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The uncontrolled horizontal sprawl of urban development and the lack of management in high-

rise construction, both inside and outside cities, highlight the need for an integrated modeling 

approach to urban development that addresses both horizontal and vertical dimensions. 

Existing models have struggled to simultaneously predict these two types of development, 

resulting in unreliable planning outcomes. 

This research addresses this gap by developing a novel approach that combines weighted linear 

combination (WLC) and artificial neural networks (ANN) models. The proposed model is 

designed to predict both horizontal and vertical development likelihoods simultaneously. 

The results indicated that the WLC model achieved 60% accuracy for horizontal development 

and 30% for vertical development. In contrast, the ANN model achieved 67% accuracy for 

horizontal development and 65% for vertical development, with an overall suitability accuracy 

of 66.3% for simultaneous modeling. 

This study contributes to the field by providing a robust and integrated model that effectively 

addresses both horizontal and vertical urban development. The approach enhances land use 

optimization and supports sustainable urban growth planning. 
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1. Introduction 

    Over half the global population now lives in urban 

areas, which occupy a small part of the Earth's surface but 

accommodate high population densities. This expansion has 

led to improper building construction and environmental 

degradation due to urban sprawl (Koziatek & Dragićević, 

2017; Nikbayan & Karimi, 2017). Effective land use 

planning can mitigate these impacts by regulating horizontal 

development and building heights (Taleai et al., 2007). 

Vertical development, or high-rise construction, 

involves increasing building floors or constructing multi-

story buildings in cities(Shamai, and Jahani, 2011). It 

transforms urban morphology and functions, promoting 

smart growth and sustainable development (Lin et al., 2014). 

This approach helps manage urban sprawl and protects 

natural resources (Razzaghi. Asal, Mahdavinia, 2010). 

However, poorly constructed high-rises can cause traffic 

congestion, overcrowding, and limited access to amenities 

(Karimi, 2010). 
 

Over time, changes occur under specific factors, 

influencing other phenomena. Factors impacting both 

horizontal and vertical urban development can be positive, 

promoting growth, or negative, hindering it. Research 

indicates that various factors influence both horizontal and 

vertical urban development. 

 

Over the past two decades, Cellular Automata (CA)-

based urban models have undergone significant 

development and have become essential tools in urban 

studies (Chen, 2022; Liu et al., 2021). These models are 

particularly valuable for scenario analysis, offering a 

framework to explore and understand the complexities of 

urban systems (Clarke, 2019; Feng et al., 2018). By 

leveraging the simplicity of CA, researchers have effectively 

modeled both horizontal and vertical urban development 

(Chen et al., 2019). A cellular automaton typically consists 

of a grid of cells, each in a specific state and influenced by 

a defined set of neighboring cells. However, traditional grid-

based models have inherent limitations, such as fixed cell 

sizes and an inability to accurately represent the irregular 

shapes of real-world land parcels (Chen et al., 2017). Most 

early research in urban development relied on these grid-

based approaches, which, while practical, often lacked 

precision when applied to complex urban landscapes. To 

address these shortcomings, vector-based CA models have 

been introduced (He et al., 2023). Unlike grid-based models, 

vector-based approaches simulate irregular land parcels 

more effectively, offering a more realistic representation of 

the urban environment (Abolhasani et al., 2016; Nikbayan 

& Karimi, 2017). These advancements enhance the accuracy 

of urban studies by incorporating the diverse geometries of 

 

 

 
1 Three-dimensional 

urban landscapes, which are critical for understanding 

development patterns and spatial dynamics (Abolhasani et 

al., 2016; Chen et al., 2020; Chen et al., 2017). In research 

(Koziatek & Dragićević, 2017), irregular parcels were 

developed using vector-based GIS data and CA methods to 

simulate land use change. This approach addresses the 

limitations of simulation models that use square cells to 

represent cadastral parcels, which often fail to accurately 

represent urban fabrics. Additionally, Chen Li's research 

(Chen et al., 2017) highlights that vector models define 

parcels using polygons or shapes that precisely reflect the 

actual land surface. By bridging the gap between simplicity 

and precision, vector parcel-based models mark a significant 

evolution in urban modeling, providing researchers with 

robust tools for analyzing and predicting urban growth with 

greater accuracy and detail. 
 

To address the limitations of traditional CA models in 

capturing the complexity of urban systems, researchers have 

integrated them with various advanced techniques. Standard 

CA models often struggle with accurately simulating 

multifaceted urban processes, such as land-use change, 

urban sprawl, and building height estimation, due to their 

simplistic rule-based structure and limited ability to process 

diverse influencing factors. To enhance their efficiency and 

predictive capability, CA models have been combined with 

methods like artificial neural networks (ANNs)(He et al., 

2017; Shafizadeh-Moghadam, 2019), random forests (Zhao 

et al., 2022), logistic regression (Huang & Stouffs, 2024; Li 

et al., 2017; Rienow & Goetzke, 2015), weighted linear 

combinations (Nikbayan & Karimi, 2017), multi-criteria 

decision making (Koziatek & Dragićević, 2017; Liang et al., 

2021; Bakhtiarifar et al., 2010), if-then rules (Lin et al., 

2014), ant colony optimization (Huang & Stouffs, 2024; Ma 

et al., 2017), genetic algorithms (Huang & Stouffs, 2024; 

Zarei et al., 2012), and fuzzy models (Sheikhi and 

Roshanas,2015). In Shenzhen, a densely built city, (Zhao et 

al., 2022) developed a 3D 1  simulation model combining 

ANNs and random forests. The model predicted horizontal 

development probabilities and vertical building heights 

based on 17 driving factors, encompassing natural, 

ecological, socio-economic, and transportation variables. 

Similarly, in Wuhan, China, (He et al., 2017), employed a 

hybrid approach combining Backpropagation ANNs 

(BPANN) with case-based reasoning and organized CA 

(CBRSortCA). This model prioritized non-urban cells based 

on development potential and used neural networks to 

estimate building heights, updating predictions iteratively to 

ensure accuracy. By overcoming the limitations of 

traditional CA frameworks, these models effectively 

simulate both horizontal and vertical urban development, 

accommodating diverse influencing factors and dynamic 

spatial interactions. This integration not only improves the 
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accuracy of urban growth predictions but also expands the 

applicability of CA models to multifaceted urban planning 

and decision-making scenarios. 
 

While integrating advanced methods such as ANN with 

CA has improved urban growth modeling, existing 

approaches often focus on either horizontal or vertical 

development separately, failing to comprehensively capture 

both. Most models apply ANNs to predict building heights 

independently or use CA frameworks for horizontal 

expansion, rarely integrating these methodologies into a 

cohesive framework addressing both dimensions of urban 

development. Moreover, some studies have incorporated 

factors like land use, economic considerations, and 

accessibility, but often overlook their simultaneous 

influence on horizontal and vertical growth or lack the 

spatial detail needed for real-world urban dynamics. The 

complexity and irregularity of urban land parcels challenge 

traditional grid-based CA models. Although vector-based 

CA approaches have improved simulations of irregular land 

shapes, many do not combine these advancements with 

predictive tools like ANN for vertical growth estimation. 
 

This study aims to address the limitations in current 

urban development modeling by proposing a comprehensive 

framework that models both horizontal and vertical urban 

development using a vector-based CA approach combined 

with ANNs. The main contribution is the integration of 

physical, economic, and accessibility factors to assess urban 

suitability, along with ANN-based methods for predicting 

vertical development (building heights). This approach 

improves the accuracy of urban growth modeling and 

provides valuable insights for urban planning, as 

demonstrated through a case study in Karaj. 
 

The paper is structured as follows: Section 2 outlines the 

methodology, Section 3 implements and results, Section 4 

discusses the results and findings, and Section 5 concludes 

with the model's practical implications for urban planning, 

key challenges, and future research directions. 

2. Methodology 

    The framework for modeling both horizontal and 

vertical urban development, as proposed in this study, is 

illustrated in Figure 1.  
 

The methodology comprises several stages: First, 

horizontal development potential is calculated using a 

weighted linear combination model and an artificial neural 

network, considering physical suitability, neighborhood 

effects, accessibility, and economic factors. Next, vertical 

development potential is determined based on 20 sub-

criteria from building characteristics, accessibility, 

population, and economic factors. The third stage evaluates 

overall urban parcel suitability through both simultaneous 

and non-simultaneous development approaches, 

incorporating both horizontal and vertical potentials. The 

fourth stage calculates regional demand using growth data 

from 2011 to 2021. Finally, parcel allocation is performed 

based on demand levels, overall suitability, and the number 

of floors indicated in the vertical potential map. 

The mathematical formulations and equations used in the 

methodology are provided in Appendix A for clarity and 

reference. 

 

Figure 1. Methodology Workflow 

 

2.1. Factors Influencing Urban Development 
 

Numerous studies have explored horizontal and vertical 

urban development, identifying six key criteria influencing 

urban growth: 
 
 
2.1.1. Physical Suitability 
 

Physical suitability is determined by inherent land 

conditions such as regional elevation, steep slopes, and flood 

hazards, which restrict growth in certain locations (Koziatek 

& Dragićević, 2017). The physical suitability of each parcel 

is calculated based on its average slope, which is classified 

to indicate suitability for urban development (Abolhasani et 

al., 2016).  
 
 
2.1.2. Neighborhood 

Neighborhood effects are typically calculated using CA 

models, which consider the various land use types 

surrounding each parcel (Liang et al., 2021). The future 

status of a parcel is influenced by its neighboring parcels; a 

factor developers consider [22 In vector CA models, 

neighborhoods are defined similarly to non-vector CA, with 

a range specified as adjacent to or at a specific distance from 

the central parcel. A common definition of neighbors 

includes topologically adjacent parcels, as illustrated in 
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Figure 2, showing the first, second, and third neighborhoods 

(Chen et al., 2017). 

 

 

(a) First radius (b) Second radius (c) Third radius 

 

Figure 2. A representation of the effect of the first, second, 

and third neighborhoods (Chen et al., 2017). 

 

To calculate the neighbourhood effect map for the 

desired parcel, consider the external outcomes (both positive 

and negative) of all parcels within the neighbourhood radius 

as detailed in Equation A1 (Appendix A), and integrate them 

(Nikbayan & Karimi, 2017). 

The magnitude of the external outcome is calculated 

based on three parameters: area, distance, and the positive 

or negative effects of the land uses (Abolhasani et al., 2016). 

The magnitude of the external outcome in Equation A2, 

examined in three categories: concentration, compatibility, 

and dependency (Abolhasani et al., 2016).  

The neighborhood effect of each urban parcel is 

calculated as the sum of the effects of neighboring parcels 

across the three categories of concentration, compatibility, 

and dependency. The external outcomes are analyzed 

separately in Equations A3, A4, and A5 (Nikbayan & 

Karimi, 2017). 

This research utilizes the compatibility and dependency 

matrices of residential use from Table 1 and Table 2, 

respectively, as in the study (Ebrahimi et al., 2021). To 

calculate concentration, plots with residential use within the 

neighborhood distance are selected, and the effects of area 

and distance are combined (Nikbayan & Karimi, 2017). The 

weights for compatibility, dependence, and centralization 

are calculated based on expert knowledge (Ebrahimi et al., 

2021). 

Table 1. Residential Use Compatibility Matrix 

Educational Industrial Commercial Residential Land Use 

0.42 0.04 0.42 0.42 Residential 

Facilities Sports Religious Health Land Use 

0.42 0.08 0.42 0.42 Residential 

 

 

Table 2. Residential Use Dependency Matrix 

Educational Industrial Commercial Residential Land Use 

0.42 0.04 0.42 0.42 Residential 

Facilities Sports Religious Health Land Use 

0.04 0.18 0.28 0.42 Residential 

 

2.1.3. Accessibility  

Accessibility is considered in terms of Euclidean or 

network distance.  According to research (Rienow & 

Goetzke, 2015), accessibility is weighted based on road 

network speed limits, with distances determined as the 

shortest path lengths (Equation A6). This method allows 

calculating the distance between each parcel and other 

points. To calculate the accessibility of each parcel, the 

network distance and an importance factor are used. 

Accessibility is categorized into three types: access to roads, 

transportation hubs, and city centers, such as economic, 

industrial, educational, or recreational hubs, each playing a 

crucial role in urban development  (He et al., 2017). 

 

2.1.4. Economic Factors  

Economic factors, such as housing prices, play a crucial 

role in shaping urban development, often reflecting the level 

of economic growth in a region. Land prices, typically 

collected at a regional scale, may be available for specific 

parcels, while others are estimated through interpolation.   

 
 
2.1.5. Building Characteristics   

The vertical characteristics of buildings are crucial in 

modeling urban vertical development. Building height 

(number of floors), building density, and land geometry are 

interrelated. The geometric characteristics of parcels, 

significantly influenced by the land shape, are measured by 

Equations A7 (Chen et al., 2017). 
 

Building height, a key density variable, is crucial for 

organizing the urban landscape and must be developed 

considering neighboring buildings (Koziatek & Dragićević, 

2017; Lin et al., 2014; Munshi et al., 2014; Nikbayan & 

Karimi, 2017; Taleai et al., 2007; Shamai, and Jahani, 

2011). In vertical urban modeling, buildings are classified 

by the number of floors, and the height of the plot is 

calculated using the neighboring buildings' floor counts, 

with the neighborhood radius being particularly important 

(Koziatek & Dragićević, 2017). 
 
 
2.1.6. Population  

Population is a key factor in vertical urban development, 

reflecting social dispersion and population density 

(Koziatek & Dragićević, 2017). Larger populations drive 

higher building heights and vertical development (Kuru & 

Yüzer, 2021). Urban development often involves high-

density vertical growth, and increasing population density 

(Chen, 2022).  

 
 
2.2. Weighted Linear Combination Model  

The weighted linear combination (WLC) model is a 

straightforward approach, determined by summing 

influencing factors with specified weights. In the study, this 

model provided alternative solutions for the development 

potential (Ma et al., 2017).  The criteria weights were 

derived through statistical analysis of the relationships 

between current values and the criteria. These weights were 

evaluated using the WLC method, and the model's resulting 
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values were calculated accordingly. Ultimately, the potential 

of each piece was determined using the WLC method (Kuru 

& Yüzer, 2021), where influencing factors were combined 

as illustrated by Equation A8. The weights have been chosen 

such that their sum equals one (∑ 𝑤𝑖
𝑛
𝑖=1 = 1). 

 
2.3. Artificial Neural Network Model 

ANNs are a computational method that predicts output 

responses from complex systems, inspired by biological 

nervous systems. While many ANNs can determine urban 

potential (Shafizadeh-Moghadam et al., 2017; Tayyebi & 

Pijanowski, 2014; Xu et al., 2024), few have been presented, 

with urban CA models' calibration relying more on theory 

than real-world applications. ANNs, a common architecture, 

consist of an input layer, one or more hidden layers, and an 

output layer. In this study, the input layer connects to the 

output layer through the hidden layer, with nodes equal to 

the influencing factors on urban development. The output 

layer indicates the developed parcels or the number of 

floors. Figure 3 illustrates this study's ANN. The model 

features four input neurons, one hundred hidden neurons, 

and one output neuron, with weights adjusted at a learning 

rate of 0.05. 

 

Figure 3. Structure of Artificial Neural Network 

 

2.2. Potential for Horizontal Urban Development 

Research on horizontal urban development has identified 

four key factors influencing development: physical 

suitability, neighborhood, accessibility, and economic 

factors. Various models, notably the weighted linear 

combination (WLC) model, simulate horizontal urban 

development by determining the potential of each urban 

parcel based on these criteria. The weights of the criteria are 

derived through statistical analysis (Kuru & Yüzer, 2021), 

evaluated, and combined as per Equation A9 (Nikbayan & 

Karimi, 2017). 
  
2.3. Potential for Urban Vertical Development  

This research uses the weighted linear combination 

model and the ANN model to determine vertical 

development potential. In the WLC model, influencing 

factors are combined with weights to accurately determine 

building heights, while sub-criteria are combined according 

to specified weights to assess vertical development potential 

for non-urban plots (Equation A10). 

 In this research, 20 specified sub-criteria (Appendix. B) 

are input into the artificial neural network model, which 

predicts the number of building floors based on defined 

weights. The weights are adjusted each time a plot is 

selected to improve the model's accuracy. This artificial 

neural network model features a hidden layer with 100 

neurons and a learning rate of 0.05, optimized through trial 

and error to enhance accuracy. 
 
2.4. Overall Suitability of Urban Plots   

After determining horizontal and vertical urban 

potential, establishing the overall suitability of urban plots 

is crucial, as it determines the development likelihood for 

each plot (Zhao et al., 2022). Most studies have used non-

simultaneous development, focusing on horizontal potential 

and using vertical potential only for building height 

calculation (Chen, 2022). This means plots with the highest 

horizontal potential are chosen, with building height based 

on vertical potential (Nikbayan & Karimi, 2017). However, 

research indicates that horizontal and vertical expansion are 

interconnected, leading to a need for simultaneous 

development assessment. This approach combines 

horizontal and vertical potential using a weighted linear 

combination, specifying parcel development likelihood and 

determining building height, prioritizing high-rise buildings, 

and preventing low-rise development. Simultaneous vertical 

and horizontal urban development addresses the weaknesses 

of traditional CA models. The model in this research can 

predict urban growth in both dimensions simultaneously, 

though it is a simple combination. 
 
2.5. Allocation 

Allocation is a crucial stage in urban development 

modeling. In this study, four urban parcel allocation maps 

are created using the weighted linear combination (WLC) 

model and the artificial neural network (ANN) model, based 

on simultaneous and non-simultaneous development 

methods. The process involves calculating horizontal and 

vertical urban potential using either the WLC model or 

ANNs, determining overall suitability using simultaneous or 

non-simultaneous methods, selecting the plot with the 

highest overall suitability, calculating its height based on 

vertical development potential, and subtracting the 

developed plot's area from the demand. This process repeats 

until the current year's demand is met. Developed plots from 

the previous year are converted into urban plots for the next 

year, affecting several factors. Studies show that land use 

alters the neighborhood effect of adjacent plots, and building 

height impacts the vertical development potential of 

neighboring plots. Therefore, the neighborhood effect and 

adjacent building heights must be recalculated annually. 

This process continues for ten years, with model outputs 

compared. 

 

2.6. Model Accuracy Assessment 
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CA models are evaluated using data from different 

periods, making them valuable for analyzing the 

spatiotemporal dynamics of urban expansion. The overall 

urban suitability from the WLC model and the ANN model 

is assessed over ten years using both simultaneous and non-

simultaneous methods. A cross matrix is formed between 

the reference and simulated maps in the final year to 

calculate overall accuracy. Urban development changes 

based on differences between future land use demand and 

current land use. 
 
 
3. Implementation and Results  
 

The implementation of the urban horizontal and vertical 

development model involves examining the study area, 

calculating factors influencing urban development, 

assessing horizontal and vertical urban development 

potential using WLC and ANN, determining overall 

potential, allocating non-urban plots, and evaluating the 

model. Further details will be explained. 
 
3.1. Study Area 
 

Karaj, the capital of Alborz Province, is the twenty-

second most populous city in the Middle East. Formerly part 

of Tehran Province until 2010, Karaj benefits from its 

strategic location, industrial towns, economic position, and 

proximity to Tehran, making it the second most immigrant-

receiving city in Iran. It spans approximately 220 square 

kilometers. The 2016 census recorded its population at 

1,592,492, with a density of 7,500 people per square 

kilometer. Additionally, Karaj has one of the highest 

population growth rates among Iranian metropolises at 4.7 

percent annually (Figure 4). 
 

This research focuses on the 400-Dastgah 

neighbourhood in region 9 of Karaj, covering 1.15 square 

kilometres with an average elevation of 1300 meters. The 

area includes residential, commercial, industrial, 

educational, health, religious, and sports land uses. A 

highway divides it into two halves, with additional highways 

to the north and south for better access. The main street runs 

east-west, and the tallest buildings, at 13 stories, are located 

adjacent to this main street. 

 

 

Figure 4. Study area 

 

 

3.2. Calculation of Factors Influencing Urban Development 
 

This section will address the calculation of factors 

influencing horizontal and vertical urban development based 

on the six main criteria, with data sourced from the 

Municipality. 
 
3.2.1. Physical Suitability 

The elevation map of the study area was derived from 

elevation points and the DEM of the region, showing an 

elevation range from 1320 to 1342 meters above sea level. 

According to management regulations, this range does not 

restrict horizontal development (Abolhasani et al., 

2016)Thus, the area is assessed only for slope. The slope 

map, derived from the elevation map, indicates variations 

from 0 to 13 degrees. Most of the area has a slope close to 

zero degrees, with a small portion exceeding 10 degrees. To 

determine physical suitability, the slope map is 

standardized. Following the approach in (Abolhasani et al., 

2016). Different slope degrees are ranked according to Table 

3. 

Table 3. Ranking different degrees of  (Abolhasani et al., 2016) 

Slope (Degree) Rank 

0-5 4 

5-10 3 

10-15 1 

 

After standardizing the slope map, a physical suitability 

map is created to combine with other influencing factors. 

Figure 5-a illustrates the physical suitability of each urban 

parcel, indicated on a scale from 0 to 1. 
 
 
3.2.2. Neighborhood 
 

This factor, determined based on land use type, area, and 

the distance between parcels, is categorized into three 

groups: compatibility, dependency, and concentration, as 

defined by Equations (3), (4), and (5). The weights for these 

categories, 0.306, 0.118, and 0.567 respectively, are based 

on expert knowledge to calculate the neighborhood effect 

(Ebrahimi et al., 2021). Figure 5-b illustrates the 

neighborhood map for urban parcels, where the 

concentration of this effect is observed in the center of the 

area. 

 

3.2.3. Accessibility 
 

The accessibility of each land parcel is determined by its 

distance to roads, stations, and centers. Roads are classified 

into three categories: highways, main roads, and secondary 

roads, each weighted as per Table 4. The accessibility maps 

are then calculated using the weighted linear combination 

method based on these weights. 
 

Studies indicate that access to metro stations, taxis, 

buses, and terminals promotes both horizontal and vertical 

urban development, particularly in commercial, industrial, 

healthcare, and recreational centers. Accessibility to roads, 

stations, and centers is calculated separately and then 
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combined into a final accessibility measure using a weighted 

linear combination model. Figure 5-c displays the final 

accessibility map of the urban parcel. 

 

Table 4. Weight of road access surfaces (Lin et al., 2014).  

Category weight 

Highway Access 4 

Main Road Access 3 

Secondary Road Access 1 

 

3.2.4. Economic Factors   

Land price is another influential factor in modeling 

urban development. Figure 5-d shows the economic value of 

urban parcels, classified into four categories from 0 to 1. 

Parcels in the eastern section, indicated by darker colors, 

have a higher economic value. 

 
 
3.2.5. Building Characteristics   

The geometric shape of a parcel, influenced by its 

environment and area, significantly affects its suitability for 

vertical urban development (Huang, 2023; Kwinta & 

Gniadek, 2017). Parcels that are too large, too small, or 

irregularly shaped are unsuitable for such development. 

Figure 5-e shows that most parcels in the area have 

geometric shapes between 0.2 and 0.6, making them suitable 

for vertical development. Building density is another crucial 

factor, with high-density areas featuring small parcels 

suitable for taller buildings. The height of adjacent buildings 

also impacts the height of construction sites. 

This study uses three height categories within a 100-

meter radius for modeling. The first category calculates the 

   

(a) physical suitability map (b)  Neighborhood effect map (c)  Accessibility map 

 

   

(d)  Economic map (e)  Geometric shape map (f)  Population map 

 

   

(g)  Maximum building height 

map 

(h)   Average building height map (i)  Distance to building height ratio 

map 

 

 

Figure 5. Maps of factors influencing horizontal and vertical urban development 
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maximum building height in the vicinity, highlighting 

northern and southern sites within 100 meters of the tallest  

buildings in Figure 5-g, indicating potential for high-rise 

development. The second category calculates the average 

building height within a 100-meter radius by summing the 

heights of urban parcels and dividing by their number, 

ensuring equal impact. Figure 5-h shows the average 

building height, with significant height values in 

southwestern parcels due to the prevalence of 5-story 

buildings. The third category calculates the ratio of distance 

to the height of adjacent buildings, using distance to 

distinguish between parcels near or far from tall buildings. 

Figure 5-i illustrates the distance-to-height ratio of adjacent 

buildings. 

 
 
3.2.6. Population   
 

In this study, regional population data are generalized for 

each parcel of land. Population density, calculated as the 

ratio of population to area, shows that small areas with large 

populations have high density. Ultimately, both population 

and population density for each parcel are determined. 

Figure 5-f displays the population data. 

 
3.3. Calculation of Urban Horizontal Development Potential 

 

The WLC model combines factors influencing 

horizontal development with specific coefficients: 0.1 for 

physical suitability, 0.5 for neighborhood, 0.3 for 

accessibility, and 0.1 for economic factors, as shown in 

Figure 7-a. The model's accuracy, evaluated from the cross 

matrix of predicted and actual maps, is 60%. The ANN 

model inputs four factors: physical suitability, 

neighborhood, accessibility, and economic factors, using 

systematic random sampling for training (70%) and 

evaluation (30%). Weights are adjusted with a 

backpropagation algorithm at a learning rate of 0.05 until 

stabilization. Figure 7-b shows the potential horizontal 

development map from the ANN model, which correctly 

developed 67% of the parcels. This model was tested 

multiple times with consistent results, and its accuracy was 

determined using the cross matrix from predicted and actual 

maps. Figure 6 compares the degree of conformity of 

developed horizontal parcels from both models and the 

actual amounts. The red represents the WLC model, the blue 

is the ANN model, and the green is the actual parcels. The 

ANN model demonstrates higher credibility and accuracy in 

determining parcel potential. Both models are used to 

evaluate overall suitability and final results in this study. 

 

Figure 6. Comparison chart of horizontal development 

potential models 

 

 
3.4. Calculation of Urban Vertical Development Potential   
 

The study area contains buildings ranging from one to 

eight stories, with two 13-story buildings in the northern 

part. In the WLC model, sub-criteria are combined with 

assigned weights, determined through trial and error for 

optimal accuracy in predicting building heights. The output 

is a map showing the predicted number of floors for each 

urban plot (Figure 7-c), with heights ranging from 1 to 5 

stories. The model's accuracy is evaluated by comparing 

predicted and actual heights using a cross matrix, achieving 

30% accuracy in exact predictions and 60% with a 

maximum error of one floor, demonstrating its reliability in 

determining vertical development potential. For the ANN 

model, 20 sub-criteria from each plot are input. The model 

calculates plot heights based on initial weights, compares 

them with actual heights, and adjusts the weights using a 

backpropagation algorithm with a learning rate of 0.05 until 

stabilization. Using systematic random sampling, 70% of 

the data is for training and 30% for evaluation. Figure 7-d 

shows the number of floors obtained from the ANN model. 

The evaluation, derived from the confusion matrix 

comparing predicted and actual heights, indicates 65% 

accuracy for exact building heights and 84% accuracy with 

a one-floor error. Comparing the simulated floor number 

maps from the WLC and ANN models with actual floor 

numbers reveals that the ANN model has greater capability 

in modeling building heights. Figure 8 shows this 

comparison, with the blue and red lines representing the 

WLC and ANN models, respectively, and the green line 

indicating actual floor numbers. 
 

In the region, there are more plots with similar floor 

numbers (e.g., 1253 one-story plots) than others. ANN can  
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More accurately predict these types of plots, but 

becomes less reliable in modeling plots with fewer numbers, 

particularly those with more than five floors. 

 

3.5. Calculation of Overall Suitability of Urban Plots  
 

Overall suitability determines the likelihood of 

developing each vacant plot. This study uses a weighted 

linear combination (WLC) model and an artificial neural 

network (ANN) model to calculate urban overall suitability 

annually, creating a ten-year urban development map. In 

non-simultaneous development, overall suitability is based 

on the horizontal potential of each plot, with vertical 

potential determining the building height. This approach 

does not require specific calculations for overall suitability, 

as horizontal and vertical potentials are used directly. 

Simultaneous development calculates overall suitability by 

combining horizontal and vertical potentials, allowing for a 

synergistic simulation of three-dimensional urban 

expansion. The combined potentials, with specific 

coefficients, determine the overall suitability of each plot. 

As development progresses annually, these potentials 

change, necessitating yearly recalculations of overall 

suitability. In this study, horizontal and vertical potentials 

are combined in the WLC model with weights of 0.66 and 

0.33, respectively, to create the overall suitability map for 

simultaneous development. 

 

 

  

(a) Map of horizontal development potential obtained 

from the weighted linear combination model  

 

(b) Map of horizontal development potential obtained 

from the artificial neural network model 

  

(c) Map of vertical development potential obtained from 

the weighted linear combination model 

 

(d) Map of vertical development potential obtained from 

the artificial neural network model 

Figure 7. Maps of horizontal and vertical potential 
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Figure 8. Comparison chart of the number of floors 

modeled with actual height 

 

3.6. Calculation of Allocation 
 

After determining the overall ratio, the allocation for 

each vacant plot is calculated based on the estimated demand 

in the area. This demand, derived from urban growth over 

the past five years, showed a 7% increase from 2006 to 2011. 

The calculated percentage is used to estimate the demand for 

the next ten years, which is 20,000 square meters from 2011 

to 2021, averaging 2,000 square meters per year. 
 

The allocation process occurs in four stages based on 

demand. First the overall urban ratio is determined for 

vacant plots using simultaneous or non-simultaneous 

development methods, and they are sorted by the highest 

ratio. Second, plots with the highest ratios are selected, and 

their number of floors is determined based on vertical 

development potential. Third, the developed plot area is 

multiplied by the number of floors and subtracted from the 

demand. If demand remains, the stages are repeated for other 

vacant plots until the annual demand is met. Finally, the 

potential for horizontal development, vertical development, 

and the overall ratio are adjusted, and the stages are executed 

for the following year. 
 

Figure 9 shows allocation maps of urban plots using both 

development methods in the WLC and ANN models. The 

yellow plots represent residential plots constructed before 

2011, green plots for the first five years, blue for the second 

five years, and red for undeveloped plots. Figure 9-a 

illustrates non-simultaneous development using the WLC 

model, showing developed plots adjacent to highways, 

compensating for 20,000 square meters of demand with 45 

plots. Figure 9-b shows simultaneous development using the 

WLC model, with 41 plots meeting the demand, leaving 

some vacant plots undeveloped in residential areas. Figure 

9-c depicts non-simultaneous development using the ANN 

model, with 43 allocated plots in eastern and western 

residential areas. Figure 9-d displays simultaneous 

development using the ANN model, prioritizing taller plots, 

meeting the demand with 36 plots. 

4. Discussion 

The horizontal sprawl of urban development and the lack 

of management in high-rise construction necessitate 

modeling urban development in both horizontal and vertical 

dimensions. Vertical development, both within and outside 

the city, positively impacts the area by preventing excessive 

horizontal expansion and conserving valuable land. 
 

The objective of this research was to develop a 

comprehensive model capable of accurately predicting both 

horizontal and vertical urban development using a 

combination of weighted linear combination (WLC) and 

artificial neural network (ANN) models. The contribution 

lies in the novel approach of integrating simultaneous and 

non-simultaneous development methods within these 

models to enhance the accuracy and reliability of urban 

development predictions. 
 

The results of this research are divided into two 

categories. The first category examines the simultaneous 

and non-simultaneous development of urban parcels using 

the WLC and ANN models. Both models show significant 

similarity in the developed parcels, indicating that most 

parcels developed using the simultaneous method were also 

developed in the non-simultaneous method. However, in the 

simultaneous development method, taller parcels develop 

earlier than others with the same horizontal potential, a 

phenomenon not seen in the non-simultaneous method. If 

urban development had only occurred in the first five years, 

there would have been a significant difference between the 

two methods. Additionally, fewer developed parcels were 

observed in the simultaneous method compared to the non-

simultaneous method, indicating that using the simultaneous 

method yields better results in determining parcel suitability 

(Figure 10). 
 

The second category involves conclusions from the 

WLC and ANN models. The WLC model achieved 60% 

accuracy in determining horizontal development potential 

and 30% in determining vertical development potential, with 

an overall urban suitability accuracy of 50% using the 

simultaneous method. In contrast, the ANN model 

demonstrated 67% accuracy in determining horizontal 

development potential, 65% in vertical development 

potential, and 66.3% in overall urban suitability using the 

simultaneous method. Therefore, the ANN model and the 

simultaneous development method demonstrate better 

results in determining urban development potential. 

 

5. Conclusion   
 

The uncontrolled horizontal sprawl of urban 

development and the lack of management in high-rise 

construction, both inside and outside cities, highlight the 

need for an integrated modeling approach to urban 

development that addresses both horizontal and vertical 

dimensions. This research identifies the necessity to 
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optimize land use and prevent the excessive conversion of 

valuable land into urban space. 

 
 

To address this issue, a comprehensive model was 

developed, capable of accurately predicting horizontal and 

vertical urban development. This model combines a 

weighted linear combination (WLC) and artificial neural 

network (ANN) models, integrating simultaneous and non-

simultaneous development methods to enhance prediction 

accuracy and reliability. The research findings indicated that 

the WLC model provided moderate accuracy in estimating 

urban development potential. It effectively captured the 

horizontal development patterns and offered insights into 

vertical growth trends. However, the ANN model exhibited 

superior performance, delivering more precise and reliable  

predictions for urban development. Its findings support 

policymakers in anticipating growth, optimizing resource 

allocation, and mitigating the environmental and economic 

impacts of urban expansion. The model identifies areas for 

sustainable vertical development, limiting sprawl and 

preserving land, while informing targeted infrastructure 

improvements to ensure balanced growth. 

Future studies should consider incorporating older 

parcels with long construction histories to minimize the 

conversion of vacant lots into urban areas. By focusing on 

constructing taller buildings instead of replacing old, low-

rise parcels, vertical urban development can be modeled 

more effectively, optimizing land use and accommodating 

urban growth sustainably. Additionally, future research 

should evaluate the neighborhood radius for determining 

horizontal development potential and the height radius for 

vertical development with varying distances. The impact 

coefficients of each factor should range between -1 and 1 to 

account for factors with both positive and negative impacts. 

It is also recommended to use the random forest model for 

determining horizontal and vertical potential and compare 

its performance with the WLC and ANN models. 

 

 

(a) Non-Simultaneous development map with weighted 

linear combination model 

 

(b)Simultaneous development map with weighted linear 

combination model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Non-Simultaneous development map with artificial 

neural network model 

(d) Simultaneous development map with an artificial neural 

network model 

 

Figure 9. Urban parcel allocation 
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Appendix A. Equations 

al ablkd

k

N N (A1) 

The neighbourhood effect on the target parcel. Nal 

Indicates the magnitude of the external spatial outcome of 

parcel b with land use k, located at distance d from the 

target parcel a with land use l. 

Nablkd 

 

 

max

min

exp exp
1000

b

a ba

ablkd ablk

A

A d
N I

A

A


  

   
   

 
    

    
   
   

 (A2) 

The magnitude of the external outcome. Nablkd 

The area of the target parcel. Aa 

The area of the neighbouring parcel. Ab  

The largest parcel areas in the study area. Amax 

The smallest parcel areas in the study area. Amin 

The distance between the target and neighbouring parcels. dba 

The normalized exponential function. exp 

The degree of attraction or repulsion of parcel b with land 

use k on target parcel a with land use i. 
Iablk 

 

 

 

c

al lkd

k

C Nab  
(A3) 

The dependence target parcel "a" with the user 

"l." 
Cal 

The magnitude of the external outcome. Nablkd 
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Figure 10. Comparison of Simultaneous and Non-Simultaneous Urban Spatial Suitability Modeling 
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The centralization target parcel "a" with the user "l." Dal 

The magnitude of the external outcome. Nablkd 

 

 
p

al lkd

k

P Nab  (A5) 

The compatibility target parcel "a" with the user "l." Pal 

The magnitude of the external outcome. Nablkd 

 

 

1

1

j

aj
D

A




 
(A6) 

The accessibility of parcel a for user j. Aaj 

Denotes the network distance from each property parcel 

to the nearest desired point. 
D 

Indicates the importance of user j. σj 

 

 

i
i

i

l
c

a
 (A7) 

Indicates the plot's shape. ci 

The perimeter of the plot. li 

The area of the plot. ai 

 

 

1

1

n

i i

i

n

i

i

S

X W

W










 (A8) 

The output value of the model. S 

The influencing factors on the model's output. xi 

The weights affecting the model's output. wi 

The number of influencing factors. n  

 

 

 

ij S ij N ij A ij P ij
TP W S W N W A W P     (A9) 

The potential for horizontal urban development for 

property parcel i with usage j. 
TPij 

The physical suitability for property parcel i with usage j. Sij 

The neighborhood effect for property parcel i with usage j. Nij 

The accessibility for property parcel i with usage j. Aij 

The land price for property parcel i with usage j. Pij 

The relative importance of physical suitability. WS 

The relative importance of neighborhood effect. WN 

The relative importance of accessibility. WA 

The relative importance of price. WP 

 

 

(A10) 
1

n

i i

i

S X W


  

S The potential for vertical development. 

xi The influencing factors. 

wi The weight factors. 

 

 

Appendix B. List of Sub-Criteria  

Row criteria Sub-criteria 

1 

Building 

Features 

Parcel Perimeter 

2 Parcel Area 

3 Persian Shape 

4 Existing Building Density 

5 Maximum Height of Adjacent Building 

6 Average Height of Adjacent Building 

7 Ratio of Distance to Height of Adjacent 

Building 

8 

Accessibility 

Subway 

9 Main Road 

10 Highway 

11 Industrial Centres 

12 Medical Centres 

13 Recreation Centres 

14 Metro Station 

15 Taxi Station 

16 Bus Station 

17 Terminal 

18 
Population 

Population 

19 Population Density 

20 Economic Land Price 
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