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Abstract  

 

This paper introduces a defender-attacker-defender model grounded in game theory to determine optimal strategies 

for protecting urban rail systems against deliberate attacks on Metro stations. The model integrates four key players 

in a quad-level framework: the system manager, who allocates limited security resources; the attacker, who targets 

the most vulnerable station to maximize disruption; the system operator, who implements strategies to mitigate the 

impact of attacks; and the public transit passengers, whose travel behavior influences the overall network performance. 

The study explores four scenarios based on varying levels of protection (full or partial) and operator intelligence 

(intelligent or non-intelligent). Each scenario is analyzed using a tailored algorithm and applied to the public transit 

network of Shiraz, Iran, as a case study. The findings reveal that an intelligent operator, capable of anticipating the 

attacker’s moves, significantly mitigates the attack's impact. Furthermore, distributing the security budget across all 

stations rather than focusing on a select few provides superior protection. This model offers a robust framework for 

developing effective defense strategies against intentional attacks on urban rail infrastructure. 

 

 

Keywords: Metro system security; Game theory; Semi-flexible bus system; Bus bridging; Network 
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1. Introduction 

The rail transportation system serves as the primary mode of transportation for passenger 

movement. The occurrence of an unforeseen disturbance within this system can yield significant  

consequences for the transportation network, including increased travel costs, decreased passenger 

satisfaction, and weakened trust in the system (Khademi et al., 2021). These repercussions have 

the potential to extend to subordinate transportation systems and permeate the entirety of the 

transportation network, providing the rationale behind prioritizing rail systems as a higher target 

for intelligent attackers compared to other systems. Hence, spotting and safeguarding this critical 

infrastructure holds significant importance and has strategic implications for nations. 

The United States government safeguards critical transportation infrastructure through the 

“Transportation Systems Sector-Specific Plan”. Developed under the National Infrastructure 

Protection Plan framework, this plan identifies major threats such as terrorism, cyber-attacks, and 

information piracy, aiming to protect the sector from such risks (CISA, 2015). Similarly, the 

European Union (EU) has long been engaged in safeguarding essential infrastructure, including 

railways, from potential terrorist activities and cyber-attacks. This effort began with initiatives like 

the 2008 European Critical Infrastructure Directive and has evolved into the 2022 CER Directive 

“on the resilience of critical entities,” which emphasizes enhancing the resilience of critical 

infrastructure across EU member states (Pursiainen & Kytömaa, 2023). 

Threats to transportation infrastructure are generally classified into two categories: (1) 

unintentional threats caused by human errors or natural disasters, and (2) intentional threats caused 

by terrorist attacks or aggressive interventions, often executed intelligently to maximize damage 

and disrupt system efficiency (Khademi et al., 2018). Railway systems are more susceptible to 

damage than other transportation systems due to their open nature, the absence of robust security 

measures comparable to those in airports, and the large number of users they accommodate 

(Strandh, 2017). In addition to strategies for preventing threats or improving resilience, it is crucial 

to develop methods for mitigating the damage caused by intelligent terrorist attacks (Bababeik et 

al., 2018). Incidents such as the Madrid train bombings in 2004, the London subway attacks in 

2005, and the St. Petersburg subway assaults in 2017 illustrate strategic acts of terrorism targeting 

rail transportation infrastructure with the intent to inflict destruction and disruption (Strandh, 

2017). 

On June 7, 2017, a terrorist attack by ISIS targeted the administrative building of the 

parliament and the "Baharestan" Metro station in Tehran (see Figure 1), causing significant 

disruption. The absence of preventative measures led to the station's closure for 12 hours, affecting 

approximately 30,000 passengers and causing secondary repercussions on the entire Metro 

network and the overall transportation system of Tehran. 
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Figure 1. Tehran Metro network and the location of Baharestan station 

 

Protecting critical infrastructure from intentional and intelligent assaults presents unique 

challenges compared to safeguarding against unintentional attacks. Traditional methodologies 

such as risk analysis and reliability may not suffice for effectively predicting the dangers 

associated with intelligent attacks, as these methods assume constant threat levels. In contrast, 

intelligent attackers adapt and modify in response to defensive measures (Li et al., 2019). 

Therefore, adopting a more effective approach, such as game theory, is imperative for accurately 

modeling the actions of an intelligent attacker accurately (Brown et al., 2006). 

The utilization of defender-attacker-defender models, which fall under the category of 

optimization problems rooted in game theory, offers the potential to yield a near-optimal defense 

plan (Alderson et al., 2011). Researchers have solved the tri-level problem of allocating defense 

resources to implement optimal protection tactics against intelligent attackers (Alderson et al., 

2011; Brown et al., 2006; Sarhadi et al., 2014). However, no studies have yet explored optimal 

defense mechanisms for safeguarding passenger rail transportation system components. Most 

previous research assumes that safeguarding system components renders them resistant to attacks, 

but this assumption neglects the ability of public transit system operators to predict intelligent 

attacks and engage in an interactive game with the attacker. 

To address these challenges, this study introduces a quad-level defender-attacker-defender 

model tailored for public transportation systems, specifically passenger rail networks. Building on 

previous tri-level defense models applied to private transportation systems, our approach integrates 

not only the attacker and system manager but also public transit operators and passengers. This 

inclusion enables the modeling of dynamic operator responses, such as bus rerouting and fleet 
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adjustments, which are critical in mitigating the impacts of disruptions. Furthermore, the study 

pioneers the concept of partial protection, where the defense budget is distributed across stations, 

reflecting realistic constraints and enhancing strategic flexibility. By employing game theory, the 

model effectively captures the adversarial interactions between intelligent attackers and defenders, 

offering innovative insights into optimizing protection strategies for public transit systems. 

This article aims to develop a model that identifies vulnerable metro stations in a passenger 

rail transportation system to mitigate the risks associated with intelligent threats, such as terrorist 

attacks. By incorporating the travel time index as a metric for assessing the susceptibility of the 

public transit system, the model facilitates the efficient allocation of the protection resources. 

Optimizing travel time can contribute to multiple objectives, including enhancing safety, fostering 

economic growth, and improving infrastructure utilization (Afandizadeh et al., 2024). This 

strategic allocation seeks to reduce the likelihood of attacks on critical stations and minimize the 

impact of any potential disruptions. A quad-level model grounded in defender-attacker-defender 

game theory is employed to achieve this objective. 

While current public transportation defense models often assume that no higher-level agent 

can anticipate lower-level agents' actions, our study highlights the need for models that account 

for intelligent attackers capable of adapting their strategies. By incorporating partial protection 

strategies and varying levels of agent intelligence, our approach not only addresses these gaps but 

also provides innovative and practical solutions for enhancing the security of public transportation 

systems. 

2. Background 

The safety and resilience of metro networks are critical issues in urban transportation research. 

Studies have used various methods and theories to assess vulnerabilities to disruptions. Zhu et al. 

(2018) showed that targeted attacks on nodes with high betweenness centrality can severely impact 

metro network functionality. Their findings emphasized the importance of implementing 

protection strategies focused on loop lines and transfer stations to improve network robustness. 

Similarly, Xu et al. (2019)  developed a new analytical framework to assess the vulnerability of 

subway networks. Their findings revealed that although these networks are highly resistant to 

random failures, they are particularly vulnerable to intentional attacks on key hub stations. 

Wang et al. (2017) expanded the understanding of metro network robustness by conducting a 

global analysis of 33 metro systems. They revealed that resilience is not solely determined by 

network topology but also by the strategic placement of transfer stations and the provision of 

alternative routes. These findings underscore the importance of planning for redundancy in 

transportation networks to mitigate potential disruptions. 

Building on these studies, Xu and Chopra (2023) investigated the impact of 

interconnectedness on the resilience of multimodal public transportation systems. They found that 

integrating bus and metro networks through inter-layer coupling enhances overall system 
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robustness by reducing topological vulnerabilities and increasing attack tolerance. This integration 

is particularly advantageous in geographically constrained urban environments, such as mountain 

cities, where it fosters a safe-to-fail system design. Ma et al. (2020) further advanced this 

perspective by developing a robust model for a dual-layer Bus-Subway network. Their findings 

indicated that resilience can be significantly improved by increasing station capacities and 

addressing cascading failure mechanisms, providing actionable insights for designing more robust 

multi-modal transportation systems. 

Implementing integrated planning for rail and bus transportation systems significantly 

enhances the efficiency and adaptability of public transit systems, thereby promoting urban 

sustainability (Yang & Liang, 2023). Bus systems, designed to operate within a city's street 

network, offer a flexible transportation option that is not restricted to fixed routes, unlike rail 

systems. This flexibility allows buses to serve as viable alternatives to rail systems during 

emergencies by navigating safe, alternative routes. Strategies such as the semi-flexible bus system 

and bus bridging system can mitigate disruptions in the rail network. 

2.1. Semi-flexible Bus System 

Semi-flexible transportation systems combine traditional and on-demand system attributes, 

typically involving predetermined routes and timetables while allowing some level of flexibility 

(Yoon et al., 2022). According to Errico et al. (2013), these systems can be classified based on 

their structure. This study focuses on the route deviation method, where vehicles operate along a 

predetermined route and timetable but are able to detour temporarily to accommodate passenger 

pickups or drop-offs before resuming their original route. This system is particularly effective in 

managing increased travel demand during rail system crises, such as terrorist attacks. 

Mehran et al. (2020) provides analytical models to compare the operational costs of regular 

bus and semi-flexible transit systems, emphasizing the importance of demand type and usage area. 

Vansteenwegen et al. (2022) examined the effectiveness of a demand-responsive semi-flexible 

feeder bus system in scenarios where deviations occur at one or two stations. Mishra and Mehran 

(2023) explored optimizing service headway and slack time for route deviation, providing insights 

into operational costs, user costs, and service benefits. Their research assessed the impacts of 

factors such as vehicle capacity, demand levels, route deviation limits, and weather conditions on 

system efficiency and cost-effectiveness. 

This study investigates the role of semi-flexible bus transportation systems in managing 

passenger demand during rail transportation crises, focusing on criteria for establishing new bus 

stops near disrupted Metro stations to transition remaining rail system passengers to the existing 

urban bus network. 

2.2. Bus bridging 

Bus bridging is frequently employed to accommodate rail network passengers during planned 

or unforeseen interruptions. This approach involves establishing temporary bus services to connect 
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affected Metro stations with nearby stations in the public transit network. Unlike the semi-flexible 

bus system, bus bridging primarily serves as a temporary measure designed to address rail 

transportation infrastructure impairments during maintenance and repairs. 

Numerous studies have explored restoring interrupted rail systems through bus bridging. 

Currie and Muir (2017) concluded that bus bridging could efficiently meet demand during 

disruptions when other forms of urban transportation are insufficient. Jingfeng et al. (2017) 

introduced passenger flow management and bus bridging strategies to mitigate subway 

overcrowding. Zhang et al. (2024) proposed an optimized bus bridging route design that considers 

the number of stations and available resources. Yang et al. (2018) assessed the impact of bus 

bridging lines during rail disruptions. Liang et al. (2019) developed a robust, flexible bus bridging 

system to mitigate rail transportation network disruptions. Aboudina et al. (2021) proposed a 

detailed methodology for deploying shuttle bus services during metro disruptions, emphasizing 

maximizing the efficiency of shuttle service. 

This study evaluates the effectiveness of bus bridging in assisting passengers stranded at 

disrupted Metro stations, establishes temporary bus routes to connect these stations to nearby 

public transit stations, and addresses the regulation of bus frequency to ensure a consistent 

schedule. 

2.3. Tri-level programing model 

Game theory has been extensively developed in transportation studies to predict network 

damage from attacks and formulate reactive and proactive strategies. This methodology employs 

either two-level (defender-attacker) models or tri-level (defender-attacker-defender) optimization 

models to identify system vulnerabilities or strategize optimal safeguarding. The existing two-

level attacker-defender model, commonly referred to as the "interdiction model," has been 

modified to incorporate a tri-level defender-attacker-defender model for determining the optimal 

defense strategy (Brown et al., 2006). 

2.3.1. Defender-attacker-defender models 

The defender-attacker-defender model is a tri-level optimization problem that aims to identify 

the most critical assets within a transportation system. By considering a restricted defense budget, 

this model can provide a near-optimal defensive strategy. The two-level attacker-defender model 

is theoretically embedded in the tri-level defense design model of defender-attacker-defender 

(Yamany et al., 2020). In this tri-level problem, the attacker's potential benefits are minimized by 

the high-level defender adopting optimal defense strategies. 

In a road transportation system, private car users are low-level defenders, adjusting their travel 

strategy to reduce incurred costs when an attack disrupts the system. In public transit systems, 

system operators are low-level defenders who can implement short-term changes to the network's 

structure to devise the most effective countermeasures against assaults and mitigate system 

damage. Finally, the high-level defender is the system manager or owner, who assesses the actions 
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of the attacker and the low-level defender and implements the most effective defensive tactics 

within budgetary constraints to minimize the costs resulting from potential attacks. 

Numerous studies have investigated the application of tri-level models grounded in game 

theory to develop optimal defense mechanisms against intentional attacks. Brown et al. (2008) 

proposed a tri-level model to identify the optimal defense strategy for safeguarding important 

national organizations against attacks, considering financial limitations. Sarhadi et al. (2014) 

introduced a tri-level game framework involving a network manager, an attacker, and a network 

operator to assess the vulnerability of specific rail-truck intermodal terminals to terrorist threats. 

Yang et al. (2018) proposed a three-player game including the urban rail transport network 

manager, the attacker, and the operator to address safeguarding the connectivity of the rail system 

with the public transit network. Chen et al. (2018) applied game theory to examine how players' 

behavior affects decision-making in strategic investment scenarios. 

2.4. Research gap and contribution 

Tri-level defender-attacker-defender models based on game theory are recognized for their 

ability to yield near-optimal defense strategies and have predominantly been applied to private 

transportation networks. Researchers like Brown et al. (2008), Alderson et al. (2011), and Zhang 

et al. (2018) have explored tri-level resource allocation to determine the best defensive strategies 

against intelligent attacks on these networks. Similar tri-level defense models have been applied 

to cargo transport systems, such as the work by Sarhadi et al. (2014) on rail intermodal terminal 

networks and Chen et al. (2018) on container transportation networks, to counter unforeseen 

attacks and identify optimal defensive strategies. However, in contrast to private transportation 

systems, public networks allow the operator at the lowest level to implement temporary coping 

strategies that improve the functionality of the disrupted network . 

To the best of our knowledge, no existing studies have addressed the optimal defense design 

for public transportation systems with a focus on passengers. Our study introduces a game-theory-

based defense model specifically designed to protect passenger rail systems and mitigate the 

effects of disruptions caused by intelligent attacks to Metro stations. Game theory was chosen for 

its ability to model strategic interactions between rational entities (Khalid et al., 2023), which is 

central to this study’s objective of analyzing intentional attacks on urban rail systems. Unlike risk 

assessment frameworks (Akinrolabu et al., 2019) or simulation modeling (Bešinović, 2020), game 

theory explicitly captures the dynamic interplay between attackers and defenders, enabling the 

design of optimal strategies under varying scenarios. Additionally, while graph theory (Pirbhulal 

et al., 2021) and machine learning (Talpur & Gurusamy, 2022) are valuable for other contexts, 

they lack the capacity to address the adversarial and decision-based nature of this problem. In our 

proposed model, the network operator at the lowest level solves a bi-level bus frequency setting 

problem, effectively transforming the problem into a quad-level game theory model. This model 

includes not only the system manager and the attacker but also the users and operators. It employs 

a congested transit assignment model as the lower-level problem within the frequency setting 

model, distinguishing it from the uncongested assignment models commonly found in existing 



 

8 
 

literature. Moreover, we address the proposed defense model with varying levels of agent 

intelligence, including their ability to anticipate the behavior of higher-level actors before taking 

action. 

The proposed approach also provides the operator with practical improvement strategies for 

the public transport network following the deactivation of a station. The operator is empowered to 

adjust the bus network, whether through fleet relocation or route deviation, to minimize the 

impacts of disruption. While few previous studies have mathematically examined bus bridging or 

semi-flexible bus systems— which are often described only qualitatively—our model incorporates 

these strategies directly into the operator's problem, enabling precise network adjustments in 

response to an attack . 

The ultimate objective of optimal defense models in transportation systems is to identify and 

prioritize system components vulnerable potential threats and determine optimal budget allocation 

for their protection. Previous studies on defense models typically assumed that any protected 

component would be immune to attacks if the system manager employed protective strategies, a 

concept referred to as "full protection". Our study introduces the concept of "partial protection," 

where the level of protection—and consequently, the probability of a successful attack—is directly 

proportional to the budget allocated to a Metro station. This approach offers a wider range of 

defensive strategies and transforms the leader-follower game between the system manager and the 

attacker into a non-cooperative zero-sum game, potentially resulting in more effective protection 

outcomes. 

3. Methodology 

Consider a hypothetical small public transit system depicted in Figure 2(a). This system 

consists of a one-directional street with 5 nodes and 4 links, allowing mobility exclusively by 

walking or utilizing bus and subway transit. There is a bus route at ground level that includes stops 

at nodes 1, 2, 4, and 5. Additionally, there is an underground Metro line running beneath this street, 

which has three stations that emerge at street level at nodes 1, 3, and 5. Because the bus, Metro, 

and street routes overlap, as is common in real-world scenarios, the transit routes are expanded by 

incorporating route and station data from subway and bus lines, so that the transit system is 

represented as an equivalent graph called a “transit network” (Spiess & Florian, 1989). The transit 

network corresponding to the aforementioned small transit system is shown in Figure 2(b). This 

representation depicts all potential movements a passenger may have within the transit system 

illustrated in Figure 2(a), including walking, boarding, in-vehicle, and alighting movements. 
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Figure 2. (a) A hypothetical public transit system; (b) The public transit network for this hypothetical system; (c) The 

operator's strategy to modify the transit network by creating a new bus stop; and (d) The operator's strategy to modify 

the transit network by creating a new bus line 

 

As mentioned above, in the proposed model of this research, three players —the system 

manager, the attacker, and the operator— engage in a three-person game. Assuming that the Metro 

station s3, as shown in Figure 2(b), is targeted by an attacker, this station should be eliminated 

from the transit network to prevent passengers from disembarking there. The low-level defender 

(operator) can effectively respond to the attack and mitigate the increase in travel time resulting 

from the attack by removing the station s3 from the Metro network. This disruption can be 

compensated for by utilizing the potential of the existing bus network and implementing an optimal 

coping strategy. Figures 2(c) and 2(d) depict two examples of strategies that the operator can 

employ to enhance the damaged network. The first strategy, as depicted in Figure 2(c), involves 

establishing a new bus station at node 3 to cater to the remaining subway passengers at this station. 

The second approach, illustrated in Figure 2(d), involves establishing a bus bridge between nodes 

3 and 5. This enables the passengers from Metro station s3 to utilize this new line to reach their 

destination. 

3.1. Formulation of the quad-level game 

3.1.1. Passengers and operator 
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The operator is at the lowest level of the game (the third level). Using the existing bus system, 

the operator can improve the total travel time of the public transit system (including the rail and 

bus network) in the event of an attack that results in the destruction of a Metro station. The 

operator’s coping strategies against terrorist attacks on Metro stations are classified into three 

categories: 

1. Redistributing the existing bus fleet between lines and resetting the frequency of existing 

bus lines without changing the number of lines or their routes. 

2. Adding a new bus line to the network connecting the nearest bus station to the attacked 

Metro station, or creating a new bus line linking the attacked Metro station and other Metro 

stations, and accordingly resetting the frequency of the bus lines. 

3. Altering the route of one of the existing bus lines towards the target Metro station to cover 

the passengers from that station and then rescheduling the bus lines. 

The operator solves the problem of adjusting bus line frequencies for any given state of the 

public transit system by using an improved version of the method developed by Constantin and 

Florian (1995). The mathematical model of the operator’s (OP) problem is as follows: 

𝑂𝑃

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝐹𝑆(𝑥, 𝑤)

{
  
 

  
 min

𝐹
 𝑇𝐶 =∑ℎ𝑎. 𝑡𝑎(𝑥𝑎) . 𝑥𝑎

𝑎∈𝐴

   +∑𝑤𝑝  

𝑝∈𝑃

s. t.                                                                          

∑𝐹𝑙 . 𝑇𝑙(𝑥) ≤ 𝑁𝑏 

𝑙∈𝐿

                      

 𝐹  ≤ 𝐹𝑙 ≤ 𝐹       ∀ 𝑙 ∈ 𝐿             

  

      𝑇𝐴(𝐹)

{
 
 
 
 

 
 
 
 min 

𝑥,𝑤
𝑍 =

 

 ∑∫ ℎ𝑎 . 𝑡𝑎(𝑢) 𝑑𝑢
𝑥𝑎

0𝑎∈𝐴

  +  ∑𝑤𝑝
𝑝∈𝑃

 

  s. t.                                                                       

                     ∑ 𝑥𝑎
𝑎∈𝐴𝑛

+

− ∑ 𝑥𝑎
𝑎∈𝐴𝑛

−

= 𝑑𝑝       ∀ 𝑛 ∈ 𝑁

                      
𝑥𝑎  ≤ 𝐹𝑎 . 𝑤𝑝     ∀ 𝑎 ∈ 𝐴 , 𝑝 ∈ 𝑃         

𝑥𝑎  ≥ 0              ∀ 𝑎 ∈ 𝐴                     
  

      

 

(1) 

The problem 𝑂𝑃 is a bi-level programming model where the upper-level problem 𝐹𝑆 is the 

frequency setting (FS) problem which aims to determine the frequency vector 𝐹 = (𝐹𝑙) by 

minimizing the total travel time (TC) of the passengers (sum of the passengers’ travel times on 

links and waiting times at stations), considering that the passenger flows 𝑥𝑎 and the waiting times 

𝑤𝑝 are the solution of the lower-level transit assignment (TA) problem 𝑇𝐴 for any given 𝐹. The 

first constraint of the problem 𝐹𝑆 applies the limitation of the existing bus fleet, and the second 

constraint specifies the upper and lower limits for the bus line frequencies. All mathematical 

notations used in the model above and the subsequent relationships are provided in Appendix 1. 
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Constantin and Florian (1995) used the TA model by Spiess and Florian (1989) as the lower-

level problem of their FS model. This represents an uncongested model where the travel times 

𝑡𝑎(𝑥𝑎) are fixed values, so the capacity of the bus line is not considered. In contrast, the proposed 

model 𝑂𝑃 is a congested model, where 𝑡𝑎(𝑥𝑎) being a function of 𝑥𝑎. This allows passenger flows 

to be restricted below the line capacities by imposing the following penalty function to the travel 

times 𝑡𝑎(𝑥𝑎) of in-vehicle links using the following penalty function: 

𝜏𝑎(𝑥𝑎)

{
 
 

 
 

𝜌

1 −
𝑥𝑎
𝑐𝑎

        𝑖𝑓 
𝑥𝑎
𝑐𝑎
< 1 − 𝜌

𝛼
𝑥𝑎
𝑐𝑎
− 𝛽      𝑖𝑓 

𝑥𝑎
𝑐𝑎
> 1 − 𝜌

 (2) 

where 𝑐𝑎 is the capacity of link 𝑎, 𝜌 is a small parameter, and 𝛼 and 𝛽 are positive values selected 

to ensure the penalty function ( )a ax  becomes continuously differentiable (we use 𝜌 = 0.005, 

𝛼 = 200, and 𝛽 = 198). It can be easily seen that 𝜏𝑎 increases slowly when 
𝑥𝑎

𝑐𝑎
 approaches 0.995 

and then abruptly increases. Due to this function, the line travel times 𝑇𝑙 (i.e., the sum of in-vehicle 

travel times of each line 𝑙 ∈ 𝐿) are also functions of link flow vector 𝑥 = (𝑥𝑎). 

It is worth mentioning that the problem 𝑂𝑃 can be solved considering both the attacker’s and 

the operator’s strategies. The transit network can be adjusted for any attack by removing boarding 

and alighting links at the target station. To do this, while keeping the problem’s general form, a 

binary parameter ℎ = (ℎ𝑎) has been added to the frequency setting model 𝐹𝑆 to allow for changes 

in the disrupted transit network structure at each stage of the attacker and operator's game. After 

the attacker selects the target Metro station, ℎ𝑎 = 𝐵𝑁 (𝐵𝑁 is a large number) is set for the boarding 

and alighting links connected to that station, and ℎ𝑎 = 1 for other links in the transit network. 

Consequently, the travel times for the boarding and alighting links at the disrupted station become 

very large, making the flow on these two links zero in the final solution of the 𝑂𝑃 problem. Any 

strategy 𝑗 of the attacker is distinguished with a specific vector ℎ𝑗 = (ℎ𝑎𝑗). To cope with this 

attack, the notation  ℎ𝑎 in both 𝐹𝑆 and 𝑇𝐴 models should be replaced with ℎ𝑎𝑗 . Additionally, each 

coping strategy  of the operator, such as adding a bus line or a bus station, is applied by using the 

corresponding bus set 𝐿𝑘 and station set 𝑃𝑘 instead of the sets 𝐿 and 𝑃 within the models. 

The mathematical model of the operator's problem is in the following form 

𝐸𝑇𝑗 = min
𝑘∈𝐾𝑗

{𝐸𝑇𝑗,𝑘}   (3) 

where 

𝐸𝑇𝑗,𝑘 = 𝑇𝐶𝑗,𝑘 − 𝑇𝐶0 (4) 

𝐸𝑇𝑗,𝑘 is the attacker’s gain (i.e., the increase in passenger travel time) from attack 𝑗, considering 

the operator's coping strategy 𝑘 ∈ 𝐾𝑗 that aims to mitigate the negative effect of the attack; 𝑇𝐶𝑗,𝑘 is 
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the objective function value of the 𝐹𝑆 problem with ℎ = ℎ𝑗 , 𝐿 = 𝐿𝑘   and  𝑃 = 𝑃𝑘; 𝑇𝐶0 is the 

objective function value of the same problem for the system in its normal (not attacked) state. 

𝐸𝑇𝑗  represents the minimized expected travel time increase, indicating the effectiveness of the 

operator’s strategy in minimizing the attacker’s gain. 

In this article, we consider two perspectives on the operator's performance in mitigating the 

impact of Metro station destruction and responding to threats from the attacker. In the first 

perspective, the operator lacks information on the attacker's intentions and can only devise a 

defensive plan after the target station is attacked and destroyed. In the second perspective, the 

operator demonstrates intelligent behavior by skillfully managing the attacker's choices and 

accurately anticipating the attacker's actions before the attack. In both approaches, the operator 

solves the 𝑂𝑃 problem. However, the key difference is that in the first approach, the interaction 

between the attacker and the operator is modeled as a leader-follower game, while in the second 

approach, the operator engages in a non-cooperative, two-player game with the attacker. In Section 

3.2, scenarios based on whether the operator is intelligent or not are defined, and the solution 

methods for the defense design problem at each stage of the game between the operator and the 

attacker are explained. 

An iterative method is used to solve the 𝑂𝑃 problem. Starting from an initial feasible 𝐹, the 

𝑇𝐴 model is solved for 𝑥 and 𝑤. Then, with these variables fixed, the FS problem is solved to find 

a new 𝐹. This process continues sequentially until a convergence condition is met. 

3.1.2. Attacker 

The attacker plays in the middle level  (second level) of the game and possesses the ability to 

increase the travel time of the public transit system as much as possible by making smart attacks 

on a Metro station. It is important to highlight that the attacked line became completely inoperative 

in cases where an attacker deliberately damaged a section of the line through acts of sabotage, such 

as detonating a bomb inside a train carriage or near the rails. However, based on available evidence, 

stations are frequently the focus of terrorist attacks. Therefore, this article assumes that the 

attacker's objective is to maximize the overall travel time in the public transit system by targeting 

the most crucial Metro station in the rail system and making it inoperable. In this scenario, 

passengers are unable to use the target station to access the Metro line; however, the line remains 

operational, and the fleet continues to travel along the predetermined route without stopping at that 

station. 

The mathematical model of the attacker's problem is in the following form 

𝐸𝑇𝑖 = max
𝑗∈𝑀−𝑀𝑖

{𝐸𝑇𝑗} = max
𝑗∈𝑀−𝑀𝑖

min
𝑘∈𝐾𝑗

{𝐸𝑇𝑗,𝑘} (5) 

where 𝑀 ⊂ 𝑃 is the set of Metro stations, 𝑀𝑖 ⊂ 𝑀 is the set of Metro stations protected by the 

system manager’s defense strategy 𝑖; and 𝐾𝑗 is the set of operator's coping strategies (such as 

adding a bus line or station, adjusting bus line frequencies, and rescheduling bus routes) in 
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response to the attack on station 𝑗 ∈ 𝑀𝑖. 𝐸𝑇
𝑖  represents the maximum gain the attacker can achieve 

(i.e., the increase in passenger travel time) after accounting for the operator's optimal coping 

strategies across all unprotected stations. 

During each phase of the game, the system manager determined the defense strategy 𝑖 ∈ 𝐼 to 

enhance the protection level of the Metro stations within the allocated budget, where 𝐼 is the set of 

all feasible strategies of the system manager (i.e., all subsets of Metro station set 𝑀). Subsequently, 

the attacker selected a strategy 𝑗 ∈ 𝑀 −𝑀𝑖 to target the Metro stations, aiming to cause the largest 

possible increase in travel time for the public transit system. In the same way, the operator follows 

a coping strategy 𝑘 ∈ 𝐾𝑗 to mitigate the negative effect of the attack by the attacker.  

3.1.3. Manager 

The system manager, positioned at the highest level of the game (the first level), strategically 

selected crucial Metro stations to enhance the level of protection within the constraints of the 

budget limit. The objective was to minimize the cost to the system in the event of a targeted attack 

on a Metro station. In general, it was presumed that the system manager possessed a high level of 

intelligence and could accurately anticipate the actions and choices of both the operator and the 

attacker. Consequently, the game between the system manager and the other players was always 

structured as a leader-follower game.  

The mathematical model of the manager's problem is as 

𝐸𝑇 = min
𝑖∈𝐼
{𝐸𝑇𝑖} = min

𝑖∈𝐼
max

𝑗∈𝑀−𝑀𝑖

{𝐸𝑇𝑗} = min
𝑖∈𝐼

max
𝑗∈𝑀−𝑀𝑖

min
𝑘∈𝐾𝑗

{𝐸𝑇𝑗,𝑘} (6) 

𝐸𝑇 represents the minimum gain for the attacker (i.e., the smallest increase in passenger travel 

time) under the system manager's best protective strategy against the attacker's worst-case strategy 

of targeting one of the unprotected stations. All other notations remain as previously defined. 

According to Eq. 6, during each phase of the game, the system manager selects one or more 

stations to protect from terrorist attacks, taking into account the available budget. By analyzing the 

behavior of the operator and the attacker and predicting the increase in system travel time under 

each protective scenario, the manager seeks to minimize the maximum travel time imposed on the 

public transit system, thereby achieving the most optimal outcome. 

This research assumes that the system manager can implement protective measures in two 

distinct ways: 

− Full protection: In this scenario, the system manager allocates the existing budget to 

various crucial stations to eliminate the possibility of attacks on those stations. As a result, 

the attacker can only target vulnerable stations and cause damage to them. The main goal 

of the system manager is to identify the most critical stations within the railway network 

in in case of sabotage attacks and implement comprehensive measures to safeguard them, 

thereby minimizing the extent of disruption caused by such attacks. 
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− Partial protection: In this approach, the system manager allocates the budget across all 

stations to enhance their protection levels and minimize the potential impact of an attack 

on the rail network by reducing the likelihood of its success. In this case, the attacker can 

target any of the Metro stations, but the probability of a successful attack on each station 

depends on the amount spent on its protection. The system manager's main objective is to 

determine the most effective level of protection for each station and to optimally distribute 

the budget to achieve this goal. 

Finally, the quad-level game in this article is created with the following assumptions: 

− The system manager has a limited budget to protect Metro stations from terrorist attacks. 

Allocating this budget reduces the probability of an attack on the stations. 

− The attacker targets only one Metro station, aiming to disrupt its entire operation upon a 

successful attack. 

− If a Metro station is attacked, passengers will be unable to board or alight at that station. 

− In addition to the rail transportation system, there is a bus transportation system that can 

serve as an alternative in the event of an attack or damage to the rail network. This system 

can efficiently transport displaced passengers ensuring the uninterrupted operation of the 

public transit network. 

− The operating costs of the operator's protection strategies and the bus fleet capacity 

limitation are excluded. 

− The number of buses in the network is constant. Consequently, it is not possible to increase 

the number of buses in the public transit system during the disruption, and the operator can 

only relocate the fleet among existing or newly established lines. 

3.2. Suggested scenarios and solution algorithms 

In Section 3.1, the problem of determining the optimal defense strategy against terrorist 

attacks on Metro stations is introduced as a complex four-player game involving the system 

manager, the attacker, the operator, and the transit passengers. The game is structured as a 

hierarchical, multi-level optimization model, where the system manager serves as the ultimate 

decision-maker. At the subsequent levels, the attacker and the operator are engaged in a 

competitive interaction: the attacker aims to disrupt the public transit system by increasing 

passenger travel time, while the operator aims to counteract these disruptions by minimizing 

network delays, taking into account the behavior of the passengers. The effectiveness of the system 

manager's protection strategy is crucial in shaping the outcomes of this dynamic interaction. 

This paper examines four distinct scenarios within the defender-attacker-defender framework, 

considering two modes of protection employed by the system manager and two intelligence levels 

for the operator's responses (refer to Table 1). These scenarios provide a comprehensive analysis 



 

15 
 

of the strategic interactions between the players and underscore the importance of adaptive defense 

strategies in the face of intelligent adversaries. 

In scenarios 1 and 2, the allocation of protection budget to Metro stations is carried out in a 

manner that ensures complete protection, effectively making it impossible for an attack to be 

attempted on those stations. Consequently, the likelihood of an assailant attacking the protected 

stations is considered to be zero (full protection). However, in scenarios 3 and 4, the likelihood of 

attacking Metro stations is influenced by the amount of budget allocated to their protection (partial 

protection). As a result, it remains possible to target stations that are protected, except for those 

that have received sufficient budget to achieve full protection. 

In scenarios 1 and 3, it is assumed that the operator cannot anticipate the attacker's actions 

before the assault (unintelligent operator). This implies that the attacker can predict the operator's 

coping strategy. However, in scenarios 2 and 4, it is assumed that the operator can anticipate the 

attacker's behavior before the attack (intelligent operator). In these scenarios, while the attacker is 

aware of the operator's strategies to counter the attack on each station, they cannot predict with 

certainty the operator's specific countermeasures at the time of the attack. 

 

Table 1 

Defense scenarios based on player behave in the defender-attacker-defender game 

Scenario Protection type 

Players 

Operator Attacker Manager 

Intelligence against 

1 Full protection - Operator Operator and Attacker 

2 Full protection Attacker Operator Operator and Attacker 

3 Partial protection - Operator Operator and Attacker 

4 Partial protection Attacker Operator Operator and Attacker 

 

3.2.1. Scenario 1: Full protection with unintelligent operator 

In this scenario, the quad-level problem is structured as two leader-follower games: one 

between the system manager and the attacker, and the other between the attacker and the operator. 

The system manager is fully aware of both the attacker’s and the operator’s behaviors, while the 

attacker understands the operator’s actions. Initially, the manager selects combinations of Metro 

stations for full protection within the constraints of the budget and evaluates the potential reactions 

of both the attacker and the operator. The attacker, aware of the operator’s limitations, then targets 

the most vulnerable stations based on the manager’s defense strategies and anticipates the 

operator’s response. The operator, unable to foresee the attacker’s plans, reacts post-attack by 

evaluating available tactics and selecting the most effective strategy for each attacked station. 

Through iterative analysis, the manager identifies the stations most at risk and prioritizes them for 

full protection. 

At the lowest level, the operator evaluates the impact on travel time in the public transit 

network by solving the OP problem using Eq. 4, considering the destruction of Metro station j and 
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the implementation of the chosen strategy. Eq. 3 calculates the minimum possible increase in travel 

time after the destruction of Metro station 𝑗 and the application of the operator's optimal strategy. 

For each protection scenario 𝑖, the manager aims to achieve the minimum increase in travel time 

across the network by fully protecting a selected set of stations. Naturally, for those stations that 

are fully protected (𝑗 ∈ 𝑀𝑖), this increase in travel time is effectively zero. 

At the middle level, the attacker determines the maximum potential increase in travel time on 

the public transit network using Eq. 5, considering the optimal coping -strategy for each station. 

At the highest level, the system manager uses Eq. 6 to find the minimum possible increase in travel 

time resulting from an attack on the most vulnerable station, while considering the most effective 

coping strategy. 

3.2.2. Scenario 2: Full protection with intelligent operator 

In this scenario, the quad-level problem is formulated as a leader-follower game between the 

system manager and the other players, with a non-cooperative zero-sum game between the attacker 

and the operator. The system manager is aware of the behaviors of both the attacker and the 

operator. Additionally, both the attacker and the operator can anticipate each other’s actions in 

advance. Initially, the manager operates similarly to Scenario 1, selecting combinations of Metro 

stations to fully protect. Then, the attacker and operator engage in a non-cooperative, zero-sum 

game to evaluate the effectiveness of the manager’s defense strategies. This interaction helps 

determine the probability of the attacker attacking each unprotected station. By analyzing various 

station sets and considering potential attacks on vulnerable stations, the manager ultimately selects 

the set that minimizes the anticipated increase in travel time for the public transit system caused 

by an attack, thereby identifying the optimal stations for full protection. 

At the start of the game between the attacker and the operator, for each protection strategy 𝑖, 

the attacker sets the probability of attacking the protected stations to zero, and the probability of 

attacking the unprotected stations to an equal value of 𝑞𝑗
1 = 1/(𝑚 −𝑚𝑖)), where 𝑚 = |𝑀|  is the 

total number of Metro stations, and 𝑚𝑖 = |𝑀𝑖| is the number of stations that can be fully protected 

within the available budget (total budget index units). The operator calculates the change in travel 

time on the public transit network and identifies the smallest increase in travel time following the 

destruction of Metro station 𝑗 by solving the 𝑂𝑃 problem using Eqs. 3 and 4. 

During each phase of the game between the lowest and the middle levels, and for a given 

protection scenario 𝑖, the operator first estimates the expected increase in network travel time 

resulting from an attack on each station without implementing any coping strategy, 𝐸𝑇̅̅ ̅̂̅𝑗
𝑖, using Eq. 

7: 

𝐸𝑇̅̅ ̅̂̅𝑗
𝑖 = 𝑞𝑗

𝑖 . 𝐸𝑇̅̅ ̅̅𝑗 (7) 

where 𝐸𝑇̅̅ ̅̅𝑗   represents the increase in network travel time if the attacker targets station 𝑗 and the 

operator does not implement a copying strategy. The attacker then, recognizing that the operator 

will apply the optimal coping strategy to the most critical station, estimates the expected increase 
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in network travel time due to the destruction of this critical station, considering the operator's 

optimal strategy, 𝐸𝑇̂𝑗
𝑖, using Eq. 8: 

𝐸𝑇̂𝑗
𝑖 = 𝑞𝑗

𝑖 . 𝐸𝑇𝑗 (8) 

At the end of each phase of the game, the attacker compares the values of 𝐸𝑇̂𝑗
𝑖 for the critical 

station with 𝐸𝑇̅̅ ̅̂̅𝑗
𝑖  for the other stations. Based on this comparison, the attacker selects the station 

with the highest priority for the next attack. The probability of attacking the unprotected stations 

is then updated using Eq. 9: 

𝑞𝑗
𝑖 =

𝑡

𝑡 + 1
× 𝑞𝑗

𝑖 +
1

𝑡 + 1
× 𝑞̃𝑗

𝑖  (9) 

In this equation, 𝑞̃𝑗
𝑖  an auxiliary variable that, during each phase of the game between the attacker 

and the operator, is assigned a value of one for the station identified as the highest priority target 

for the next attack and a value of zero for all other stations. 

After determining the final attack probability vector at the end of the game, the attacker 

calculates the expected increase in travel time caused by the destruction of Metro stations for each 

protection scenario 𝑖, considering the implementation of the optimal strategy for each station, using 

Eq. 10: 

𝐸𝑇̂𝑖 =∑𝐸𝑇̂𝑗
𝑖

𝑗

= ∑𝑞𝑗
𝑖 . 𝐸𝑇𝑗

𝑗

 (10) 

where 𝐸𝑇̂𝑖  represents the maximum expected increase in network travel time that the attacker 

anticipates, given the system manager's protection of station set 𝑖. 

Finally, at the highest level, the manager employs Eq. 11 to determine the minimal anticipated 

increase in travel time within the public transit network resulting from an attack, while taking into 

account the operator's optimal strategy to mitigate the impact: 

𝐸𝑇 = min
𝑖
{𝐸𝑇̂𝑖} =   min

𝑖
 

 

∑𝐸𝑇̂𝑗
𝑖

𝑗

=  min
𝑖
 

 

∑𝑞𝑗
𝑖 . 𝐸𝑇𝑗

𝑗

     (11) 

3.2.3. Scenario 3: Partial protection with unintelligent operator 

In this scenario, the quad-level problem is structured as a non-cooperative, zero-sum game 

between the system manager and the attacker, with a leader-follower game between the attacker 

and the operator. The manager’s actions are unpredictable to the attacker, and the manager, in turn, 

cannot fully anticipate the attacker's behavior. However, the attacker has full knowledge of the 

operator's likely responses. Initially, the manager and the attacker engage in a non-cooperative, 

zero-sum game to determine the probability of a successful attack on each station, based on the 

optimal distribution of the protection budget. The manager allocates the protection budget across 

all Metro stations. After observing this budget allocation, the attacker selects potential stations for 
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attack and evaluates the operator's possible responses. The operator then counters the attacks by 

selecting the most effective strategies to mitigate disruption at each targeted station. Similar to 

Scenario 1, at the lowest level of the game, the operator calculates the increase in travel time on 

the public transit network following the destruction of a Metro station 𝑗 by implementing the 

optimal strategy for that station, using the 𝑂𝑃 problem and Eqs. 3 and 4.  

In this article, instead of using the actual protection budget in the equations, a protection 

budget index is employed. The protection budget index for each station is defined as the ratio of 

the allocated protection budget for that station to the full protection budget required for a single 

station. Since the allocated budget for any station cannot exceed the full protection budget, the 

protection budget index for all Metro stations will always be a value between zero and one . 

To calculate the probability of an attacker's success in targeting the stations, it is necessary to 

define a relationship between the protection budget index allocated by the manager to each station 

and the probability of success in attacking that station. This relationship should satisfy the 

following conditions: 

− As the protection budget for a station increases, the probability of the attacker's success 

decreases. 

− The maximum protection budget for each station is equal to the cost of complete protection, 

which is equivalent to one unit of the budget index. 

− If no budget is allocated for station protection, the probability of the attacker's success in 

destroying it is one. 

− If one unit of the budget index is allocated to protect the station, the probability of the 

attacker succeeding in destroying it is zero. 

− As the station protection budget index increases from 0 to 1, the probability of the attacker’s 

success decreases rapidly at first; however, the rate of decrease gradually slows until it 

reaches zero. 

In this article, the relationship between the protection budget index and the probability of a 

successful attack on each station 𝑗 ∈ 𝑀 is suggested as follows: 

𝑟𝑗 = 1 − √1 − (𝑐𝑗 − 1)
2
        0 ≤ 𝑐𝑗 ≤ 1, 0 ≤ 𝑟𝑗 ≤ 1  (12) 

where 𝑐𝑗  and 𝑟𝑗 denote the protection budget index allocated to station 𝑗, and 𝑟𝑗 represents the 

probability of a successful attack on that station. This equation, incorporating the characteristics 

outlined above, effectively models the relationship between the probability of the attacker's success 

and the protection budget index of the station.  

At the start of the game between the manager and the attacker, the manager distributes the 

available budget evenly among all Metro stations. The defense strategy 𝑖𝑖 provides the manager 
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with a budget sufficient to fully protect 𝑚𝑖 stations out of a total of 𝑚 = |𝑀| stations (i.e., the total 

units of the protection budget index available to the manager is equal to 𝑚𝑖). Thus, in the first 

iteration of the partial protection scenario, the manager distributes this budget equally among all 

𝑚 stations. Denoting by 𝑐𝑗
𝑖𝑖 the protection budget index assigned to Metro station 𝑗 in iteration 𝑖𝑖 

of the game, we set 𝑐𝑗
1 =

𝑚𝑖

𝑚
 for all 𝑗 ∈ 𝑀. 

In each phase of the game, the attacker calculates the probability of a successful attack on 

each Metro station (𝑟𝑗
𝑖𝑖) based on the budget allocated to them using Eq. 12 and then computes the 

anticipated increase in travel time on the public transit network after destroying Metro station 𝑗, 

considering the likelihood of a successful attack while the operator implements the optimal 

strategy. This is done using Eqs. 13 and 14: 

𝐸𝑇̂𝑗
𝑖𝑖 = 𝑟𝑗

𝑖𝑖. 𝐸𝑇𝑗 (13) 

𝐸𝑇̂𝑖𝑖 = max
𝑗
{𝐸𝑇̂𝑗

𝑖𝑖} (14) 

where 𝐸𝑇̂𝑗
𝑖𝑖 represents the expected increase in network travel time in iteration 𝑖𝑖 of the game 

between the attacker and the manager, considering an attack on Metro station 𝑗 and the 

implementation of the operator's optimal coping strategy, and 𝐸𝑇̂𝑖𝑖 denotes the maximum expected 

increase in network travel time in iteration 𝑖𝑖 if the attacker targets the most critical Metro station. 

After identifying the critical station at the end of each phase of the game, the manager updates 

the protection budget indices for the stations using Eq. 15: 

𝑐𝑗
𝑖𝑖 =

𝑖𝑖

𝑖𝑖 + 1
∙ 𝑐𝑗

𝑖𝑖 +
1

𝑖𝑖 + 1
∙ 𝑐̃𝑗

𝑖𝑖 (15) 

In this equation, 𝑐̃𝑗
𝑖𝑖 is an auxiliary variable set to one for the critical station and zero for all other 

stations during each phase of the game between the manager and the attacker. Considering that the 

budget index for station protection cannot exceed 1, at each stage of the game, if any of the 𝑐𝑗
𝑖𝑖 

values surpass 1, the vector (𝑐𝑗
𝑖𝑖) for 𝑗 ∈ 𝑀 is modified again using Eqs. 16 and 17: 

𝑐𝑚𝑎𝑥
𝑖𝑖 = 𝑚𝑎𝑥

𝑗
{𝑐𝑗
𝑖𝑖} (16) 

𝑐𝑗
𝑖𝑖 = {

 1                                  𝑖𝑓   𝑐𝑗
𝑖𝑖 > 1        

𝑐𝑗
𝑖𝑖 +

𝑐𝑚𝑎𝑥
𝑖𝑖 − 1 

𝑗 − 1
        𝑖𝑓  0 ≤ 𝑐𝑗

𝑖𝑖 ≤ 1
 (17) 

Through iterative adjustments, where the manager refines the budget distribution among the 

stations in each step, the protection budget vector converges to an optimal allocation. At the end 

of the game, the final values for each station's protection budget index 𝑐𝑗 and the probability of a 
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successful attack 𝑟𝑗 are determined. The final expected increase in travel time due to the destruction 

of Metro stations, under the optimal partial protection strategy, is calculated using Eq. 18: 

𝐸𝑇̂ =   𝑟𝑗 . 𝐸𝑇j (18) 

which will be the same for all Metro stations 

3.2.4. Scenario 4: Partial protection with intelligent operator 

In this scenario, the quad-level problem is structured as two non-cooperative, zero-sum 

games: one between the system manager and the attacker, and the other between the attacker and 

the operator. Neither the manager nor the attacker can fully predict the other's behavior, and the 

attacker cannot fully anticipate the operator's responses. Initially, the attacker and the manager 

engage in a two-player game to determine the probability of a successful attack on each station, 

based on the distribution of the protection budget. In this game, different levels of protection are 

defined for each station, and the protection budget is allocated to minimize the likelihood of a 

successful attack. Then, considering the partial protection strategy selected by the manager, the 

attacker and operator engage in a two-player game to determine the probability of an attack on 

each station and the expected maximum damage resulting from this attack. As a result, the station 

that causes the most damage to the system, despite the operator’s coping strategy, becomes the 

attacker’s final target. The operator calculates the increase in travel time on the public transit 

network and the minimum increase in travel time after the destruction of Metro station 𝑗, 

implementing the optimal strategy for that station by solving the 𝑂𝑃 problem using Eqs. 3 and 4. 

At the start of the game between the attacker and the operator, for each defense strategy 𝑖𝑖, 

the attacker sets the probability of attacking all Metro stations equally to 𝑞𝑗
1 = 1/𝑚. In each phase 

of this game, considering the manager's defense strategy 𝑖𝑖, the operator first estimates the 

expected increase in network travel time resulting from an attack on each station without 

implementing any coping strategy, 𝐸𝑇̅̅ ̅̂̅𝑗
𝑖𝑖, using Eq. 19: 

𝐸𝑇̅̅ ̅̂̅𝑗
𝑖𝑖 = 𝑟𝑗

𝑖𝑖. 𝑞𝑗
𝑖𝑖. 𝐸𝑇̅̅ ̅̅𝑗 (19) 

where 𝑞𝑗
𝑖𝑖 is the probability of the attacker targeting station 𝑗 and 𝑟𝑗

𝑖𝑖 is the probability of the 

attacker succeeding if station 𝑗 is attacked. Then, the attacker, considering that the operator will 

employ the best coping strategy for the most critical station, estimates the expected increase in 

network travel time due to the destruction of this critical station, while considering the operator's 

optimal coping strategy, 𝐸𝑇̂𝑗
𝑖𝑖, using Eq. 20: 

𝐸𝑇̂𝑗
𝑖𝑖 = 𝑟𝑗

𝑖𝑖. 𝑞𝑗
𝑖𝑖. 𝐸𝑇𝑗 (20) 

At the end of each phase of the game between the attacker and the operator, the attacker 

compares the values of 𝐸𝑇̂𝑗
𝑖𝑖 for the critical station with 𝐸𝑇̅̅ ̅̂̅𝑗

𝑖𝑖  for the other stations. Based on this 

comparison, the attacker selects the station with the highest priority for the next attack and updates 

the probabilities of attacking each Metro station using Eq. 21: 
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𝑞𝑗
𝑖𝑖 =

𝑡

𝑡 + 1
× 𝑞𝑗

𝑖𝑖 +
1

𝑡 + 1
× 𝑞̃𝑗

𝑖𝑖   (21) 

where 𝑞̃𝑗
𝑖𝑖 is an auxiliary variable that is set to one for the station with the highest priority for the 

attacker and zero for the other stations during each phase of the game. At the end of the game, the 

final probabilities of attacking the stations are determined. 

At the start of the game between the system manager and the attacker, similar to Scenario 3, 

the available budget is evenly distributed among all Metro stations. As a result, in the first iteration 

of the game, the protection budget index for all Metro stations is 𝑐𝑗
1 =

𝑚𝑖

𝑚
. The attacker then uses 

Eq. 12 to calculate the probability of a successful attack on each station in the first iteration (𝑟𝑗
1) 

and proceeds to engage with the operator. 

In each phase of the game between the manager and the attacker, the attacker identifies the 

most critical station for the attack by considering the final attack probabilities and the probability 

of success in attacking at each station in that phase. The expected increase in travel time for the 

public transit network, in the event of an attack on the critical station, is estimated using Eq. 22: 

𝐸𝑇̂𝑖𝑖 = max
𝑗
{𝐸𝑇̂𝑗

𝑖𝑖} = max
𝑗
{𝑟𝑗
𝑖𝑖. 𝑞𝑗

𝑖𝑖 . 𝐸𝑇𝑗} (22) 

After identifying the critical station at the end of each phase of the game between the manager and 

the attacker, the manager updates the protection budget indices for the stations using Eq. 15. If 

necessary, the manager further adjusts the budget index vector using Eqs. 16 and 17. As previously 

mentioned, 𝑐̃𝑗
𝑖𝑖 in Eq. 15 is an auxiliary variable set to one for the critical station and zero for the 

other stations. If the protection budget index for any station exceeds one, the budget index vector 

is recalculated using Eqs. 16 and 17. 

As the game between the manager and the attacker progresses, each phase is repeated with 

the updated protection budget index vector, and the game between the attacker and the operator is 

played again. Ultimately, at the end of the game, the final values for each station's protection 

budget index𝑐𝑗, the probability of a successful attack 𝑟𝑗, and the probability of attacking each 

station 𝑞𝑗 are determined. The expected increase in travel time, considering the optimal coping 

strategy, is then calculated using Eq. 23: 

𝐸𝑇̂ =∑𝑟𝑗. 𝑞𝑗. 𝐸𝑇j
𝑗

 (23) 

4. Case study 

4.1. Scope of study 

In this article, the public transit network of Shiraz city is used as a case study. Shiraz, the 

capital of Fars province, is located in southern Iran. According to the latest census conducted in 
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2021, the city has a population of approximately 1,565,572, making it the fifth most populous city 

in Iran. Shiraz's public transit system consists of 63 bus lines and one Metro line. This Metro line, 

spanning 24.5 kilometers, includes 22 stations and serves around 3.7 million passengers annually 

throughout the city. Figure 3 illustrates the Shiraz rail transport network, highlighting the line and 

station locations. 

  

 

Figure 3. Shiraz Metro line 

 

4.2. Principal assumptions 

Any of the 22 Shiraz Metro stations could be the target of a terrorist attack. As noted in Section 

3.1, the system manager has a restricted budget for station security, which can be allocated across 

Metro stations in various ways. In the event of a terrorist assault on any of these stations, the 

operator will employ a variety of strategies to serve the remaining passengers while mitigating the 

effects of the attack. The additional assumptions for solving the problem are as follows: 

1. The protection cost for all Metro stations is assumed to be identical. 

2. The system manager has sufficient budget to fully protect four stations. This budget can be 

allocated to four stations in the full protection approach or distributed among all stations 

in the partial protection approach. Instead of using the actual protection budget assigned to 

each station, the protection budget index of that station is used to solve the problem. The 
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protection budget index is defined as the ratio of the budget allocated to a station to the full 

protection budget of that station. 

3. The relationship between the protection budget index and the probability of an attacker's 

success in targeting a station is assumed as Eq. 12. 

4. The bus fleet is assumed to be fixed. In other words, in case of an attack on a Metro station, 

the operator's coping strategies for modifying the bus network are limited to the following: 

− Relocating the fleet between bus lines by adjusting their frequencies. 

− Connecting the disrupted station to the bus network or linking it to t adjacent Metro 

stations with a bus bridge, followed by adjusting bus lines frequencies. 

− Deviating existing bus lines from their main routes to cover the disrupted station and 

readjusting the frequencies of bus lines. 

According to the structure of the public transit network in Shiraz city, the strategies outlined 

in Table 2 are considered the operator's coping strategies. Notably, in strategy (i), the operator does 

not alter the bus network structure, such as by deviating existing routes or creating new ones. 

Instead, the operator reallocates the fleet among existing bus lines to improve the public transit 

network’s performance after an attack. 

 

Table 2 

Operator strategies to cope with the attack in Shiraz Metro stations 

Disrupted 

Metro station 

Operator’s coping strategies 

(i) 

Moving the fleet between 

lines 

(ii) 

Connecting to the existing bus lines or 

connecting to other Metro stations 

(iii) 

Deviating the routes 

of existing bus lines 

Bus lines connected 

to disrupted station  

Metro stations 

connected disrupted 

station  

Bus lines deviated 

towards the 

disrupted station 

1 No change 35-48-71-32 2 35-48-71-32 

2 No change 28-71-32-35 1-3 28-71-32-35 

3 No change 48-71-32-35 2-4 48-71-32-35 

4 No change 48-71-20-35-27 3-5 48-71-20-35-27 

5 No change 32-20-35-48-27 4-6 32-20-35-48-27 

6 No change 48-20-35-27 5-7 48-20-35-27 

7 No change 27-20-51-58-7 6-8 27-20-51-58-7 

8 No change 27-7-51-58-71 7-9 27-7-51-58-71 

9 No change 2-73 8-10 2-73 

10 No change 2-7-51-58-71-35 9-11 2-7-51-58-71-35 

11 No change 2-16-21-51-18-71 10-12 2-16-21-51-18-71 

12 No change 2-73-9 11-13 2-73-9 

13 No change 73-5-21-18-9 12-14 73-5-21-18-9 

14 No change 73-5-21-18-10 13-15 73-5-21-18-10 
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15 No change 21-18-9 14-16 21-18-9 

16 No change 54-9-22 15-22 54-9-22 

22 No change 54-22 16-17 54-22 

17 No change 54 18-22 54 

18 No change 60-50-37-22 17-19 60-50-37-22 

19 No change 22 18-20 22 

20 No change 54-50-37 19-21 54-50-37 

21 No change 38 20 38 

 

4.3. Results 

The operator's OP problem was implemented in C++ to efficiently handle the complexity of 

bus network adjustments. Meanwhile, the attacker’s problem (Eq. 5) and the system manager’s 

problem (Eq. 6), along with the detailed execution of the game dynamics between the three players, 

were coded in MATLAB. The algorithms developed for solving the optimal defense model, 

particularly tailored to each defensive scenario discussed in Section 3, are thoroughly detailed in 

Appendix 2. These algorithms offer a step-by-step approach for addressing the unique challenges 

posed by Metro station attacks, providing a robust framework for implementing the defense 

strategies outlined in this study. 

4.3.1. Scenario 1: Full protection - Non-intelligent operator 

In this scenario, assuming the budget to fully protect four Metro stations is in position, the 

system manager will have (22
4
) = 7315 defense strategies. In each defense strategy, there are 18 

unprotected Metro stations, and the attacker will choose one of them to attack. As a result, there 

were 7315 × 18 = 131670 defense-attack situations in this scenario. To deal with each of the 18 

possible attacking plans, the operator has a number of available strategies (according to Table 2). 

The results of the analysis of scenario 1 in the Shiraz network show that the optimal strategy 

of the system manager is to protect stations number 4, 5, 15 and 17. As a result of applying this 

strategy, the attacker chooses to attack Metro station number 19 as the best attack strategy. The 

operator also minimizes the effects of this attack by creating a bus connection between this station 

and bus line number 22. The final results are shown in Table 3. 

The analysis of Scenario 1 for the Shiraz network reveals that the optimal strategy for the 

system manager is to protect stations 4, 5, 15, and 17. With this strategy in place, the attacker is 

most likely to target Metro station 19 as the optimal attack strategy. The operator minimizes the 

effects of this attack by creating a bus connection between this station and bus line 22. The final 

results are shown in Table 3. 
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Table 3 

Analysis results of scenario 1 for Shiraz public transit network 

Optimal strategies of players 

Network travel 

time before the 

attack (hours) 

Network travel 

time after attack 

(hours) 

Increase in network 

travel time after 

attack (hours) 

Percentage increase 

in network travel 

time after attack 

Protection set: 4-5-15-17 

Target station: 19 

Coping strategy: Connecting 

Metro station 19 to bus line 

22 

42142.148 

Regardless of the manager's protection strategy and the 

operator's coping strategy 

43742.344 1600.196 3.8 

Considering the manager's protection strategy and the 

operator's optimal coping strategy 

42308.358 166.210 0.4 

4.3.2. Scenario 2: Full protection - Intelligent operator 

In this scenario, assuming that the budget for the full protection of four Metro stations is 

available, the system manager has (22
4
) = 7315 defense strategies. The key difference between 

this scenario and Scenario 1 is the intelligence of the operator over the attacker, leading to a two-

player game between the operator and the attacker to determine the optimal attack strategy and the 

operator's optimal coping strategy. 

The analysis of Scenario 2 for the Shiraz network shows that the optimal strategy for the 

system manager is to protect stations 4, 8, 10, and 11. In this scenario, station 2 has the highest 

probability of being targeted. In the event of an attack on this station, the operator minimizes the 

impact of the disruption by creating a bus connection line between this station and bus line 28. The 

final results are presented in Table 4. As can be seen, if the operator acts intelligently in response 

to the attacker, the manager's defense strategy (protection set) and the attacker's attack strategy 

change significantly, leading to a reduction in the impact of disruptions caused by terrorist attacks 

on Metro stations. 

 

Table 4 

Analysis results of scenario 2 for Shiraz public transit network 

Optimal strategies of players 

Network travel 

time before the 

attack (hours) 

Network travel 

time after attack 

(hours) 

Increase in network 

travel time after 

attack (hour) 

Percentage increase 

in network travel 

time after attack 

Protection set: 4-8-10-11 

Target station: 2 

Coping strategy: Connecting 

Metro station 2 to bus line 

28 

42142.148 

Regardless of the manager's protection strategy and the 

operator's coping strategy 

43742.344 1600.196 3.8 

Considering the manager's protection strategy and the 

operator's optimal coping strategy 

42254.936 112.788 0.3 
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4.3.3. Scenario 3: partial protection – non-intelligent operator 

In this scenario, a budget equivalent to the cost of fully protecting four Metro stations is 

available, but the operator aims to optimally distribute this budget among the Metro stations to 

minimize the effects of station disruption while reducing the likelihood of an attacker successfully 

targeting the stations. 

The analysis of Scenario 3 for the Shiraz network provides the final value of the protection 

budget index for different Metro stations, as shown in Table 5. The protection budget index refers 

to the specific proportion of the total available protection budget allocated to each station. This is 

expressed as a fraction of the full protection budget required for one station, with values ranging 

from 0 (no protection) to 1 (full protection). The highest protection budget indices are assigned to 

stations 15 and 17, with 0.4262 and 0.4245 units of budget index, respectively, while the lowest 

protection budget indices are allocated to stations 3 and 11, with 0.0001 units of budget index 

(almost zero). 

Table 6 shows the final probability of the attacker succeeding in attacking the Metro stations, 

based on the protection budget index of each station. The application of this scenario results in the 

effect of disruption across all stations being equal in terms of increasing network travel time. In 

the event of an attack on any station, 44,521 hours will be added to the total network travel time. 

Table 7 presents the final results of this scenario. As observed, distributing the protection budget 

among all Metro stations reduces the overall impact of disruptions caused by terrorist attacks on 

the Metro stations. 

 
Table 5 

Protection budget index for Shiraz Metro Stations in scenario 3 

Metro 

Station 
1 2 3 4 5 6 7 8 9 10 11 

Protection 

budget 

index 

0.0383 0.1926 0.0001 0.3635 0.3364 0.034 0.0803 0.2432 0.2605 0.321 0.0001 

Metro 

Station 
12 13 14 15 16 17 18 19 20 21 22 

Protection 

budget 

index 

0.2297 0.005 0.2364 0.4262 0.2216 0.4245 0.1556 0.3179 0.3043 0.0556 0.042 
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Table 6 

Attack success probability for Shiraz Metro stations in scenario 3 

Metro 

station 
1 2 3 4 5 6 7 8 9 10 11 

Successful 

attack 

probability 

0.7258 0.4099 0.9894 0.2287 0.2518 0.7414 0.6074 0.3463 0.3268 0.7484 0.9894 

Metro 

station 
12 13 14 15 16 17 18 19 20 21 22 

Successful 

attack 

probability 

0.3623 0.9001 0.3542 0.181 0.3722 0.1822 0.4643 0.2687 0.2816 0.6711 0.7131 

 

Table 7 

Analysis results of scenario 3 for Shiraz public transit network  

Optimal strategies of players 

Network travel 

time before the 

attack (hours) 

Network travel 

time after attack 

(hours) 

Increase in network 

travel time after 

attack (hour) 

Percentage increase 

in network travel 

time after attack 

The distribution of the 

protection budget index among 

the stations is according to 

Table 5. 

All stations are equally likely to 

be attacked. 

42142.148 

Regardless of the manager's protection strategy and the 

operator's coping strategy 

43742.344 1600.196 3.8 

Considering the manager's protection strategy and the operator's 

optimal coping strategy 

42186.669 44.521 0.1 

 

4.3.4. Scenario 4: partial protection – intelligent operator 

In this scenario, similar to Scenario 3, a budget equivalent to the full protection budget of four 

Metro stations is available. However, the system manager aims to distribute this budget among the 

Metro stations in a manner that minimizes the impact of attacks and disruptions. 

The analysis of Scenario 4 for the Shiraz network provides the final protection budget index 

values for different Metro stations, as shown in Table 8. The highest protection budgets are 

allocated to stations 4 and 10, with 0.3885 and 0.3415 units of budget index, respectively, while 

the lowest protection budgets are assigned to stations 3, 6, 21, and 22, each with 0.1019 units of 

budget index. Compared to Scenario 3, the distribution of protection budgets in Scenario 4 is less 

dispersed. Table 9 presents the probability of the attacker succeeding in attacking the metro 

stations, based on the protection budget index of each station. 

As a result of applying this scenario, the disruption effect on network travel time is equalized 

across all stations. In the event of an attack on any station, 36.126 hours will be added to the total 

network travel time. The final results of this scenario are displayed in Table 10. As observed, when 

the protection budget is distributed among all Metro stations and the operator acts intelligently, 

the impact of disruptions caused by terrorist attacks on Metro stations can be significantly reduced. 
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Figure 4 and Table 11 illustrate the impact of disruptions at each station within the Shiraz city 

transport network on the total travel time for public transit users, as well as the effectiveness of the 

operator's optimal coping strategy in mitigating the disruption effects of an attack on the Metro 

stations. 

 

Table 8 

Protection budget index for Shiraz Metro Stations in scenario 4 

Metro 

Station 
1 2 3 4 5 6 7 8 9 10 11 

Protection 

budget 

index 

0.1293 0.2775 0.1019 0.3885 0.1443 0.1019 0.1068 0.2216 0.1233 0.3415 0.229 

Metro 

Station 
12 13 14 15 16 17 18 19 20 21 22 

Protection 

budget 

index 

0.1575 0.1644 0.295 0.1124 0.2195 0.1648 0.1234 0.2078 0.1857 0.1019 0.1019 

 

Table 9 

Attack success probability for Shiraz Metro stations in scenario 4 

Metro 

station 
1 2 3 4 5 6 7 8 9 10 11 

Successful 

attack 

probability 

0.5081 0.3085 0.5602 0.2087 0.4825 0.5602 0.5503 0.3722 0.5189 0.2473 0.3631 

Metro 

station 
12 13 14 15 16 17 18 19 20 21 22 

Successful 

attack 

probability 

0.4612 0.4507 0.2907 0.5394 0.3748 0.4499 0.5187 0.3896 0.4195 0.5602 0.5602 

 

Table 10 

Analysis results of scenario 4 for Shiraz public transit network  

Optimal strategies of players 

Network travel 

time before the 

attack (hours) 

Network travel 

time after attack 

(hours) 

Increase in network 

travel time after 

attack (hour) 

Percentage increase 

in network travel 

time after attack 

The distribution of the 

protection budget index 

among the stations is 

according to Table 5. 

All stations are equally likely 

to be attacked. 

42142.148 

Regardless of the manager's protection strategy and the 

operator's coping strategy 

43742.344 1600.196 3.8 

Considering the manager's protection strategy and the operator's 

optimal coping strategy 

42178.274 36.126 0.1 
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Figure 4. Impact of Metro station disruptions on total travel time of Shiraz transit network with and without the 

operator's optimal coping strategy 

 

Table 11 

Impact of Metro station disruptions on the total travel time of the Shiraz transit network 

Metro station Total travel time 

without any coping 

strategy (hours) 

Total travel time 

with optimal coping 

strategy(hours) 

Percentage 

reduction in 

network travel 

time (%) 

1 624.844 61.556 90.1 

2 1080.000 109.112 89.9 

3 427.148 44.276 89.6 

4 1600.196 195.442 87.8 

5 682.406 177.394 74.0 

6 417.656 60.270 85.6 

7 439.884 73.620 83.3 

8 894.758 129.030 85.6 

9 605.492 136.882 77.4 

10 1353.610 59.756 95.6 

11 919.056 42.204 95.4 

12 722.884 123.254 82.9 

13 739.392 49.368 93.3 

14 1148.234 126.246 89.0 

15 460.992 246.804 46.5 

16 890.422 120.174 86.5 

17 741.978 245.514 66.9 

18 605.610 96.314 84.1 

19 855.680 166.210 80.6 

20 796.320 158.890 80.0 

21 141.766 66.636 53.0 

22 162.148 62.748 61.3 
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Finally, Figure 5 illustrates the percentage increase in travel time for Shiraz's public 

transportation network following a terrorist attack on Metro stations across the four scenarios. The 

results demonstrate that the operator’s intelligence in anticipating the attacker’s actions 

significantly reduces the impact of disruptions. This is evident from the lower increase in network 

travel time in scenario 2 compared to scenario 1, and in scenario 4 compared to scenario 3. 

Moreover, distributing the protection budget across all stations (partial protection) rather than 

concentrating it on a few stations further mitigates the impact of attacks, as seen in scenario 3 

versus scenario 1, and in scenario 4 versus scenario 2. The percentage effect of the manager's 

protection strategies and the operator's coping strategies on improving network travel time after a 

terrorist attack is summarized in Table 12. The findings highlight the advantages of an intelligent 

operator and an optimally distributed protection budget. 

 

 
Figure 5. Percentage increase in travel time for Shiraz public transit network due to a terrorist attack on Metro 

stations in different scenarios 

 

Table 12 

Effect of manager’s protection and operator’s response on reducing travel time increase after a Metro station 

attack in Shiraz 

Scenario 

number 

Increase in network travel time 

without manager's protection 

strategy and operator's coping 

strategy (hours) 

Increase in network travel time 

considering manager's protection 

strategy and operator's coping 

strategy (hours) 

Percentage reduction in 

network travel time 

Increase (%) 

1 1600.19 

1600.19 

1600.19 

1600.19 

166.21 89.6 

2 112.79 93.0 

3 44.52 97.2 

4 36.13 97.7 
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5. Conclusion, limitations, and further investigations 

This paper presented a defender-attacker-defender optimization model to evaluate defense 

strategies for protecting urban rail systems against intentional destruction of Metro stations. The 

model's key innovation lies in considering different intelligence scenarios for the attacker and 

operator, and in simulating the behavior of public transit system users both during and after an 

attack. This approach led to a quad-level model, incorporating a two-level interactive game 

between the operator and public transit users aiming to reduce travel time following an attack. 

Four scenarios were defined based on the intelligence levels of the players, each accompanied 

by a practical algorithm for solving the quad-level model. These algorithms were applied to the 

public transit network of Shiraz, resulting in the determination of optimal protection levels for 

Metro stations under different scenarios. The results indicate that focusing solely on the most 

critical Metro stations and allocating the full protection budget to them does not yield an optimal 

defense design. Instead, distributing the protection budget among all stations (partial protection) 

and employing a non-cooperative zero-sum game approach between the system manager and the 

attacker offer more effective results. Furthermore, an intelligent operator can predict the attacker’s 

behavior, evaluate counterstrategies, and select optimal responses to minimize disruption. 

While this study primarily considers travel time as the key metric, future research could 

explore additional factors such as service downtime, passenger flow disruption, and system 

recovery time. Incorporating economic elements, including revenue loss and repair costs, could 

provide a more comprehensive framework for assessing the impact of intentional disruptions on 

urban rail systems. Additionally, the model assumes rational and deterministic behavior for 

attackers, defenders, and passengers, whereas real-world behaviors are often influenced by 

uncertainties, incomplete information, and psychological factors. Enhancing the model with 

stochastic elements or behavioral game theory could improve its realism. 

Another limitation lies in the static nature of the security allocation strategies explored in this 

study. Extending the model to include adaptive or dynamic strategies would allow for real-time 

responses to evolving threats, increasing its robustness. Lastly, generalizing the findings to other 

metro systems with different network structures and socio-political contexts warrants further 

investigation. Multi-case studies across various metro systems could enhance the applicability and 

relevance of the proposed framework. Addressing these limitations will enable future research to 

build upon this study’s foundation, leading to more effective and resilient strategies for urban rail 

system protection. 
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Appendix 1: Mathematical Notations 

Definition Symbol 

The entire set of public transit network links (including both bus and subway modes) 𝐴 

The entire set of public transit network stations (including both bus and subway modes) 𝑃 

The entire set of public transit network nodes (including both bus and subway modes) 𝑁 

The entire set of bus lines  𝐿 

A link’s number in the public transit network 𝑎 

A node’s number in the public transit network 𝑛 

A station’s number in the public transit network 𝑝 

A line’s number in the public transit network 𝑙 

A metro station’s number 𝑗 

Passenger flow on link 𝑎 (in vehicles per hour) 𝑥𝑎 

Fixed travel time of link 𝑎 𝑡𝑎 

Average waiting time of passengers at transit station 𝑝 𝑤𝑝 

Travel time function of link 𝑎 𝑡𝑎(𝑥𝑎) 

Penalty function of link 𝑎 𝜏𝑎(𝑥𝑎) 

Travel time of transit line 𝑙 𝑇𝑙 

Frequency of transit line 𝑙 𝐹𝑙 

Total number of public transit fleet 𝑁𝑏 

Upper and lower limits for the frequency of all bus lines 𝑓  &  𝑓 

The set of outbound links from node 𝑛 in the public transit network 𝐴𝑛
− 

The set of inbound links to node 𝑛 in the public transit network 𝐴𝑛
+ 

Travel demand from node 𝑝 to the destination  𝑑𝑛 

A very large number 𝐵𝑁 

A binary parameter for link 𝑎; ℎ𝑎 = 𝐵𝑁  if 𝑎 is a boarding or alighting link connected to the attacked 

Metro station, and ℎ𝑎 = 1 for other links in the transit network; ℎ = (ℎ𝑎)  

ℎ𝑎 

The value of ℎ𝑎 when Metro station 𝑗 is attacked, ℎ𝑗 = (ℎ𝑎𝑗) ℎ𝑎𝑗 

The entire set of all Metro stations 𝑀 

The number of Metro stations, 𝑚 = |𝑀| 𝑚 

The set of all defense strategies of manager (i.e., including all subsets of 𝑀) 𝐼 
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A defense strategy’s number  𝑖 

The set of Metro stations protected by system manager at defense strategy 𝑖 (i.e., the subset of 𝑀 

corresponding with defense 𝑖) 

𝑀𝑖 

The number of Metro stations protected by system manager in defense strategy 𝑖, 𝑚𝑖 = |𝑀𝑖| (equivalent to 

the total units of budget index in strategy 𝑖),  

𝑚𝑖 

The set of operator's coping strategies to deal with the attack on Metro station 𝑗 𝐾𝑗  

The number of operator's coping strategy to deal with the attack on Metro station 𝑗, 𝑘𝑗 = |𝐾𝑗| 𝑘𝑗  

A coping strategy’s number 𝑘 

The entire set of bus lines in coping strategy 𝑘 𝐿𝑘 

The entire set of stations in coping strategy 𝑘 𝑃𝑘 

Repetition counter for the steps in calculating the distribution index of the station protection budget during 

the manager and attacker game 

𝑖𝑖 

Repetition counter for calculating the probability of attacking stations during the attacker and operator 

game 

𝑡 

Probability of an attack on Metro station 𝑗 for defense strategy 𝑖  𝑞𝑗
𝑖  

Probability of an attack on Metro station 𝑗 in iteration 𝑖𝑖 𝑞𝑗
𝑖𝑖  

Auxiliary variable for computing 𝑞𝑗
𝑖  during the attacker and operator game 𝑞̃𝑗

𝑖  

Auxiliary variable for computing 𝑞𝑗
𝑖𝑖during the attacker and operator game 𝑞̃𝑗

𝑖𝑖 

Final probability of an attack on Metro station 𝑗 𝑞𝑗 

Final probability of the attacker's success in attacking Metro station 𝑗 𝑟𝑗 

Final Index of protection budget allocated to Metro station 𝑗 𝑐𝑗  

Auxiliary variable for computing 𝑐𝑗  𝑐̃𝑗 

Index of protection budget allocated to Metro station 𝑗 in iteration 𝑖𝑖 𝑐𝑗
𝑖𝑖  

Auxiliary variable for computing 𝑐𝑗
𝑖𝑖  𝑐̃𝑗

𝑖𝑖 

Probability of success in attacking Metro station 𝑗 in iteration 𝑖𝑖 𝑟𝑗
𝑖𝑖 

The highest budget index allocated to a Metro station in iteration 𝑖𝑖 𝑐𝑚𝑎𝑥
𝑖𝑖  

The total travel time of passengers in the public transit network  𝑇𝐶 

The total travel time of passengers in the public transit network in the absence of an attack 𝑇𝐶0 

The total travel time of passengers in the public transit network when the attacker targets Metro station 𝑗 

and the operator implements coping strategy 𝑘 

𝑇𝐶𝑗,𝑘 

The minimum increase in public transit network travel time across all of the manager’s protection 

strategies when the attacker targets the most critical station and the operator implements the best coping 

strategy. 

𝐸𝑇 
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The highest increase in the public transit network travel time when the most critical station within 

protection set  𝑀𝑖 is targeted and the operator implements the best coping strategy 

𝐸𝑇𝑖 

The lowest increase in the public transit network travel time when the attacker targets Metro station  𝑗 and 

the operator implements the best coping strategy. 

𝐸𝑇𝑗 

Added travel time in the public transit network when Metro station 𝑗 is targeted and the operator 

implements no coping strategy 

𝐸𝑇̅̅̅̅𝑗 

The lowest increase in public transit network travel time for protection set  𝑀𝑖 when Metro station 𝑗 is 

targeted and the operator implements the best coping strategy. 

𝐸𝑇𝑗
𝑖 

Added travel time in the public transit network when Metro station 𝑗 is targeted and the operator 

implements coping strategy 𝑘 

𝐸𝑇𝑗,𝑘 

The minimum expected increase in public transit network travel time among all protection strategies when 

the most critical station is targeted and the operator implements the best coping strategy  

𝐸𝑇̂ 

The highest expected increase in public transit network travel time for protection set  𝑀𝑖 when the most 

critical station is targeted and the operator implements the best coping strategy 

𝐸𝑇̂𝑖 

The highest expected increase in public transit network travel time in iteration 𝑖𝑖 when the most critical 

station is targeted and the operator implements the best coping strategy 

𝐸𝑇̂𝑖𝑖 

Expected increase in public transit network travel time for protection set  𝑀𝑖 when Metro station  𝑗 is 

targeted and the operator implements no coping strategy 
𝐸𝑇̅̅ ̅̂̅𝑗

𝑖 

Expected increase in public transit network travel time in iteration 𝑖𝑖 when Metro station  𝑗 is targeted and 

the operator implements no coping strategy 
𝐸𝑇̅̅ ̅̂̅𝑗

𝑖𝑖 

Auxiliary value for computing 𝐸𝑇̅̅ ̅̂̅𝑗
𝑖 𝐸𝑇̃𝑗

𝑖 

Auxiliary value for computing 𝐸𝑇̅̅ ̅̂̅𝑗
𝑖𝑖 𝐸𝑇̃𝑗

𝑖𝑖 

 

Appendix 2: Solution Algorithm for Protection Scenarios 1–4 

Step 0: Solve the 𝑂𝑃 problem for the existing public transport network and obtain the value of 

𝑇𝐶0. 

Step 1: For each 𝑗 ∈ {1, … ,𝑚}, do: 

• Step 1-1: Set ℎ𝑎 = 𝐵𝑁 for boarding and alighting links at station 𝑚𝑗 and ℎ𝑎 = 1 for 

other links. 

• Step 1-2: Solve the sub-problem (1) of the 𝑂𝑃 problem and obtain 𝑇𝐶𝑗 and 𝐸𝑇̅̅̅̅ 𝑗̅ = 𝑇𝐶𝑗 −

𝑇𝐶0. 

• Step 1-3: For each 𝑘 ∈ 𝐾𝑗, Modify the disrupted network structure based on the coping 

strategy 𝑘, solve the 𝑂𝑃 problem to obtain 𝑇𝐶𝑗,𝑘, and compute 𝐸𝑇𝑗,𝑘 = 𝑇𝐶𝑗,𝑘 − 𝑇𝐶0. 

• Step 1-4: Compute 𝐸𝑇j = min
𝑘
{𝐸𝑇j,𝑘}. 

Step 2: Determine 𝑚𝑖 based on the protection budget. Set 𝑖 = 1 and 𝑖𝑖 = 1. 

Step 3: (For Scenarios 1 and 2) Identify the 𝑖-th set of protected Metro stations 𝑀𝑖 . 

Step 4: (For Scenarios 3 and 4) For each 𝑗 ∈ {1, … ,𝑚}, set 𝑐𝑗
𝑖𝑖 =

𝑚𝑖

𝑚
 . 

Step 5: For each 𝑗 ∈ {1, … ,𝑚}: 
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• (For Scenario 2) If  𝑗 ∈ 𝑀𝑖, set 𝑞𝑗
𝑖 = 0, otherwise set 𝑞𝑗

𝑖 = 1/(𝑚 −𝑚𝑖). Set 𝑡 = 1. 

• (For Scenario 4) Set 𝑞𝑗
𝑖𝑖 = 1/𝑚 . 

Step 6: (For Scenarios 3 and 4) For each 𝑗 ∈ {1, … ,𝑚}, compute 𝑟𝑗
𝑖𝑖 = 1 − √1 − (𝑐𝑗

𝑖𝑖 − 1)
2
. 

Step 7: For each 𝑗 ∈ {1, … ,𝑚}: 

• (For Scenario 1) If 𝑗 ∊ 𝑀𝑖, set 𝐸𝑇𝑗
𝑖 = 0, otherwise set 𝐸𝑇𝑗

𝑖 = 𝐸𝑇𝑗. 

• (For Scenario 2) Compute 𝐸𝑇̂𝑗
𝑖 = 𝑞𝑗

𝑖 . 𝐸𝑇𝑗 . 

• (For Scenario 3) Compute 𝐸𝑇̂𝑗
𝑖𝑖 = 𝑟𝑗

𝑖𝑖. 𝐸𝑇𝑗 . 

• (For Scenario 4) Compute 𝐸𝑇̂𝑗
𝑖𝑖 = 𝑟𝑗

𝑖𝑖. 𝑞𝑗
𝑖𝑖. 𝐸𝑇𝑗. 

Step 8: For each 𝑗 ∈ {1, … ,𝑚}: 

• (For Scenario 2) Compute 𝐸𝑇̅̅ ̅̂̅𝑗
𝑖 = 𝑞𝑗

𝑖 . 𝐸𝑇̅̅ ̅̅𝑗. 

• (For Scenario 4) Compute 𝐸𝑇̅̅ ̅̂̅𝑗
𝑖𝑖 = 𝑟𝑗

𝑖𝑖. 𝑞𝑗
𝑖 . 𝐸𝑇̅̅ ̅̅𝑗. 

Step 9: 

• (For Scenario 2) 

o Step 9-1: For station 𝑗 with the highest 𝐸𝑇̅̅ ̅̂̅𝑗
𝑖 , set 𝐸𝑇̃𝑗

𝑖 = 𝐸𝑇̂𝑗
𝑖 , and for other 

stations set 𝐸𝑇̃𝑗
𝑖 = 𝐸𝑇̅̅ ̅̂̅𝑗

𝑖. 

o Step 9-2: For station 𝑗 with the highest 𝐸𝑇̃𝑗
𝑖, set 𝑞̃𝑗

𝑖 = 1, and for other stations 

set 𝑞̃𝑗
𝑖 = 0. 

o Step 9-3: For each 𝑗 ∈ {1, … ,𝑚}: If 𝑗 ∈ 𝑀𝑖, set 𝑞𝑗
𝑖 = 0, otherwise set 𝑞𝑗

𝑖 =
𝑡

𝑡+1
𝑞𝑗
𝑖 +

1

𝑡+1
𝑞̃𝑗
𝑖 . 

• (For Scenario 4) 

o Step 9-1: For station j with the highest 𝐸𝑇̅̅ ̅̂̅𝑗
𝑖𝑖, set 𝐸𝑇̃𝑗

𝑖𝑖 = 𝐸𝑇̂𝑗
𝑖𝑖 , and for other 

stations set 𝐸𝑇̃𝑗
𝑖𝑖 = 𝐸𝑇̅̅ ̅̂̅𝑗

𝑖𝑖. 

o Step 9-2: For station j with the highest 𝐸𝑇̃𝑗
𝑖𝑖, set 𝑞̃𝑗

𝑖𝑖 = 1, and for other stations 

set 𝑞̃𝑗
𝑖𝑖 = 0. 

o Step 9-3: For each 𝑗 ∈ {1, … ,𝑚}, set 𝑞𝑗
𝑖𝑖 =

𝑡

𝑡+1
𝑞𝑗
𝑖𝑖 +

1

𝑡+1
𝑞̃𝑗
𝑖𝑖. 

Step 10: (For Scenarios 2 and 4) If convergence conditions met, go to Step 11, otherwise set 𝑡 =
𝑡 + 1 and go to Step 7. 

Step 11: 

• (For Scenario 1) Set 𝐸𝑇𝑖 = max
𝑗
 {𝐸𝑇𝑗

𝑖}. 

• (For Scenario 2) Set 𝐸𝑇̂𝑖 = ∑ 𝐸𝑇̂𝑗
𝑖

𝑗 . 

• (For Scenarios 3 and 4) Set 𝐸𝑇̂𝑖𝑖 = max
𝑗
 {𝐸𝑇̂𝑗

𝑖𝑖}. 

Step 12: (For Scenarios 1 and 2) If all possible protection sets have been reviewed, go to Step 15 

for Scenario 1 and Step 14 for Scenario 2. Otherwise, go to Step 13. 

Step 13: (For Scenarios 1 and 2) Set 𝑡 = 𝑡 + 1. 

• (For Scenario 1) Go to Step 7. 

• (For Scenario 2) Go to Step 5. 

Step 14: (For Scenario 2) For each 𝑗 ∈ {1, … ,𝑚}, set 𝑞𝑗 = 𝑞𝑗
𝑖  and obtain the final attack 

probability vector (𝑞𝑗). 
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Step 15: 

• (For Scenario 1) Set 𝐸𝑇 = min
𝑖
{𝐸𝑇𝑖}. 

• (For Scenario 2) Set 𝐸𝑇̂ = min
𝑖
{𝐸𝑇̂𝑖}. 

Step 16: 

• (For Scenario 1) Identify the set i with the minimum 𝐸𝑇𝑖 as the optimal set of stations to 

be protected by the system manager. 

• (For Scenario 2) Identify the set i with the minimum 𝐸𝑇̂𝑖 as the optimal set of stations to 

be protected by the system manager. 

Step 17: (For Scenarios 3 and 4) 

• Step 17-1: For station 𝑗 with the highest 𝐸𝑇̂𝑗
𝑖𝑖, set 𝑐̃𝑗

𝑖𝑖, and for other stations set 𝑐̃𝑗
𝑖𝑖 = 0. 

• Step 17-2: For each 𝑗 ∈ {1, … ,𝑚}, set 𝑐𝑗
𝑖𝑖 =

𝑖𝑖

𝑖𝑖+1
𝑐𝑗
𝑖𝑖 +

1

𝑖𝑖+1
𝑐̃𝑗
𝑖𝑖. 

• Step 17-3: Set 𝑐𝑚𝑎𝑥
𝑖𝑖 = max

𝑗
{𝑐𝑗
𝑖𝑖}. 

• Step 17-4: If 𝑐𝑚𝑎𝑥
𝑖𝑖 > 1, then for each 𝑗 ∈ {1,… ,𝑚}: 

o If 𝑐𝑗
𝑖𝑖 = 𝑐𝑚𝑎𝑥

𝑖𝑖 , set 𝑐𝑗
𝑖𝑖 = 1. 

o Otherwise, set 𝑐𝑗
𝑖𝑖 = 𝑐𝑗

𝑖𝑖 +
𝑐𝑚𝑎𝑥
𝑖𝑖 −1

j−1
 . 

Step 18: (For Scenarios 3 and 4) If the convergence condition is met, go to Step 19. Otherwise, 

set 𝑖𝑖 = 𝑖𝑖 + 1 and go to Step 6. 

Step 19: (For Scenarios 3 and 4) For each 𝑗 ∈ {1,… ,𝑚}, set 𝑐𝑗 = 𝑐𝑗
𝑖𝑖 and 𝑟𝑗 = 𝑟𝑗

𝑖𝑖. Obtain the 

final budget allocation vector (𝑐𝑗) and the final success probability vector (𝑟𝑗). 

Step 20: (For Scenario 4) For each 𝑗 ∈ {1, … ,𝑚}, set 𝑞𝑗 = 𝑞𝑗
𝑖𝑖 and obtain the final attack 

probability vector(𝑞𝑗). 

Step 21: 

• (For Scenario 3) 𝐸𝑇̂ = 𝑟𝑗 . 𝐸𝑇j. 

• (For Scenario 4) Set 𝐸𝑇̂ = ∑ 𝑟𝑗. 𝑞𝑗. 𝐸𝑇j𝑗 . 
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