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ABSTRACT:The dispersibility of graphene is modeled as a mathematical function of the molecular
structure of solvent represented by simplified molecular input-line entry systems (SMILES) together
with the graph of atomic orbitals (GAO). The GAO is molecular graph where atomic orbitals e.g. 1s1,
2p4, 3d7 etc., are vertexes of the graph instead of the chemical elements used as the graph vertexes in
the traditionally used molecular graph (hydrogen suppressed molecular graph or hydrogen filled
molecular graph). The optimal descriptors calculated with the Monte Carlo method were used to build
up one variable correlations "descriptor- dispersibility". The CORAL software is used as a tool to
build up the model. Based on the results of calculations the structural features which are promoters of
increase or those which are promoters of decrease of the dispersibility are detected and discussed.
The predictive potential of the used approach is checked up with three random and non identical
splits of available data into the training, calibration, and validation (invisible during building up the
model) sets. The statistics for external validation sets are the following: n=11, r2=0.6379, s=0.392 (split
1);  n=8, r2=0.7308, s=0.378 (split 2); and  n=5, r2=0.7797, s=0.504 (split 3).
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 INTRODUCTION
One of the recent, most spectacular breakthroughs

in nanotechnology are associated with various applica-
tions of graphene.  This is due to its distinctive charac-
teristics - graphene offers a unique combination of elec-
trical, optical, thermal, and mechanical properties
(Yousefinejad and Hemmateenejad, 2014).After being a
subject of numerous studies in scientific laboratories
graphene has been fast transfer to the manufacturing
plants.  In order to fully utilize its potential more basic
information about this unique species are necessary.

Though there is continuous progress in theoretical
studies, many aspects of graphene are still not well un-
derstood. Theoretical works that provide an insight on
interactions in systems "graphene-solvent" are very
rare. Therefore, there is a considerable demand for pre-

diction of influences of solvents for its dispersibility.
Quantitative structure - property relationships (QSPRs)
provide an approach that could used to solve this task
(Afantitis et al., 2011; Furtula  and Gutman , 2011; Furtula
et al., 2013; García  et al., 2011; Garro Martinez  et al.,
2011; Nesmerak et al., 2013; Roy and Paul, 2009;
Toropov and Toropova , 2003). The aim of the present
study is the evaluation of ability of the hybrid optimal
descriptors calculated with simplified molecular input-
line entry system (SMILES) together with graph of
atomic orbitals (GAO) (Toropov and Toropova , 2003)
to provide an efficient tool to build up model of
dispersibility of graphene in various solvents.

MATERIAL & METHODS
The numerical data on dispersibility of graphene

(DG, g/ml)   in different solvents (n=40) is taken from
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the literature (Hernandez et al., 2010). The decimal loga-
rithm logDG is examined as the endpoint. Table 1 con-
tains the molecular structures and the numerical data
on the graphene dispersibility together with SMILES
prepared by ACD/Chemsketh software
(www.acdlabs.com).  Three random different splits of
the experimental data into the visible training and cali-
bration sets and invisible validation set are examined
as the basis for the computational experiments.
Optimal descriptor used in this work is calculated as
the following:

DCW(SMILES, GAO, Threshold, Nepoch) =  CW(Sk) +
 CW(AOj)                                                                    (1)

where Threshold (Toropova et al., 2011) is coefficient
for classification of various molecular features extracted
from SMILES and / or GAO into two classes: (i) active
(in this case correlation weight is involved in the mod-
eling process); and (ii) rare (in this case correlation
weight is not involved in the modeling process); the
Nepoch (Toropova et al., 2011) is the number of ep-
ochs of the Monte Carlo optimization which gives the
best statistical quality for the calibration set; Sk is a
fragment of SMILES notation i.e. one or two symbols
from SMILES (e.g. 'Cl', 'Br', etc.  cannot be examined
separately); and AOj is the vertex degree in GAO
(Toropov and Toropova 2003). Having numerical data
on correlation weights which give the preferable statis-
tics for the calibration set, one can calculate (using the
training set) the model

logDG = C0 + C1*DCW(SMILES, GAO, Threshold,
Nepoch)                                                                            (2)

The predictive potential of the model should be tested
with external validation set which is invisible for build
up the model.

RESULTS & DISCUSSION
The statistical quality of the suggested models is the
following:
Split 1
logDG =   0.4468 (± 0.0102) +    0.0303(± 0.0024) *
DCW(SMILES, GAO, 1,20)                                          (3)
n=21, r2=0.7302, q2=0.5430, s=0.181, F=51 (training set)
n=8, r2=0.8254, s=0.200 (calibration set)
n=11, r2=0.6379, s=0.392 (validation set)
Split 2
logDG =   0.3032(± 0.0147) +    0.0363 (± 0.0022) *
DCW(SMILES, GAO,1,9)                                         (4)
n=25, r2=0.6832 q2=0.5463, s=0.182, F=50 (training set)
n=7, r2=0.8457, s=0.182 (calibration set)
n=8, r2=0.7308, s=0.378 (validation set)
Split 3

logDG =   0.3138 (± 0.0090) +    0.0229 (± 0.0010) *
DCW(SMILES, GAO, 1,15)                (5)
n=28, r2=0.6972 q2=0.6054, s=0.149, F=60 (training set)
n=7, r2=0.8358, s=0.314 (calibration set)
n=5, r2=0.7797, s=0.504 (validation set)

The statistical characteristics of the models for the
grapheme dispersibility in the same solvents calculated
by the multiple linear regression analysis with involv-
ing of topological, geometrical, and quantum chemical
descriptors are the following (Yousefinejad and
Hemmateenejad, 2014): (i) minimal r2=0.47 and maximal
r2=0.913; and (ii)  standard error of estimation: minimum
is equal to 0.172 while the maximum is equal to 0.330.
Thus, one can conclude that the statistical quality of
models calculated  with Eqs. 3-5 is comparable with the
models described in work (Yousefinejad and
Hemmateenejad, 2014).

The current study provides additional important
information. The performed analysis for a group of runs
of the Monte Carlo optimization indicates that there are
stable promoters (Toropovet al., 2011) of logDG in-
crease. The list of promoters includes: (i) presence of
nitrogen; (ii) branching; (iii) presence of rings; (iv) pres-
ence of triple covalent bonds; and (v) presence of ver-
tex degree equal to 9 for 2p3. In addition, we are also
able to identify the promoters of logDG decrease. These
are the following descriptors:  (i) presence of aromatic
systems; (ii) presence of vertex degree equal to 6 for
2p2; and (iii) presence of vertex degree equal to 9 for
2s2. This proofs that the models calculated with Eqs. 3-
5 possess mechanistic interpretations (OECD, 2007).

One also notices that the optimal descriptors cal-
culated with solely SMILES or with solely GAO ap-
proach provide poorer models for the endpoint than
the hybrid technique. This indicates a promising po-
tential of the hybrid descriptor (Toropova  et al., 2012)
as a tool for the QSPR/QSAR analyses.

CONCLUSIONS
A QSPR approach was used for analysis of the

graphene dispersibility. The tested here descriptors
calculated with the CORAL software (http://
www.insilico.eu/coral) are demonstrated as capable
components that can be used as a tool to build up
efficient QSPR for graphene dispersibility. The statisti-
cal quality of developed models is influenced by de-
tails of splits of the experimental data into visible train-
ing and calibration sets, and invisible validation set.  In
addition, the applied approach possesses a mechanis-
tic interpretation.  The developed here models obey to
OECD principles (OECD, 2007).
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Table 1.Structures and SMILES of solvents and the numerical data on the graphene dispersibility

 

ID  Stru ctu re SM ILE S log DG  
1 O

 

O=C 1 C CC C1  
 0. 93   

2 O

 

O=C 1 C CC CC 1  
 

0. 86   

3 

N

O

 

O=C N 1CC CC C 1  
 

0. 86   

4 

N

O

O
 

O=C 1 C CC N1 C=O  
 

0. 74   

5 

N N

O

CH3CH3

 

O=C 1 N(C )CC N 1C  
 

0. 73   

6 

B r 

B rc1ccccc1  
 

0. 71   

7 

N
 

N# C c1ccccc1  
 

0. 68   

8 

N

O

CH3

 

O=C 1 C CC N1 C 
 

0. 67   

9 

O

O  

O=C (O C c1ccccc1 )c2ccccc2  
 

0. 67   

10  

N N

O

CH 3

CH3

CH3  

O=C 1 N(C )CC (C)N 1C  
 

0. 66   

11  

O

O

 

O=C 1 C CC O1  
 

0. 61   

12 

N

CH3

CH3

O

 

CN (C )C =O  
 

0.61  
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13  

N

O

CH 3

 

O =C 1C C C N 1 C C  
 

0 .60   

14  

N

CH 3

CH 3 C H 3

O

 

C N (C )C (C )=O  
 

0 .59   

15  

N

O

 

O =C 2C C C N 2 C 1C C C C C 1  
 

0 .57   

16  

SCH 3

C H 3

O

 

C S (C )= O  
 

0 .57   

17  

O
 

C (O C c 1c c cc c 1 )c 2cc c cc 2  
 

0 .54   

18  C l

C l C l  

C l C (C l)C l  
 

0 .53   

19  C H 3

C H 3

OH

 

C C (C )O  
 

0 .49   

20  C l

 

C l c 1c c cc c 1  
 

0 .46   

21  

CH 3

N

O  

O =C 1C C C N 1 C C C C C C C C  
 

0 .45   

22  
O O

 

C 1 C O C O 1 
 0 .45   

23  

CH 3 O C H 3

O

 

C C (= O )O C C  
 

0 .41   

24  N

 

c 1 c cc c 2c c cn c 12  
 

0 .41   

25  O

 

O =C c 1cc c cc 1  
 

0 .40   
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26 

OH

NH 2

 

N CCO 
 0. 40   

27 

O

C H 3

O C H 3

O

O  

O =C(OCC)c1ccccc1C(= O)OCC  
 

0. 34   

28 

CH 3

N

O
 

O =C1CCCN1CCCCCCCCCCCC 
 

0. 32   

29 
N

 

c1ccccn1 
 

0 .3   

30 
O

CH 3

O
CH 3

O

O

 

CO C(=O)c1ccccc1C(= O)OC  
 

0. 26   

31 

NH 2 O  

N C=O  
 0. 23   

32 
OH C H3 

CCO  
 0. 20   

33 CH2

O

CH3

O

 

CC(= O)OC= C 
 

0. 18   

34 

CH 3

C H 3

O  

CC(C)= O 
 

0. 08   

35 OH2  
O  
 0. 04   

36 

OH

OH

 

O CCO 
 0. 00   

37 CH 3

 

Cc1ccccc1 
 

-0 .10  

38 

CH 3 CH3
 

CCCCCCC 
 -0 .52  

39 

CH 3

C H3

 

CCCCCC 
 

-0 .70  

40 

CH 3 C H3 

CCCCC 
 -0 .80  
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