and 

urban planners in optimizing transportation systems (Wang 

et al., 2022). Rabbani et al. (2021) conducted a comparative 

analysis between the SARIMA model and Exponential 

Smoothing (ES) for predicting road accidents, highlighting 

the distinct capabilities of each method in analyzing time 

series data related to accidents. Their results could aid in 

developing enhanced roadway safety strategies (Rabbani et 

al., 2021). Furthermore, Patil (2022) evaluated various time 

series forecasting methods for urban traffic flow prediction, 

demonstrating that the choice of forecasting technique 

significantly influences prediction accuracy, thereby aiding 

traffic management and reducing congestion in urban 

settings (Patil, 2022). In another research has also shown a 

growing emphasis on LSTM, ARIMA, and SARIMA models 

in Intelligent Transportation Systems (ITS). Verma and 

Pandey (2024) established ARIMA and SARIMA as 

conventional statistical forecasting methods, while LSTM 

captures non-linear dependencies in traffic data. Their 

comparison using a dataset from the U.S. Government Open 

Repository highlighted seasonality's role in modeling traffic 

data accurately, with SARIMA demonstrating superior 

performance (Verma and Pandey, 2024). 

Existing studies highlight the significance of using 

ARIMA and SARIMA models for modeling time series traffic 

data due to their effectiveness in enhancing prediction 

accuracy and managing traffic data volatility. The SARIMA 

model, in particular, excels at identifying periodic patterns 

and accommodating seasonal fluctuations, which improves 

prediction reliability and supports better transportation 

infrastructure management, potentially reducing congestion 

and costs (Patil, 2022). The integration of ARIMA and 

SARIMA models with advanced techniques such as machine 

learning can yield optimal results, with SARIMA effectively 

serving as an input for complex models like neural networks 

(Rabbani et al., 2021; Patil, 2022). Collectively, these 

studies demonstrate the need for sophisticated modeling 

approaches to improve traffic prediction and safety, 

emphasizing the importance of incorporating emerging 

technologies like IoT and smart sensors for real-time 

decision-making in traffic management. Overall, employing 

these models not only enhances prediction accuracy and 

optimizes traffic flow but also benefits transportation 

infrastructure and alleviates traffic-related issues 

(Oladimeji et al., 2023). However, a comprehensive travel 

time modeling study for Tehran that specifically 

incorporates key traffic influencing parameters such as 

weather conditions, accidents, and the impact of historical 

events on traffic volume (and consequently vehicle speeds 

and congestion) remains largely unexplored. While the 

existing literature addresses traffic modeling in various 

contexts, the unique characteristics of Tehran's traffic 

patterns influenced by these specific factors require a more 

tailored approach.  

This study addresses existing gaps by utilizing high-

resolution, real-time traffic data from the Mapbox platform, 

incorporating external variables to enhance the modeling 

process in a specific area of Tehran. The research primarily 

innovates by employing both ARIMA and SARIMA models 

to analyze and predict traffic patterns, capitalizing on their 

strengths in time series analysis to capture autocorrelation 

and model seasonality. Furthermore, by integrating external 

factors such as weather conditions, holidays, and accidents 

alongside real-time data from online traffic services and 

other sources, the study offers a comprehensive 

understanding of traffic dynamics in Tehran while utilizing 

machine learning techniques to assess traffic patterns and 

predict future conditions, particularly focusing on elements 

like travel time and evaluating the impact of different 

conditions on it. This research aims to develop a robust 

framework for short-term traffic forecasting using ARIMA 

and SARIMA models to produce accurate travel time 

prediction models. By providing a detailed understanding of 

Tehran's unique travel time patterns and comparing the 

effectiveness of ARIMA and SARIMA models, the study seeks 

to determine the best modeling approach, ultimately leading 

to innovative traffic prediction strategies that optimize 

travel time and reduce overall traffic levels, resulting in 

reduced traffic. Additionally, while this research focuses on 

the developing accurate travel time prediction models, its 

ultimate goal is to provide urban planners and traffic 

engineers with the tools necessary to make informed 

decisions that improve traffic flow and reduce congestion. 

2. Materials and Methods 

This study employs innovative online traffic service 

sources to collect traffic data in a time series format, 

enabling a comprehensive analysis of traffic behaviors. The 

gathered data encompasses critical information such as 

traffic volume, vehicle speed, and travel time across specific 

intervals. Following data collection, appropriate storage 

and preprocessing methods are applied to ensure the quality 

and accuracy of the data for subsequent analyses. To model 

the traffic data, statistical models ARIMA and SARIMA are 

utilized due to their effectiveness in identifying temporal and 

periodic patterns, particularly in contexts where the data 
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exhibit volatility and non-linear trends. Initially, stationarity 

tests, including the Dickey-Fuller test, are performed to 

ascertain whether the data is stationary or requires 

differencing. Once the stationarity of the data is established, 

optimal parameters for the models are determined using 

techniques such as the Autocorrelation Function (ACF) and 

Partial Autocorrelation Function (PACF). After fitting the 

models to the traffic data, the performance of these models 

is evaluated using various metrics, including Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), and 

Akaike Information Criterion (AIC). This systematic 

evaluation facilitates the selection of the most suitable 

model for predicting traffic behaviors. 

The results derived from the modeling and forecasting 

processes using ARIMA and SARIMA models are then 

presented analytically. These analyses include the 

identification of behavioral traffic patterns, an examination 

of the impacts of various factors on traffic, and actionable 

recommendations for improving traffic management in 

different urban areas. The overarching goal of this research 

is to provide deeper insights into traffic patterns, thereby 

assisting urban planners in making more effective decisions 

in traffic management. By integrating rigorous data 

collection and preprocessing methods, applying advanced 

statistical models, conducting thorough stationarity testing, 

and evaluating model performance, this study significantly 

contributes to the field of traffic management. It offers 

valuable insights into traffic behaviors and their influencing 

factors, ultimately supporting urban planners in developing 

more effective and sustainable traffic management 

strategies. Through these efforts, the research aims to 

enhance decision-making processes, contributing to 

sustainable urban mobility and improved infrastructure 

management.     
This study makes a significant contribution to the field of 

traffic management by offering a novel approach to better 

understanding and forecasting traffic patterns. Ultimately, 

this approach can result in more effective strategies for 

optimizing traffic flow in urban environments.  

This section presents a flowchart as show in Figure 1, to 

visually illustrate the sequential steps of the research. It 

outlines the key phases, starting from the research goal and 

proceeding through the selection of the study area, the 

establishment of an online traffic data collection system, 

data storage and preprocessing, exploration of machine 

learning methods, and the implementation of ARIMA and 

SARIMA modeling techniques. The flowchart culminates in 

the evaluation of results and the discussion of conclusions 

and recommendations, providing a clearer understanding of 

the research methodology. 

 

 

Figure 1- The flowchart of research processes 

 

2.1. Study Area 

In this section, a detailed examination of the study area 

is provided, highlighting its significance as a congested 

traffic area in Tehran. Tehran, as one of the largest and most 

populous cities in Iran, exhibits significant spatial 

variability in traffic patterns and environmental conditions 

due to its vast geographical expanse and even diverse 

weather conditions. Given the complexity of Tehran's traffic 

dynamics, which vary considerably between different 

districts, this study focuses on a route from District 5 of 

Tehran to the vicinity of Azadi Square, a significant location 

in the city, as shown in Figure 2, as a pilot area for detailed 

analysis. This route, which extends from a point in District 

5 near a selected bus station on Hakim Highway to a 

selected metro station in Azadi Square. The route was 

selected as a route with a variety of characteristics, 

including major roads, intersections, highways, and the 

congested area near the metro stations, etc., to represent 

typical urban traffic challenges in Tehran, while ensuring 

the feasibility of real-time data collection and monitoring. 

By focusing on this route, the study aims to provide a 

manageable yet representative case for analyzing traffic 
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behavior, allowing for accurate observations and collection 

of high-quality data. This approach ensures that the results 

can be used as a basis for broader applications in other 

parts of the city in future studies. 

 

 

Figure 2 – The Study Area  

This specific route was chosen to analyze traffic patterns 

and conditions that are representative of urban 

transportation challenges in Tehran. The required data was 

gathered through the API of this platform over the period 

from April 2, 2024, to June 4, 2024, resulting in the 

collection of a time series dataset comprising approximately 

6,500 records.  While the two-month timeframe may seem 

limited, it was chosen to capture high-resolution data (e.g., 

every 5–10 minutes) sufficient for training and validating 

ARIMA and SARIMA models. The dataset's granularity and 

size (6,500 records) provide a strong basis for short-term 

traffic forecasting, the study's primary focus. However, 

longer-term data collection would enhance the capture of 

broader seasonal trends and improve model 

generalizability.  

3. Data Sources and Collection Methods 

To collect traffic data, this study utilized online mapping 

platforms such as Mapbox. The developed system allows for 

real-time monitoring and recording of online traffic data at 

any moment. Figures 3 illustrate two examples of the 

system's functionality in collecting and recording real-time 

data at various dates and times. This platform offers access 

to online and real-time traffic data, encompassing 

information on vehicle speeds, traffic conditions, and road 

incidents.  

The study acknowledges that the two-month period falls 

within a single season (02-04-2024) to (04-06-2024), (in 

Persian date; since 1403/01/14 to 1403/03/14) limiting 

observable seasonal variations. While the SARIMA model 

accounts for daily cycles, the analysis focuses on short-term 

periodic traffic behavior, such as daily and weekly 

fluctuations, crucial for real-time traffic management. 

Future work could extend data collection to multiple 

seasons to better explore seasonal impacts on traffic 

patterns. The system was developed using JavaScript, which 

facilitated the integration with Mapbox to retrieve online 

traffic data seamlessly. This approach allowed for efficient 

data handling and real-time updates, ensuring that the 

traffic information collected was both current and relevant 

for analysis. 

 

 

Figure 3 – the environment of the Developed System 

with Mapbox online Services with functionality in 

various time   

To facilitate the retrieval of traffic data, an account was 

created on Mapbox, and an API key was obtained to access 

its online traffic services. Specific points on the road 

network were selected, focusing on main roads and key 

traffic intersections based on traffic patterns and the 

significance of these locations. To automate data collection, 

scripts were developed using Python, along with the 

Requests library, which periodically sent requests to the 

Mapbox API at ten-minute intervals. This methodology 

allowed for efficient acquisition of traffic information, which 

was then stored as a time series in either a local or cloud-

based SQL database. The collected data includes several 

parameters that influence traffic, such as timestamps, 

geographic locations, traffic volume status (Traffic 

Condition Factor), and records of road incidents (e.g., 

accidents). Table 1 illustrates a representative sample of 

this traffic data, showcasing records from various time 

intervals and days. This diversity in recorded data is crucial 

for accurately representing how traffic information is 

distributed within the dataset. The structure of this data 
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included several parameters that influence traffic, such as 

time, geographic locations, and traffic volume status 

(Traffic Condition Factor), etc.   

 
Figure 4 – The general graph of Traffic Volume in Tehran 

and big cities 

Within the "time" parameter, various dates and types of 

days (such as holidays, weekdays, and special events) were 

considered, as these can significantly influence traffic 

patterns in Tehran. An example of a traffic behavioral 

algorithm developed for Tehran is the “Traffic Peak Factor 

Algorithm”. This algorithm analyzes historical traffic data 

to identify distinct temporal patterns prevalent under 

normal traffic conditions. For instance, and as it shown in 

Figure 4, the algorithm may determine that traffic 

congestion tends to peak on weekdays during the morning 

rush hour (7:00 AM to 9:00 AM) and again in the evening 

(5:00 PM to 7:00 PM). It takes into account external factors 

such as the occurrence of local events (e.g., concerts, sports 

events) that may exacerbate traffic volume on specific days. 

The traffic peak factor is calculated by analyzing data points 

during these times and establishing a ratio that represents 

traffic flow relative to off-peak hours. By incorporating this 

factor into each data record, the algorithm can more 

precisely monitor and predict traffic flow. For example, if 

historical data shows that traffic volume increases by 50% 

on weekday mornings compared to weekends, this insight 

can be utilized to adjust traffic signal timings or inform 

commuters about expected delays during those peak times. 

Thus, the Traffic Peak Factor Algorithm enables effective 

traffic management strategies by allowing authorities to 

anticipate congestion and implement proactive measures 

that facilitate smoother traffic flow throughout the city. 

The raw traffic data was programmatically collected from 

Mapbox's Traffic API v1 using Python 3.9 and the Requests 

library (v2.28.1). Authenticated HTTPS requests were used 

to query API endpoints targeting specific geocoordinates 

along the study route. The raw JSON responses were parsed 

into structured fields and organized by temporal parameters 

(date, time), weather conditions, and traffic variables 

(Traffic Condition Factor, duration) in the database 

schema. This structured storage approach ensures seamless 

integration with downstream analyses using Python 

libraries such as Pandas and NumPy, as well as ARIMA and 

SARIMA modeling, while maintaining data fidelity for 

reproducibility and enabling efficient querying for modeling 

purposes. 

Table (1) The collected Data 

Date-

number 

Weath

er 

Typ

e 

dat

e 

record

's 

time1 

Traffi

c 

Peak 

Traffic 

Conditi

on 

Factor 

Accide

nt 

Durati

on  

April 2, 

2024 
0 0.8 7:30 1 

Red 
0 28 

April 2, 

2024 
0 0.8 8:30 1 

Red 
0 25 

April 2, 

2024 
0 0.8 16:00 0.6 

Red 
0 23 

April 2, 

2024 
0 0.8 21:20 0.5 

Yellow 
0 20 

April 

20, 2024 
0 1 7:40 1 

Red 
0 30 

April 

20, 2024 
1 

1 
8:20 1 

Red 
1 27 

April 

20, 2024 
0 

1 
15:50 0.5 

Yellow 
0 24 

April 

20, 2024 
0 

1 
20:50 0.9 

Yellow 
0 26 

April 

20, 2024 
0 

1 
22:00 0.1 

Blue 
0 17 

By structuring the data in an organized database, quick 

and effective access was ensured for the modeling phase. In 

addition to these parameters, traffic flow speed can be 

computed from the traffic color codes provided in the 

Mapbox interface, indicating traffic conditions as shown in 

the referenced image. By analyzing the color-coded 

congestion levels and accounting for the posted speed limits 

of each roadway segment, the traffic flow speed can be 

estimated using the following formula - an approach 

empirically validated by Aljanahi et al. (1999) who 

demonstrated that vehicle speeds under free-flow conditions 

closely adhere to speed limits, while progressively deviating 

under congested states due to traffic density effects and 

safety considerations: 

Traffic Flow Speed=Speed Limit×Traffic Condition Factor 

The Traffic Condition Factor (ranging from 0 for 

complete stoppage to 1 for free flow) operationalizes this 

inverse correlation between congestion intensity and 

achievable speeds. It is derived from color-coded congestion 

levels: 

 Blue (free flow, factor ≈1) 

 Yellow (moderate congestion, ~0.5) 

 Red (heavy congestion, approaching 0) 

The "Traffic Condition Factor" serves as a critical 

indicator of congestion levels throughout different times of 

the day, where higher congestion ("Red") correlates with 

increased traffic volumes and reduced speeds, particularly 

during peak hours (evidenced by elevated "Traffic Peak" 
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values in Table 1). Conversely, "Blue" conditions reflect 

lower volumes and higher speeds.  Furthermore, the Traffic 

Flow Speed formula utilized herein demonstrates that 

vehicle speed is directly influenced by the Traffic Condition 

Factor and the corresponding speed limit; during peak 

traffic hours, as indicated by elevated values of "Traffic 

Peak," vehicle speeds tend to diminish due to congestion. 

Additionally, the recorded duration of travel in Table 1 

provides empirical insights into travel times, which are 

significantly impacted by both traffic volume and vehicle 

speed. By correlating this duration with varying traffic 

conditions, one can gain a comprehensive understanding of 

how these factors interrelate and ultimately influence 

overall travel times. Thus, the criteria in Table 1 offer 

invaluable contextual data, enabling a nuanced exploration 

of their relationships with traffic flow dynamics, thereby 

enhancing predictive modeling capabilities and informing 

effective traffic management strategies. In the modeling 

phase, the gathered traffic data was utilized to identify and 

forecast traffic patterns and trends. Analyzing these data 

allows for a better understanding of the factors influencing 

traffic, leading to improved decision-making in traffic 

management (Sattarzadeh et al., 2023). By systematically 

analyzing: 

 Speed-flow relationships (via the Traffic Condition 

Factor) 

 Temporal congestion patterns (peaks, durations) 

 Ancillary factors (accidents, weather) 

The approach enhances real-time traffic monitoring and 

management. The criteria in Table 1 thus provide a 

multidimensional foundation for predictive modeling, 

linking micro-level speed/volume dynamics to macro-level 

traffic management strategies in urban planning. 

3.1. The Structure of the Traffic Data Database 

The data storage system established for this research 

comprises a comprehensive dataset that facilitates detailed 

analysis and model training essential for understanding 

traffic conditions. An SQL database was specifically 

designed as shown in Figure 5, to accommodate the diverse 

parameters collected during the study. The schema of this 

database includes several critical columns: 

the Date (recorded as Date) captures the exact date of data 

collection; Weather (represented as INT) denotes the 

prevailing weather conditions, where a value of 0 signifies 

clear weather and a value of 1 indicates rainy 

conditions; Type Date (noted as FLOAT) categorizes the 

day type, with values reflecting weekdays or 

weekends; Record's Time (stored as TIME) specifies the 

precise time when each data record was obtained; Traffic 

Peak (also recorded as FLOAT) indicates whether the time 

falls within peak traffic hours, with a value of 1 for peak 

times and 0 for non-peak periods; the Traffic Condition 

Factor (FLOAT) conveys the level of congestion, derived 

from associated traffic color codes; the Accident column 

(INT) indicates the occurrence of accidents, with 1 

representing an accident and 0 indicating no incident; and 

finally, Duration (INT) records the duration of the traffic 

condition in minutes. 

To populate the SQL database, data insertion was 

performed utilizing SQL INSERT statements executed 

through Python scripts. These scripts automated the 

retrieval of real-time data from Mapbox, effectively storing 

the information in the database at predetermined intervals. 

In terms of data retrieval, this structured database allows 

for efficient querying via SQL commands, promoting flexible 

analysis of various traffic trends and patterns. The 

structured format not only enhances accessibility for 

modeling and forecasting traffic behaviors but also ensures 

a coherent framework for ongoing data analysis. 

 

Figure 5 – The conceptual graph of Traffic Database 

 

Furthermore, the design of the data collection and storage 

processes accommodates continuous updates. As new data 

is procured from the API, it is seamlessly appended to the 

existing database, thereby maintaining a current and 

relevant repository for further analysis. By establishing a 

well-structured database with comprehensive traffic data, 

the study robustly supports advanced data analysis and 

modeling, ultimately contributing to improved traffic 

management strategies. 

4. System Architecture 

This research utilized a variety of tools and software, each 

specifically designed to enhance the data collection, 

processing, and analysis processes. Python was chosen as 

the primary programming language because of its powerful 

and flexible capabilities, which facilitated the writing of 

scripts for data collection and initial data processing from 

the Mapbox platform. Well-established and widely used 

libraries such as Pandas and NumPy were used for in-depth 

data processing and numerical analysis after the data was 
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retrieved from the SQL database. In addition, the Matplotlib 

library was used to visualize the results obtained from the 

ARIMA/SARIMA modeling, presenting the data in a visually 

appealing way. Finally, to efficiently store and organize the 

collected data, an SQL database was implemented to 

optimize data access, management, and retrieval. Figure 6 

illustrates the system architecture, showing the flow of data 

from Mapbox, through the various processing stages, to the 

final visualization of the traffic forecasts. This architecture 

highlights the relationship between data collection, data 

storage, data processing, modeling, and the presentation of 

results. Specifically, it shows how data collected from 

Mapbox using Java scripts is stored in an SQL database in 

the number and text format, then retrieved and processed 

using the strong Python's libraries like Pandas and NumPy 

before being used for ARIMA/SARIMA modeling. The 

results of the modeling are then visualized using Matplotlib. 

This coherent and efficient structure allows for systematic 

data analysis, ensuring that the results obtained are of a 

high quality. This architecture underscores the importance 

of a well-integrated system where each element interacts 

with the others to facilitate the processes of data collection, 

processing, analysis, and ultimately, the generation of 

actionable insights in traffic studies. 

 

Figure 6 - System architecture and the relationship 

between its components 

5. Time Series Modeling 

As described above, online traffic data was collected from 

the Mapbox platform. Once the data was collected, several 

stages of processing and analysis were implemented. First, 

data cleaning was performed to identify and remove any 

incomplete or anomalous records in order to maintain the 

overall quality of the dataset. Next, descriptive analyses 

were performed using data analysis tools such as Pandas 

and Matplotlib to identify traffic patterns and fluctuations 

over time. In the next phase, various time series models, 

including ARIMA and SARIMA, were used to predict traffic 

patterns. The collected data was divided into training and 

test sets. The time series modeling used two commonly 

applied statistical techniques: ARIMA and SARIMA. These 

methods were chosen for their effectiveness in modeling and 

forecasting non-stationary and periodic time-dependent 

data, especially in the context of predicting traffic variables. 

5.1. ARIMA Model 

The ARIMA model is a widely used approach in time 

series analysis, designed to model time series data 

characterized by specific trends and cycles. This model has 

three basic components: first, the autoregressive (AR) 

component, which refers to the dependence of current 

observations on their previous values, where the parameter 

(p) indicates the number of lags. Second, the Integrated (I) 

component refers to the differencing process applied to the 

data to achieve stationarity, where the parameter (d) 

denotes the number of differencing steps required to achieve 

stationarity. Finally, the Moving Average (MA) component 

takes into account the effect of random noise on the data, 

with the parameter (q) indicating the number of moving 

averages considered (Kontopoulou et al., 2023). The 

general equation for the ARIMA model is shown in equation 

(1) below: 

 

)1( 
Yt=ϕ1Yt−1+ϕ2Yt−2+…+ϕpYt−p+θ1ϵt−1+θ2ϵt−2+…+θqϵt−q

+ϵt 

In this equation, (Yt) is the predicted value at time (t). 

Also, (ϕ) and (θ) represent the autoregression (AR) and 

moving average (MA) coefficients, respectively. In addition, 

(ϵt) is considered as random noise or model error. 

5.2. SARIMA Model 

The SARIMA model, as an extension of the ARIMA model, 

is designed for time series data with seasons and periodic 

patterns. This model contains the same components as 

ARIMA, but with the addition of periodic parameters that 

can represent seasons, periods, and time cycles. In general, 

the SARIMA model is given by equation (2) 

           (2)               s)Q,D,P()q,d,p(SARIMA 

where p, d, and q represent the order of non-seasonal 

autoregressive (AR), integrated (I), and moving average 

(MA) components, respectively. P and Q represent the 

order of periodic AR and MA components, 

respectively. D specifies the order of periodic differencing, 

and s determines the periodic period; for example, for 

hourly data, the value of s will be 24 (Kumar and 

Hariharan, 2022). The general equation of the SARIMA 

model is as follows (Kumar and Hariharan, 2022; Box et al., 

2015): 

)3(        tϵ)sB(Θ)B(θ=tYD)sB−1(d)B−1()sB(Φ)B(ϕ 

In the SARIMA model formulation, denoted as equation 

(3), several key components interact to capture both non-

periodic and periodic patterns within the time series data. 

These parameters are explained as follows; 
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 Yt: The time series value at time t. 

 B: The backshift operator (i.e., B Yt = Yt-1). 

Therefore, BsYt = Yt-s. 
 ϕ(B): The non-periodic autoregressive (AR) 

polynomial of order p 

 Φ(Bs): The periodic autoregressive (AR) 

polynomial of order P 

 (1−B)d: The non-periodic differencing operator 

of order d. This is used to make the time series 

stationary. 

 (1−Bs)D: The periodic differencing operator of 

order D. This removes periodic non-stationarity. 

 θ(B) : The non-periodic moving average (MA) 

polynomial of order q 

 Θ(Bs): The periodic moving average (MA) 

polynomial of order Q 

 ϵt: The error term (also known as white noise), 

assumed to have a mean of zero and constant 

variance. 

6. Implementation 

To effectively implement ARIMA and SARIMA models for 

time series forecasting, a systematic approach is essential. 

The first step involves testing the time series data for 

stationarity, which can be accomplished using statistical 

tests such as the Dickey-Fuller test or the Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) test. These tests help 

ascertain whether the time series exhibits a constant mean 

and variance over time, which is a prerequisite for applying 

ARIMA models. If the data is found to be non-stationary, 

appropriate differentiation steps must be taken to stabilize 

the mean of the time series. This can be achieved through 

first-order differencing, where the difference between 

consecutive observations is calculated, or higher-order 

differencing if necessary. Additionally, transformations 

such as logarithmic or periodic differencing may be applied 

to address any periodic patterns present in the data.  

Once the time series data is rendered stationary, the next 

phase involves fitting the ARIMA and SARIMA models by 

determining the optimal values for their respective 

parameters: (p; the number of lag observations), (d; the 

degree of differencing), and (q; the size of the moving 

average window) for ARIMA, and (P), (D), and (Q) for 

SARIMA, which account for periodic effects. This can be 

systematically approached using the Autocorrelation 

Function (ACF) and Partial Autocorrelation Function 

(PACF) plots to identify suitable parameter values. The 

ACF helps determine the (q) parameter by indicating the 

number of lagged observations that significantly correlate 

with the current observation, while the PACF assists in 

identifying the (p) parameter. 

In this study, several key criteria were established to 

evaluate the performance of the ARIMA and SARIMA 

models for predicting travel times in Tehran. Model 

evaluation criteria such as the Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC) were used 

to assess model fit, with lower values indicating a better fit. 

Additionally, Root Mean Squared Error (RMSE) was 

calculated to measure the accuracy of the travel time 

predictions produced by both models. After fitting the 

models, the Augmented Dickey-Fuller (ADF) test was 

conducted to ensure the stationarity of the time series data, 

which is critical for reliable forecasting. 

Furthermore, the Ljung-Box test assessed the 

autocorrelation of the residuals to confirm that the models 

adequately captured the dynamics of the data. The 

significance of the AR and MA coefficients was also 

evaluated, revealing the impact of these parameters on 

traffic behavior predictions. Lastly, tests for 

heteroscedasticity and normality of residuals were 

performed to identify any potential issues that could affect 

model performance. 

After evaluating the models, cross-validation techniques 

can be implemented to assess predictive performance on 

unseen data, ensuring robustness. Once the best model is 

selected, it can be utilized to predict travel times. This 

involves applying the fitted model to new data and 

generating forecasts, which can be further refined through 

ensemble methods or by incorporating additional 

predictors, such as weather conditions or special events, to 

enhance accuracy. Overall, this structured methodology 

provides a comprehensive framework for researchers and 

practitioners to effectively implement ARIMA and SARIMA 

models for analyzing and predicting traffic patterns, leading 

to more informed decision-making in urban traffic 

management. 

6.1. Experimental Results 

In this section, we present a comprehensive analysis of the 

results obtained from the implementation of ARIMA and 

SARIMA models on the traffic data. The models were trained 

on historical travel time data, and their performance was 

evaluated using statistical metrics such as the AIC, BIC, and 

RMSE. The primary objective of this analysis is to evaluate 

the effectiveness of these models in forecasting traffic 

behavior, which refers to the patterns and dynamics of 

traffic-related variables such as travel time, traffic volume, 

and vehicle speed. These variables collectively describe how 

traffic conditions evolve over time and are influenced by 

factors such as time of day, day of the week, weather 

conditions, and special events. The forecast graphs for the 

ARIMA and SARIMA models are presented in Figures 7 and 

8, respectively. These visual representations illustrate the 

predicted values against the actual observed traffic data, 

allowing for a clear comparison of the models' performance 

over the specified time period. Additionally, the numerical 

results obtained from these models are summarized in 

Tables 2 and 3. These tables provide a detailed overview of 

the model parameters, evaluation metrics, and the 

corresponding forecasts, facilitating a deeper 
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understanding of the models' efficacy in predicting traffic 

patterns. 
 

Table (2) ARIMAX Results 

No. Observations 6592 

Log Likelihood 9038.397 

ADF Statistic -15.079762 
Critical Values 

t1% 
t5% 

t10% 

 Values 
-3.431 
-2.862 

-2.567 

Covariance Type opg                                          

Ljung-Box (L1) (Q) 0.00 Jarque-Bera (JB) 34187.68 

Prob(Q) 0.98    Prob(JB) 0.00 

Heteroskedasticity (H) 0.85    Skew 0.83 

Prob(H) (two-sided) 0.00 Kurtosis 14.03 

Parameters coef std 

err 

z P>|z| [0.025 0.975] 

ar.L1 -

0.0270 
0.050 -0.542       0.588       -0.125        0.071 

ma.L1 0.2028       0.049       4.155       0.000 0.107        0.298 

sigma2 0.0038    2.58e-

05     
146.247       0.000 0. 004        0.004 

 

 

Figure 7 - ARIMA model for Historical Data    

 

 
Figure 8 - ARIMA Forecast line 

 

Table (3) SARIMAX Results 

No. Observations 6592 
Log Likelihood 9040.348 

ADF Statistic -15.079762 
Critical Values 

t1% 

t5% 
t10% 

 Values 
-3.431 

-2.862 

-2.567 
Covariance Type opg                                          
Ljung-Box (L1) (Q) 0.00 Jarque-Bera 

(JB) 

34264.88 

Prob(Q) 0.96    Prob(JB) 0.00 

Heteroskedasticity 

(H) 

0.85    Skew 0.83 

Prob(H) (two-sided) 0.00 Kurtosis 14.05 

Parameters coef std 

err 

z P>|z| [0.025 0.975] 

ar.L1 -

0.0268       
0.050 0.538       0.591       -0.124        0.071 

ma.L1 0.2033       0.049       4.179       0.000 0.108        0.299 
ar.S.L24 0.1473       0.602       0.245       0.807       -1.033        1.328 
ma.S.L24 -

0.1234       

0.604      -0.204       0.838       -1.308        1.061 

sigma2 0.0038    2.58e-

05     

146.247       0.000 0. 004        0.004 

 

Figure 9 - SARIMA model for Historical Data    

 

Figure 10 - SARIMA Forecast line 
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According to the values shown in Tables (2 and 3), the 

results obtained from the ARIMA and SARIMA models are 

analyzed.  

The independent forecasts generated by the ARIMA and 

SARIMA models provide valuable insights into the expected 

future behavior of travel time.  

The ARIMA model, which utilizes the parameters (p=1, 

d=1, q=1), produced a forecast characterized by a red 

dashed line in its corresponding plot. This model's 

predictive performance is grounded in its ability to capture 

the underlying temporal dynamics of the data, as evidenced 

by the ADF test results, which indicate a strong rejection of 

the null hypothesis of non-stationarity (ADF statistic = -

15.08, p-value < 0.001).  

 

In addition to the ARIMA and SARIMA forecasts, the 

visual representation of the predictions in separate plots 

further elucidates the distinct characteristics of each model. 

In Figures (8 and 10). In Figure 8, plot displays the ARIMA 

forecast for travel time, represented by a red dashed line 

with markers indicating the forecasted values over the next 

10-time intervals (10-minute increments). The x-axis 

represents the date and time, while the y-axis indicates the 

predicted travel time. 

  So, if the red forecast line shows a consistent pattern, this 

indicates that the ARIMA model effectively captures the 

underlying trend in the travel time data. For example, if the 

forecast suggests a gradual increase or decrease in travel 

time, it may reflect anticipated changes due to factors like 

traffic patterns or upcoming events. However, if the forecast 

deviates significantly from historical patterns, it could 

indicate that the ARIMA model is not fully capturing the 

dynamics of the data, possibly due to periodic variations or 

other external factors not included in the model. In contrast, 

the SARIMA model, incorporating periodic components (1, 

1, 1)x(1, 0, 1, 24), is represented by the green dashed line in 

its respective plot as Figure 10. This plot shows the SARIMA 

forecast for travel time, represented by a green dashed line 

with markers for the predicted values over the same 10 

future time intervals. Like the ARIMA plot, the x-axis 

indicates date and time, while the y-axis displays the 

predicted travel time. 

The SARIMA model extends the ARIMA model by 

incorporating periodic components, making it more suitable 

for datasets with periodic fluctuations. The periodic order 

(1, 0, 1, 24) indicates that the model considers one periodic 

autoregressive term, no periodic differencing, one periodic 

moving average term, and a periodic period of 24 (which 

could represent daily cycles in this context). So, if the green 

forecast line closely tracks the historical travel times, it 

suggests that the SARIMA model is effectively capturing 

both the trend and periodic variations in the data. This is 

particularly important in travel time forecasting, where 

factors such as time of day, day of the week, or special events 

can significantly impact travel patterns. Any significant 

discrepancies between the SARIMA forecast and historical 

data may indicate that the model needs adjustments, such as 

refining periodic parameters or incorporating additional 

explanatory variables. 

Totally, the two forecasting plots illustrate the ARIMA 

forecast, showcasing its ability to predict future values 

without considering periodic effects, and the SARIMA 

forecast, highlighting its sensitivity to periodic trends. The 

third and fourth plots showed in Figures (7 and 9) could be 

utilized to compare the residuals of both models, providing 

insights into their predictive accuracy and potential areas 

for improvement. The SARIMA model's forecasts account 

for periodic variations, enhancing its predictive capability 

in contexts where periodic fluctuations are present. Notably, 

the SARIMA model yielded a marginally better log-

likelihood and lower AIC values compared to the ARIMA 

model, suggesting a more robust fit to the data. 

Overall, these independent forecasts facilitate a 

comprehensive comparative analysis, allowing for an 

informed selection of the most appropriate model based on 

performance metrics and the nature of the underlying data. 

Such analyses are crucial for making data-driven decisions 

in time series forecasting, particularly in fields where 

understanding temporal trends is essential. Altogether, 

these findings underscore the effectiveness of the SARIMA 

model in capturing the dynamics of traffic volume and 

provide a solid foundation for utilizing these models in 

practical traffic management applications. The insights 

gained from this analysis can inform strategies for 

optimizing traffic flow and enhancing urban transportation 

systems. 

In summary, this section presented the findings from 

implementing ARIMA and SARIMA models to forecast 

traffic behavior, particularly travel time, using a dataset of 

approximately 6,500 records collected from the Mapbox 

platform over two months for a major route in Tehran. The 

ARIMA model effectively captured temporal trends, while 

the SARIMA model demonstrated superior performance by 

incorporating daily periodic fluctuations, achieving a 

marginally better log-likelihood and lower AIC values. The 

MA coefficient showed a significant positive impact (p-value 

= 0.000), whereas the AR coefficient was non-significant (p-

value = 0.588). Residual analysis confirmed the absence of 

autocorrelation (Ljung-Box Q = 0.00, p-value = 0.98), but 

non-normality and heteroscedasticity were detected, 

indicating areas for refinement.  

 
6.2. Evaluation of the model parameters 

The analysis of the SARIMA model with parameters (1, 1, 

1) reveals a log likelihood of 9038.397, accompanied by AIC 

and BIC values of -18070.794 and -18050.414, respectively, 

indicating an adequate fit to the data. A closer examination 

of the model’s standard errors and z-values shows that the 

MA parameter has a significant coefficient (p-value = 

0.000), reflecting its meaningful impact on the dependent 

variable, traffic volume. In contrast, the AR parameter is not 

significant (p-value = 0.588), suggesting it does not 
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substantially affect the dependent variable. Specifically, the 

AR coefficient (ar.L1) is -0.0270, suggesting a negative 

influence from the first lag, though its effect is not significant 

due to the high p-value. The MA coefficient (ma.L1) is 

0.2028, indicating a positive and statistically significant 

effect with a p-value of 0.000. The error variance (sigma²) 

is 0.0038, illustrating the dispersion of errors in the 

forecasts. 

Additionally, the SARIMAX model with parameters (1, 1, 

1) x (1, 0, 1, 24) was assessed, yielding a log likelihood of 

9040.348 and AIC and BIC values of -18070.697 and -

18036.730, respectively. In this model, the MA parameter 

continues to demonstrate a significant positive effect (p-

value = 0.000). However, the periodic AR and MA 

parameters (ar.S.L24 and ma.S.L24) are not statistically 

significant (p-values above 0.05), indicating they do not 

influence traffic forecasts over the 24-hour period. 

Additional tests were performed to evaluate the residual 

characteristics of the model. The Ljung Box test yielded a Q 

statistic of 0.00 and a p-value of 0.98, confirming the 

absence of autocorrelation in the residuals (with a p-value 

close to 1), indicating the appropriateness of the selected 

models. Furthermore, the results of the Jarque-Bera test 

indicate that the distribution of the residuals is not normal 

(p-value = 0.00), suggesting a possible need for further 

investigation into the normality of the residuals. In addition, 

the presence of heteroscedasticity was indicated by a p-

value of 0.00, which suggests a likelihood of instability in 

the error variance. 

The ARIMA and SARIMA plots provide valuable insights 

into the expected future behavior of travel time. The ARIMA 

forecast focuses on capturing the trend based solely on 

historical data, while the SARIMA forecast enhances this by 

accounting for periodic variations, leading to potentially 

more accurate predictions. By comparing both forecasts, 

stakeholders can evaluate which model better captures the 

dynamics of travel time and make informed decisions based 

on the predicted trends. 

The overall evaluation of the models, as illustrated in 

Figures 11 and 12, which depict the residuals and their 

distribution, indicates that the SARIMA model has been well 

fitted to the data. However, the results of the Jarque-Bera 

test and indications of heteroscedasticity necessitate further 

investigation. Additionally, the non-significance of the AR 

coefficient may suggest that there is no need to include this 

component in the model. 

To enhance the model, it is recommended to adjust the 

parameters or to implement alternative methodologies, such 

as generalized autoregressive conditional 

heteroskedasticity (GARCH) models, to address the issue of 

heteroscedasticity. These findings highlight the model's 

ability to forecast time series data and underscore the need 

for further research aimed at improving prediction 

accuracy. Overall, the results demonstrate the strong 

performance of ARIMA and SARIMA models in forecasting 

traffic behaviors, although improvements are warranted 

regarding the normality of the residuals. Such insights can 

assist urban planners in making informed decisions for 

better traffic management. 

 

 

Plot of randomly generated residuals and  - 11Figure 

their line plots to check Normality and 

Heteroscedasticity 

 

 

Histogram of residual distribution - 12Figure  

While the primary focus of this study is on travel time 

prediction, the ARIMA and SARIMA models implemented in 

this research are versatile and capable of analyzing other 

traffic-related variables, such as traffic volume and vehicle 

speed. The methodology described in the "Implementation" 

section is applicable to any time series data, and the models 

can be adapted to predict different traffic metrics depending 

on the specific objectives of the analysis. In this study, travel 

time was selected as the key output due to its direct 

relevance to urban traffic management and its significant 

impact on commuter experience and transportation 

efficiency. However, the same approach can be extended to 

other variables, such as traffic volume or vehicle speed, by 

adjusting the input data and model parameters accordingly. 

 

7. Results’ Evaluation  
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The implementation of the ARIMA and SARIMA models in 

Tehran's study area has yielded significant insights into 

traffic patterns at various times of the day. The results can 

be summarized as follows: 

1. Peak Hour Analysis: Morning Rush Hour (7 AM - 9 

AM): The models indicated a substantial increase in traffic 

volume, with predicted congestion levels rising by 

approximately 40% compared to off-peak hours. The 

average travel time during this period extended by an 

estimated 20 minutes due to heightened vehicle density, 

particularly on major routes. 

2. Midday Conditions (12 PM - 2 PM): During lunchtime, 

the traffic volume showed a moderate increase, 

approximately 15% higher than pre-peak hours. The models 

forecasted a slight rise in average travel times, suggesting 

that local business activities contribute to increased 

congestion. 

3. Evening Rush Hour (5 PM - 7 PM): Similar to the 

morning rush, the evening peak presented significant 

congestion, with estimates indicating a 35% increase in 

traffic volume. The models predicted average travel times to 

escalate by nearly 25% as commuters returned home, 

leading to traffic bottlenecks in residential areas. 

4. Late Night and Early Morning (11 PM - 6 AM): In 

contrast, during late-night hours, traffic volumes decreased 

dramatically by around 60%. The models indicated minimal 

congestion, with average travel times reflecting a notable 

improvement, averaging only 15 minutes on arterial roads. 

5. Impact of Weather Conditions: The models also 

revealed that adverse weather conditions (e.g., heavy rain) 

could lead to a further 15-20% increase in average travel 

times across all hours. For instance, traffic patterns during 

heavy rainfall not only saw a rise in congestion but also 

demonstrated a tendency for more pronounced delays, 

particularly for those traveling during peak hours. 

6. Holiday Traffic Patterns: Results showed that on 

national holidays, traffic volumes can fluctuate 

significantly. For example, during holidays, traffic levels 

may be 30% lower compared to regular weekdays, 

presenting unique opportunities for urban planners to 

optimize road usage and public transportation systems. 

Overall, the successful implementation of these 

forecasting models provides valuable insights into Tehran's 

traffic dynamics, allowing authorities to anticipate 

congestion, optimize traffic flow, and facilitate better urban 

planning during various hours of the day and under different 

conditions. 

7.1. Comparison of SARIMA Travel Time Modeling with Google 

Maps 

This study investigates the potential of ARIMA and 

SARIMA models as statistically-driven alternatives for real-

time travel time prediction, contrasting these models with 

services like Google Maps, which utilize advanced hybrid 

approaches combining model-based and data-driven 

techniques. The findings indicate that with meticulous 

parameter selection, ARIMA and SARIMA models can yield 

accuracy comparable to Google Maps, particularly in short-

term forecasting scenarios. This means that for relatively 

brief prediction windows, the travel times estimated by 

SARIMA models can closely reflect those provided by 

Google Maps. However, it is important to acknowledge the 

inherent limitations of ARIMA and SARIMA models in fully 

capturing the complexities and variability of real-world 

traffic dynamics. Unlike Google Maps, which benefits from 

a vast array of real-time data points and sophisticated 

algorithms, the traditional time series models may struggle 

to adapt dynamically to sudden changes, such as accidents 

or unexpected road closures. 

A comprehensive comparison between these methods 

proves challenging due to their fundamental differences. 

Google Maps uses a robust algorithm that integrates 

historical data, current traffic conditions, and user-reported 

incidents to provide real-time updates, enabling it to adjust 

predictions on the fly. In contrast, ARIMA and SARIMA are 

primarily focused on historical data analysis and do not 

inherently account for real-time fluctuations unless 

supplemented with additional information. To bridge these 

gaps, the study suggests several future research directions. 

One promising avenue involves integrating neural network 

models with traditional time series approaches to better 

address parameter uncertainty and enhance predictive 

accuracy. For instance, ARIMA or SARIMA models can be 

employed to establish a baseline prediction, which can then 

be refined by incorporating insights from neural networks 

that utilize external data sources, such as weather 

conditions or social media reports. This hybrid methodology 

aims to leverage the strengths of both traditional statistical 

models and modern machine learning techniques, 

potentially leading to more accurate and responsive travel 

time predictions. In summary, while ARIMA and SARIMA 

models present a viable statistical alternative for travel time 

forecasting, their limitations necessitate further exploration 

of hybrid approaches that combine these models' strengths 

with the real-time adaptability of platforms like Google 

Maps. 

 

8. Conclusion 

Urban growth intensifies traffic problems. Analyzing 

traffic data (volume, speed, travel times) informs better 

traffic management and infrastructure decisions. 

Integrating advanced statistical methods with real-time 

traffic data can reduce travel times, enhance safety, and 

improve public transport efficiency. Online data analysis 

empowers urban planners to manage traffic, coordinate 

signals, and optimize networks. Key challenges include data 

handling, infrastructure, and privacy. Ultimately, this leads 

to increased urban resilience through effective traffic 

forecasting and management. This research explored the 

importance of using online traffic data in the analysis and 

application of ARIMA and SARIMA time series models to 

online traffic data using the Mapbox platform for urban 

traffic analysis and forecasting. The data collected from the 
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Mapbox platform and associated analyses not only revealed 

traffic patterns, but also facilitated the provision of 

optimized recommendations for traffic management and 

flow improvement. Our results corroborate previous 

findings on the effectiveness of these models in predicting 

traffic trends and identifying periodic variations, and 

demonstrate their utility for analyzing real-world traffic 

data collected from a contemporary online platform. 

Specifically, we found a significant positive impact of the 

first-lag moving average (MA) coefficient (0.2028, p < 

0.000), indicating the importance of recent traffic conditions 

on current predictions. While the first-lag autoregressive 

(AR) coefficient (-0.0270) showed a negative impact, its 

non-significance (p = 0.588) suggests that its impact is less 

pronounced in our dataset. 

Nevertheless, the distinctive contribution of this study is 

its emphasis on travel time modeling in Tehran, a city where 

research on traffic data series and the incorporation of real-

time traffic data into the modeling process has been 

restricted. Additionally, it integrates various pivotal 

parameters that have been frequently disregarded in prior 

research. Specifically, our model incorporates the influence 

of dates and times (accounting for holidays and peak hours), 

weather conditions, and the occurrence of accidents. By 

incorporating these factors, which have been shown to have 

a significant impact on traffic volume in Tehran, we aim to 

provide a more realistic and accurate representation of 

travel time dynamics. This methodological advancement 

enables us to transcend the limitations of conventional 

historical trends and instead capture the intricate interplay 

of factors that collectively contribute to Tehran's pervasive 

traffic congestion. The insights derived from this approach 

have the potential to inform efficacious solutions that 

alleviate this persistent problem. 

In general, ARIMA and SARIMA models are effective for 

analyzing periodic and non-stationary traffic data. In the 

future, urban traffic management will become more 

intelligent through AI, IoT, and big data. This study 

demonstrates the use of online traffic data for urban 

planning and infrastructure improvement, and provides a 

model for future research to improve traffic resilience and 

efficiency amidst urban challenges. 

The findings of our analysis suggest that traffic patterns 

on weekdays are highly predictable, and the occurrence of 

accidents and inclement weather can result in increased 

travel times. This information can be used to optimize traffic 

signal timing during peak hours, thereby improving traffic 

flow and reducing delays. 

9. Discussion and Recommendations 

Our research highlights the effectiveness of ARIMA and 

SARIMA models in simulating and forecasting traffic 

patterns in Tehran. By incorporating critical parameters 

such as specific dates/times (holidays and peak hours), 

weather conditions, and accident occurrences, we have 

captured the unique dynamics of traffic congestion. The 

models generated outputs detailing predicted traffic 

volumes, average travel times, and congestion levels, 

revealing that during peak hours, congestion levels 

markedly increase compared to regular periods. 

Furthermore, variations in weather conditions, such as rain, 

indicated a correlation with longer travel times. 

These findings align with previous studies that suggest 

environmental factors and specific temporal elements 

significantly impact traffic flow. For instance, existing 

literature has consistently shown that adverse weather 

conditions correlate with increased travel delays (insert 

reference). Additionally, the effectiveness of time series 

modeling in traffic prediction has been supported by various 

studies, highlighting a robust methodology for addressing 

urban transportation issues (insert references). The 

outcomes of our research emphasize the importance of 

leveraging online traffic data for effective traffic 

management. By utilizing the predictive capabilities of 

ARIMA and SARIMA models, urban planners and traffic 

management authorities can gain insights into congestion 

patterns and make data-driven decisions. For instance, 

recognizing peak hours and their relationship with holiday 

traffic can inform logistical planning and resource 

allocation. 

To address traffic congestion in Tehran, several key 

actions are recommended. First, investing in robust ICT 

infrastructure is crucial for managing large volumes of 

traffic data, enabling real-time monitoring and improved 

analysis. Integrating machine learning techniques can 

enhance traffic forecasting by revealing specific driver 

behavior patterns and improving travel demand 

predictions. Collaboration among stakeholders, including 

the Municipality of Tehran and law enforcement, is essential 

to develop comprehensive traffic management strategies. 

Training local experts in data analysis will build the 

capacity needed to tackle traffic dynamics effectively. 

Prioritizing data privacy and security is vital to maintain 

public trust as traffic data is collected. Lastly, long-term 

research focusing on urban resilience and intelligent 

transportation systems will promote sustainable innovation 

in Tehran's transport planning. By implementing these 

strategies, the city can improve its transportation system's 

resilience and efficiency. 
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