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This study aims to tackle challenges in change detection within Very High Resolution (VHR) 

satellite imagery, such as complex feature interactions, noise sensitivity, and detailed land use 

alterations, by developing a robust detection methodology using bi-temporal images. 

We propose a novel approach integrating object-based, feature-based, and dual learning-

based techniques. Initially, VHR images are segmented separately to reduce complexity and 

preserve pixel relationships. Spectral bands are then enhanced with textural, mathematical, 

and geometrical features extracted from paired images for a thorough conceptual analysis. 

Finally, we apply two supervised classifier categories—individual and ensemble—to produce 

a binary change map distinguishing changed and unchanged regions. 

Experimental evaluation on two VHR datasets shows our method significantly surpasses 

traditional techniques. It achieves an F1-score of 99.02% and an Intersection over Union 

(IoU) of 96.78%. The generated change maps feature numerous homogeneous, detailed areas, 

confirming effective detection performance. 

The integration of object-based, feature-based, and learning-based approaches results in a 

comprehensive feature extraction framework that enhances change detection accuracy. Our 

method contributes detailed and reliable change maps, representing a significant 

advancement in the field of VHR satellite image analysis. 
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1. Introduction 

Identifying land cover evolutions is a crucial undertaking 

that provides invaluable insights into environmental 

dynamics. Various types of changes, including shifts in land 

use, alterations in climate patterns, and the occurrence of 

natural disasters have profound implications for 

ecosystems, human societies, and global well-being. 

Monitoring these changes allows us to assess the impact of 

human activities on the environment, identify emerging 

threats, and implement proactive measures to mitigate 

potential risks. It also facilitates the tracking of long-term 

trends, aiding us in promoting environmental conservation 

(Z. Lv et al., 2022). 

Remote Sensing (RS) technology provides a wide range 

of data with extensive coverage and short revisit times, 

which has evolved into a primary resource for continuous 

environmental monitoring and detecting changes on the 

land surface (Parelius, 2023).  

Change Detection (CD) is the process of identifying 

differences by analyzing the variability in a set of images 

captured at different times of the same geographical area 

(H. Chen et al., 2022). The goal is to monitor and 

understand changes in land surface or other phenomena by 

observing the differences in multi-temporal images. 

The utilization of remote sensing data in change detection 

has found widespread applications including, but not limited 

to, land cover mapping, environmental monitoring, disaster 

damage assessment, urban expansion investigation (Zhang 

et al., 2020), vegetation change detection, evaluation of 

desertification and deforestation, and fire detection 

(Zerrouki et al., 2021), and other land management 

practices (Shafique et al., 2022). These applications also 

extend to recognizing climate change indicators such as 

heatwaves, droughts, floods, hurricanes, and more (L. 

Khelifi & M. Mignotte, 2020). 

Advancements in the RS imaging framework and 

increased accessibility to Very High Resolution (VHR) 

satellite images have significantly broadened the scope for 

employing change detection in high-resolution bi-temporal 

images across diverse domains. With their exceptionally 

high spatial resolution, VHR images are particularly well-

suited for precisely capturing Earth's surface phenomena 

and monitoring changes over time. However, despite their 

efficiency, working with VHR images presents challenges; 

as spatial resolution increases to capture intricate details, 

the reflectance variability of individual objects also rises. 

This heightened level of detail leads to an increase within-

class variances, which hampers the successful application 

of traditional supervised classification methods, 

complicating the analysis of such high-resolution images. 

Consequently, numerous efforts and diverse methods have 

been introduced to streamline the handling of these images 

(Teng et al., 2023). 

One significant limitation of many existing methods is 

their reliance on direct comparisons of pixel values, which 

fail to detect relationships between pixels (Zhang et al., 

2020). While these methods generate image difference maps 

and apply thresholds to classify pixels as changed or 

unchanged, they do not account for the semantic 

relationships that may exist between them. Common 

arithmetic operations, such as image differencing (Singh, 

1986), image rationing (Todd, 1977), and image regression 

(Jackson, 1983), are typically employed for image 

comparison. However, these approaches may struggle to 

effectively analyze the complexities introduced by the high 

spatial resolution of VHR images, highlighting the need for 

more advanced techniques that can capture the intricate 

changes in the data more effectively. 

To address the limitations of pixel-based methods, 

Object-Based Change Detection (OBCD) methods are used, 

employing objects as processing units to enhance the 

completeness and accuracy of the final results. The object-

based approach relies on objects rather than pixels, 

allowing effective use of spectral and spatial information to 

match the features of Earth's objects. In OBCD, images are 

divided into meaningful, homogeneous areas, and further 

processing is conducted on these areas. Consequently, 

relationships between pixels are established, leading to 

improved results. Since pixel-based change detection 

methods neglect spatial contextual information, OBCD 

analysis extracts features from segmented image-objects to 

identify changes in the state of objects. One advantage of 

this method is its effectiveness in addressing the challenge 

associated with VHR images. By smoothing small changes 

in the size of each object, the high spectral variability is 

reduced (Javed et al., 2020). 

Using a post-classification OBCD approach, (Mitkari et 

al., 2018) analyzed glacier surface changes in the Indian 

Himalayas over a three-year period using high spatial 

resolution images from WorldView-2 and Linear Imaging 

Self-Scanning System (LISS) IV. By employing multi-

resolution segmentation and spectral and spatial features 

such as mean value, standard deviation, brightness 

temperature, slope, and spectral ratios, they improved their 

overall accuracy to 91.41%.  

Building on the advancements provided by OBCD, 

another approach to tackling the challenges of VHR images 

is to extract advanced features, such as textural and 

geometrical attributes, which enhance the method's ability 

to understand and detect complex changes (Luo et al., 

2018). (Khurana & Saxena, 2017) utilized three sets of 

texture features—mean, variance, homogeneity, contrast, 

and dissimilarity—extracted from the Gray Level Co-

occurrence Matrix (GLCM) method while investigating how 

these combinations affect the accuracy of change detection, 

keeping all other parameters constant. However, the 

sequential combination of OBCD and feature extraction 
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requires further investigation to fully understand their 

potential benefits and effectiveness. 

The application of various methodologies is essential for 

effectively interpreting complex datasets. In this context, 

machine learning techniques, including both supervised and 

unsupervised methods, have been developed, many of which 

rely on image transformation algorithms to classify multi-

temporal images. The performance of unsupervised methods 

can be negatively impacted by external factors such as 

changes in atmospheric conditions, variations in 

illumination, and inadequate sensor calibration that often 

occur during image acquisition at different dates. On the 

other hand, supervised methods are more robust in handling 

various atmospheric and illumination conditions that may 

vary across different acquisition times, providing a more 

reliable approach for image analysis and change detection 

(Pacifici et al., 2007). 

(Amini et al., 2022) applied the Random Forest (RF) 

supervised classifier, using Landsat time-series data, to 

analyze land use and land cover changes in Isfahan from 

1985 to 2019. Their proposed algorithm achieved an overall 

accuracy that was 10% higher than the Copernicus Global 

Land Cover Layers (CGLCL) map. (Wang et al., 2018) 

utilized relevant conceptual features and identified urban 

changes using a weighted voting group learning approach 

with various classifiers, such as K-Nearest Neighbors 

(KNN), Support Vector Machine (SVM), Extreme Learning 

Machine (ELM), and Random Forest (RF). Their 

experiments conducted on Gaofen-1 and Ziyuan-3 High 

Resolution (HR) images demonstrated an overall accuracy 

of approximately 99%. (Kumar et al., 2022) presented an 

optimal integration of multi-sensor datasets, including 

ASTER, PALSAR, and Sentinel-1, using various input 

features such as spectral, morphological, and textural data 

to classify different rock types in Chhatarpur district, India, 

with Machine Learning methods. Their results indicated that 

the Support Vector Machine (SVM) achieved a better 

classification accuracy of 77.78%, which is around 15% 

higher than that obtained using ASTER spectral data alone. 

In summary, while the combination of object-based 

methods and contextual information can enhance change 

detection in high-resolution remote sensing images; 

however, the results may still be influenced by several 

challenges. These include the selection of training samples, 

urban scene characteristics, the choice of classifier, and 

variations in illumination, shadows, or seasonal changes. 

Additionally, many existing models struggle with complex 

feature interactions and are sensitive to noise, which can 

lead to misclassifications in altered areas. Furthermore, 

traditional methods often do not fully leverage the potential 

of diverse feature extraction techniques, limiting their 

effectiveness in detecting subtle changes. 

In this paper, we address these gaps by integrating 

object-based, feature-based, and dual learning-based 

approaches on pairs of Very High-Resolution (VHR) bi-

temporal images, which enhances our ability to capture 

complex feature interactions. Firstly, the Iterative Self-

Organizing Data Analysis Technique (ISODATA) is applied 

to generate segmentation maps of the image pairs. 

Subsequently, small homogeneous areas are processed, and 

essential semantic features—including textural, 

mathematical, and geometrical features—are extracted 

from these areas, improving robustness against noise and 

variability caused by illumination and seasonal changes. 

The next step involves obtaining a difference image by 

calculating the difference vectors of the feature sets from the 

image pairs. The difference image is then input into two 

categories of supervised learning-based classification 

methods: 1) individual learning and 2) ensemble learning. 

Finally, change maps are generated for each supervised 

method, allowing for a thorough comparison alongside 

further comparative analysis. 

Our proposed method detects existing changes with 

optimal accuracy, leveraging high processing power 

through the combination of object-based, feature-based and 

learning-based approaches. The primary objective of this 

research is to develop a change detection approach 

specifically tailored for very high-resolution remote sensing 

images, emphasizing the establishment of communication 

among various components within the images. Based on 

this, the advancements of this article are summarized in the 

following cases: 

 Sequential combination of three methods based on 

objects, features, and dual learning and 

investigating their effects. 

 Implementation of semantic segmentation with an 

emphasis on pixel relationships. 

 Extraction of a wide range of features for semantic 

analysis to address the complexities of the very 

high-resolution (VHR) images. 

 Comprehensive implementation and comparison of 

individual and ensemble learning-based methods. 

The rest of the paper is organized as follows: Section 2 

presents the proposed change detection methodology, 

including the preprocessing step, image segmentation, an 

explanation of the different types of features extracted, and 

an introduction to the supervised classifiers. Section 3 

outlines the experimental setup, detailing the datasets used 

and presenting both visual and numerical results. In Section 

4, we provide a discussion that includes further analysis and 

an ablation study. Finally, Section 5 concludes the paper, 

summarizing key findings and implications. 

 

2. Methodology 

In this section, we first briefly state the general steps of 

our proposed method, then present a detailed description of 
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each step and introduce the procedure depicted as a 

flowchart in Figure 1. The main steps are as follows: 

1. The preprocessing stage is carried out to facilitate 

accurate comparisons between bi-temporal 

images. 

2. The Iterative Self-Organizing Data Analysis 

Technique (ISODATA) is utilized for image 

segmentation on VHR images to clarify objects 

with specific characteristics. 

3. Textural, mathematical, and geometrical (related 

to shape) features are extracted from the 

segmented pair-images. The obtained features are 

fused with each other to create the Feature Fusion 

Layer (FFL). 

4. The difference image is calculated using the vector 

difference of the two FFLs obtained from time 1 

and time 2 images.  

5. The difference image is analyzed using individual 

and ensemble supervision classification methods, 

resulting in the production of final change maps 

 

2.1. Image Preprocessing 

Basic preprocessing techniques for change detection 

(CD) images are applied to align bi-temporal images 

acquired from the same or different sensors and acquisition 

dates. These techniques include geometric and radiometric 

corrections, denoising to reduce noise and preserve 

information (Afaq & Manocha, 2021), pan-sharpening to 

improve spatial resolution (Bovolo et al., 2010), and 

orthorectification to eliminate terrain distortion (Im et al., 

2008), enhancing the overall quality and accuracy of 

subsequent analysis.  

 

 

Figure 1. The flowchart of proposed method 

 

 

2.2. Image Segmentation 

Image segmentation divides an image into homogeneous 

areas based on physical and semantic characteristics, using 

segmentation algorithms (Ez-zahouani et al., 2023). The 

ISODATA algorithm, an unsupervised technique and a 

modification of k-means clustering, groups pixels into 

objects while addressing k-means limitations. It identifies 

cluster structures and refines cluster centers to minimize the 

sum of squared distances between data points and their 

nearest center. By utilizing an average response pattern to 

represent a group of patterns, the algorithm iteratively 

refines these patterns to enhance precision of the clustering 
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process (Ball & Hall, 1967). We use the ISODATA 

algorithm within the OBCD framework to segment bi-

temporal VHR images, enabling detailed analysis and 

extraction of valuable information about changes and 

patterns over time in the identified objects. 

2.3. Feature Extraction 

Feature extraction is crucial for recognition, as 

advantageous features enhance intra-class aggregation and 

inter-class separation, improving the change detection 

process (Gao et al., 2019). In this step, three types of 

features— textural, mathematical, and geometrical—are 

derived from the segmented image to construct the FFL for 

bi-temporal images. 

2.3.1. Textural Features 

Textural features pertain to the visual patterns and 

arrangements of pixels in an image, capturing spatial 

distribution and relationships, revealing surface 

characteristics like texture and smoothness. One method for 

calculating texture is the Gray-Level Co-occurrence Matrix 

(GLCM), which provides a statistical representation of 

texture using co-occurring pixel values and includes 

features such as mean, standard deviation, contrast, and 

entropy (Haralick et al., 1973). Another method involves 

using a Gabor filter, which captures both spatial and 

frequency information through convolution and is defined 

by parameters such as orientation and wavelength 

(Mehrotra et al., 1992). Additionally, the structure tensor 

offers a statistical summary of intensity gradients in local 

neighborhoods (D. Chen et al., 2021). 

2.3.2. Mathematical Features 

Mathematical features involve techniques to analyze and 

extract information from images using mathematical 

computations. Common methods include the Gaussian filter, 

which smooths pixel values, as well as its derivatives: the 

Difference of Gaussians (DoG), which highlights intensity 

differences, and the Laplacian of Gaussian (LoG), which 

enhances features by highlighting rapid intensity changes. 

Morphological profiles, using opening and closing 

operations with structuring elements, are also employed to 

extract spatial features at various scales. Advanced opening 

and closing by reconstruction techniques improve 

information extraction and shape preservation (Hu et al., 

2018). This research utilized 15 morphological operations, 

detailed in Table 1. 

2.3.3. Geometrical Features 

Geometrical features pertain to the shape characteristics 

of objects in an image, offering insights into their structure 

and edges. This study utilizes common shape features 

including the shape index and specific edge detectors, as 

detailed in Table 1, to extract valuable information about 

object details. 
Table 1. List of features extracted using VHR Imagery 

Mathematical Textural 
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erosion 
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C
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 mean 
shape 

index 

dilation  std Canny 

opening  contrast Roberts 

closing 
 

Dissimilarity 
Sobel 

morphologic

al 

gradient 

Homogenei

ty 
Scharr 

hit or miss  ASM Prewitt 

thin lines 

removed 
 energy 

  

  

  

  

  

block 

average 
 max 

Gaussian  entropy 

DoG Gabor filter 

LoG structure tensor 

After extracting features from two image pairs, the values 

are normalized using Min-Max scaling to standardize them 

on a similar scale (0 to 1), facilitating consistent analysis 

during fusion. The normalized features are combined in a 

stacking layer to create a Feature Fusion Layer (FFL) for 

each image, integrating complementary information. Image 

differencing is then performed by calculating difference 

vectors from the two FFLs, which serve as input for 

classifiers. Mathematically, the difference vector (ΔD) is 

defined as (Wang et al., 2018): 

D T S                                               (1) 

where T = (t1, t2, ..., tn) and S = (s1, s2, ..., sn) represent 

two single FFL of images, and n is the depth of the FFL. 

Pixels with significant difference vector (ΔD) values are 

indicative of transitions in land cover and desired changes. 

Conversely, unchanged pixels are expected to have ∆D ≈ 

0, while pixels showing substantial deviations from 0 in at 

least one feature are more likely to be linked to land cover 

change. 

2.4. Supervised Classification 

Supervised classification, a subset of Machine Learning 

(ML), uses labeled data to learn functions that predict 

outcomes for new data, making it foundational in the change 

detection (CD) process (Thanh Noi & Kappas, 2018). 

Change vector from FFLs is input for supervised classifiers 

to distinguish between changed and unchanged areas. This 

approach includes individual learning, where a single 
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model makes predictions, and ensemble learning, which 

combines predictions from multiple models (Mienye & Sun, 

2022). This paper utilizes both types of classifiers, as 

detailed below. 

2.4.1. Individual Learning 

In this study, individual learning methods are used to 

train a single model on labeled data for accurate 

predictions, including: 

1. Support Vector Machine (SVM): A nonparametric 

classifier that separates data using an n-

dimensional hyperplane, with Gaussian radial 

basis function as the kernel function (Thanh Noi & 

Kappas, 2018). 

2. K-Nearest Neighbor (KNN): A supervised 

technique that classifies data by examining the k 

nearest neighbors and using majority voting, 

achieving effective classification with minimal 

training data (Uddin et al., 2022). 

3. Decision Tree (DT): This classifier partitions 

training data hierarchically by splitting attribute 

values iteratively until leaf nodes contain a 

specified number of records for classification 

(Berhane et al., 2018). 

4. Logistic Regression (LR): A statistical method for 

modeling the relationship between a categorical 

dependent variable and one or more independent 

variables, commonly used in binary classification 

(Mondal & Mandal, 2018). 

2.4.2. Ensemble Learning 

Ensemble learning enhances classification performance 

by combining predictions from multiple models, categorized 

into parallel and sequential ensembles. Parallel methods, 

like Bagging and Random Forest (RF), train base classifiers 

independently and combine their predictions, promoting 

diversity. In contrast, sequential methods, like Boosting and 

Stacking, train models iteratively to correct errors from 

previous ones, improving overall performance (Mienye & 

Sun, 2022). The ensemble learning methods used in this 

research include: 

1. Random Forest (RF): This algorithm constructs 

multiple decision trees from bootstrapped samples 

and combines their predictions through majority 

voting, which reduces overfitting and improves 

classification accuracy (Mienye & Sun, 2022). 

2. Bootstrap Aggregating (Bagging): Developed by 

(Breiman, 1996), Bagging improves classification 

performance by combining outputs from models 

trained on different bootstrapped samples, 

effectively reducing variance and computational 

time for large datasets. 

3. Adaptive Boosting (AdaBoost): Developed by 

(Freund & Schapire, 1999), AdaBoost trains weak 

learners on weighted training data, adjusting 

weights based on classification errors to create a 

robust classifier. It is flexible, requiring minimal 

hyperparameter tuning. 

4. Extreme Gradient Boosting (XGBoost): Introduced 

by (T. Chen & Guestrin, 2016), XGBoost is a 

scalable, accurate ensemble method based on 

gradient boosting, featuring regularization to 

reduce overfitting and effectively handle data 

normalization and missing values. 

The eight models (four from individual learning and four 

from ensemble learning) were trained independently and 

evaluated across two image pairs in two experiments, which 

will be described in the next section. A comparative analysis 

will follow to assess the effectiveness of the models in 

determining the final change detection outcome for each 

pixel. 

3. Implementation Experiments and Results 

3.1. Experiment 1 

In Experiment 1, a pair of GaoFen-2 (GF-2) 

multispectral images is used. The size of these images is 512 

× 512 and they are taken from Crop Land Change Detection 

(CLCD) dataset (M. Liu et al., 2022). In the CLCD dataset, 

the bi-temporal images were acquired within Guangdong 

Province, China (Figure 2), during 2017 for time 1 and 2019 

for time 2, with a spatial resolution ranging from 0.5 to 2 

meters. Each group of samples includes two before-and-

after images and a binary label indicating changes in 

cropland. Time 1 and Time 2 images, along with the label 

image related to Experiment 1 are shown in Figure 3.  

Figure 4 depicts the image segmentation results obtained 

using the ISODATA algorithm. When running this 

algorithm, several parameters need to be set, such as the 

Number of Clusters (K), Minimum Class Size, color weight, 

shape weight, smoothness, and compactness weights, which 

are set to 3, 20, 0.8, 0.2, 0.5, and 0.5, respectively. This 

segmentation process aims to evaluate the effectiveness of 

utilizing multiple features and the classification step in the 

change detection process. 
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Figure 2. CLCD dataset study area, with Guangdong 

province highlighted by the red circle. 

 

 

 

A total of 45 features are extracted from the segmented 

images, including textural, mathematical, and geometrical 

features, with enhancements made to Gabor and 

morphological features using various kernels. These 

features are combined to create FFLs for each VHR image, 

leading to a difference image with dimensions of 

512×512×45, which improves the capture of underlying 

patterns. Both individual and ensemble classifiers are 

employed, with a test ratio of 0.4, allowing effective use of 

the available labeled reference data for training while 

ensuring sufficient data for reliable evaluation of model 

performance. Notable settings include a maximum iteration 

of 100 for SVM, 50 neighbors for KNN, 100 estimators for 

RF, and a learning rate of 0.01 for XGBoost. Change maps 

resulting from these classifiers are illustrated in Figure 5. 

Table 2 presents the numerical results of the eight 

supervised classifiers, indicating various metrics achieved 

by each. The highest accuracies for each metric are 

highlighted in bold. Mean accuracies for individual and 

ensemble learners are calculated separately, showing that 

ensemble methods generally outperform individual 

methods. Among ensemble methods, the Random Forest 

(RF) method shows the best performance, while the 

Decision Tree (DT) method leads among individual 

methods. These results provide a valuable assessment of 

different models' efficacy in change detection and facilitate 

a consistent comparison between individual and ensemble 

learning approaches. 
   

(SVM) (KNN) (DT) 

   

(LR) (RF) (Bagging) 

   

(Ada-boost) (XG-boost) (CD map) 

Figure 5.   Binary change maps obtained from 
Individual classifiers, Ensemble classifiers, and 

Reference change detection map (CD map). 

 

(a) (b) (c) 

 

Figure 3.  The VHR images acquired by GF-2 

satellite; (a) image 1 acquired on 2017; (b) image 2 

acquired on 2019; (c) reference change map. 

 (a)  (b) 

 

Figure 4.  The segmented images by ISODATA 

algorithm; (a) segmented image of time 1; (b) segmented 

image of time 2.   
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3.2. Experiment 2 

Experiment 2 used a pair of GaoFen-2 (GF-2) 

multispectral images from the Crop Land Change Detection 

(CLCD) dataset, depicting Guangdong Province, China, in 

2017 and 2019. The images, with a size of 512 × 512 and a 

spatial resolution of 0.5 to 2 m, are shown in Figure 6. 

Image segmentation results from the ISODATA algorithm 

are illustrated in Figure 7, using parameters identical to 

Experiment 1: K=3, Minimum Class Size=20, color 

weight=0.8, shape weight=0.2, smoothness weight=0.5, 

and compactness weight=0.5. This method identifies 

homogeneous areas utilizing spatial information, enhancing 

change detection accuracy. 

 

 

 

A total of 45 textural, mathematical, and geometrical 

features are extracted from the segmented images, with 

specific features enhanced using various kernels. These 

features are combined to create FFLs, and vector contrasts 

yield a difference image of dimensions 512×512×45. 

Similar to Experiment 1, both individual and ensemble 

classifiers are employed with a test ratio of 0.4. The 

configurations include a maximum iteration of 100 for SVM, 

50 neighbors for KNN, 100 estimators for RF, and a 

learning rate of 0.01 for XGBoost. The classifiers are 

applied to the difference image, yielding change maps 

shown in Figure 8. 

Table 2. Evaluation of the performance of Individual and Ensemble 

learners through some evaluation metrics in the dataset of 

Experiment 1. 

Model 
Precision 

(%) 

Recall 

(%) 

F1_ 

score 

(%) 

Specific

ity (%) 

IoU 

(%) 

SVM 93.95 96.55 95.23 90.22 85.58 

KNN 92.73 98.18 95.38 88.78 86.48 

DT 98.53 98.49 98.51 97.52 95.10 

LR 94.23 96.07 95.14 90.56 85.19 

Mean 94.86 97.32 96.07 91.77 88.09 
      

Model 
Precision 

(%) 

Recall 

(%) 

F1_ 

score 

(%) 

Specific

ity (%) 

IoU 

(%) 

RF 98.73 99.31 99.02 97.88 96.78 

Bagging 98.85 98.98 98.91 98.06 96.41 

Ada-

boost 
95.48 97.48 96.47 92.63 89.05 

XG-

boost 
95.92 97.64 96.77 93.31 89.90 

Mean 97.25 98.35 97.80 95.47 93.03 

 (a)  (b)  (c) 

Figure 6.  The VHR images acquired by GF-2 

satellite; (a) image 1 acquired on 2017; (b) image 2 

acquired on 2019; (c) reference change map. 

 (a)  (b) 

Figure 7.  The segmented images by ISODATA 

algorithm; (a) segmented image of time 1; (b) 

segmented image of time 2.   

 (SVM)  (KNN)  (DT) 

 (LR)  (RF)  (Bagging) 

 (Ada-boost)  (XG-boost)  (CD map) 

Figure 8.   Binary change maps obtained from 

Individual classifiers, Ensemble classifiers, and 

Reference change detection map (CD map). 
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Table 3. Evaluation of the performance of Individual and Ensemble 

learners through some evaluation metrics in the dataset of Experiment 

2. 

Model 
Precision 

(%) 

Recall 

(%) 

F1_ 

score 

(%) 

Specificity 

(%) 

IoU 

(%) 

SVM 98.46 97.94 98.20 90.57 80.34 

KNN 98.75 97.72 98.23 92.10 80.36 

DT 99.32 99.32 99.32 95.96 92.24 

LR 98.48 97.79 98.14 90.59 79.63 

Mean 98.75 98.19 98.47 92.30 83.14 
      

Model 
Precision 

(%) 

Recall 

(%) 

F1_ 

score 

(%) 

Specificity 

(%) 

IoU 

(%) 

RF 99.58 99.57 99.58 97.53 95.11 

Baggi

ng 
99.59 99.36 99.48 97.56 93.94 

Ada-

boost 
98.39 97.89 98.14 90.17 79.81 

XG-

boost 
99.23 97.38 98.29 94.82 80.46 

Mean 99.20 98.55 98.87 95.02 87.33 

Table 3 shows the quantitative outcomes of the eight 

classifiers, highlighting the highest accuracies in bold. 

Mean accuracies for individual and ensemble learners 

reveal that ensemble methods generally achieve better 

results, with RF achieving the best performance among 

ensemble classifiers and DT leading among individual 

classifiers. 

4. Discussion 

While effective, VHR images increase variability in object 

reflection due to their higher spatial resolution. This 

research utilized VHR images to identify both general and 

specific changes in Earth's surface phenomena through a 

comprehensive approach that included object detection, 

feature extraction, and both individual and ensemble 

learning techniques. A total of 45 features categorized as 

textural, mathematical, and geometrical were extracted. The 

Random Forest (RF) classifier was employed to calculate 

feature importance scores based on Gini impurity 

reductions (Disha & Waheed, 2022), allowing for ranking 

according to their impact on change detection. The structure 

tensor (Ayy) ranked highest, followed by the GLCM 

(entropy) feature, while the spectral bands ranked 27th, 

29th, and 31st, indicating their lesser importance compared 

to other features. 

The composition of feature categories was analyzed in 

Figure 9, showing that mathematical and textural features 

each contributed 40%, while geometrical features and 

spectral bands contributed 13% and 7%, respectively. In 

terms of average of scores, the textural category 

outperformed others with an average score of 39.6%, 

followed by mathematical (34.3%), spectral bands (14.9%), 

and geometrical (11.2%) categories, highlighting the 

significance of these features in bi-temporal image 

classification over raw image data. 

 

The study employed individual and ensemble classifiers, 

with RF and Bagging achieving the highest performance, 

followed by Decision Tree (DT) classifier, and XGBoost and 

AdaBoost in subsequent ranks. Ensemble learners 

demonstrated superior performance compared to individual 

learners, supported by comparative results in Tables 2 and 

3. Higher accuracies were found in Experiment 1 due to 

more distinct objects; however, a similar trend across 

experiments indicates the proposed method's 

generalizability in classifier performance, as shown in 

Figure 10. 

Figure 10. Chart of performance of learners in 

experiment 1 and 2. 

 

To evaluate the effectiveness of the proposed approach 

compared to other methods used on similar dataset, Table 4 

is presented, which compares the results obtained from 

(Soheili et al., 2023) on the similar CLCD dataset using the 

PCA-KMeans method with those obtained from our method. 

As shown, our proposed approach outperformed the PCA-

 (a)  (b) 

 

Figure 9.   Pie charts illustrating the participation 

percentage (a) and mean score percentage (b) of feature 

categories based on their level of participation and 

influence. 
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KMeans method, achieving an increase of 16% in Recall 

and 8% in F1-score. 

 
Table 4. Comparison of proposed approach and PCA-KMeans 

method.  

 

 

To further demonstrate the efficiency of the segmentation 

stage in change detection, the proposed model was executed 

once without the segmentation stage, relying solely on the 

initial image (pixel-based), and the results are presented in 

Table 5. This table presents the average evaluation metrics 

for individual and ensemble learners, comparing the pixel-

based method with the object-based method in both 

experiments. The analysis revealed that the object-based 

method consistently outperformed the pixel-based 

approach. In Experiment 1, the object-based method 

achieved an IoU of 88.09% for individual learners and 

93.03% for ensemble learners, representing enhancements 

of 3% and 4%, respectively, compared to pixel-based 

methods. In Experiment 2, although there was a slight 

decline in recall for individual learners, the ensemble 

learners using object-based methods outperformed the 

pixel-based ones in all metrics. Overall, the maximum 

improvement observed with the object-based method 

exceeded 4%, highlighting its effectiveness in enhancing 

object detection tasks compared to the pixel-based method, 

while still demonstrating the significant effectiveness of 

ensemble learning. 

To examine the impact of different feature sets on the final 

results, an ablation study was conducted on the first dataset, 

across various feature categories. In this study, 

mathematical, textural, and geometrical feature types were 

utilized separately in the models, and average results for 

both individual and ensemble learners were recorded in 

Table 6. 

 
Table 5. Comparison of proposed object-based and pixel-based 

methods.  

Experiment 1 

Model mode 

Precis

ion 

(%) 

Recall 

(%) 

F1_ 

score 

(%) 

Speci

ficity 

(%) 

IoU 

(%) 

Individu

al 

learners 

Pixel-

Based 
93.62 96.77 95.16 89.84 85.47 

Object

-

Based 

94.86 97.32 96.07 91.77 88.09 

Ensembl

e 

learners 

Pixel-

Based 
95.59 97.22 96.39 92.82 88.88 

Object

-

Based 

97.25 98.35 97.80 95.47 93.03 

       

Experiment 2 

Model mode 

Precis

ion 

(%) 

Recall 

(%) 

F1_ 

score 

(%) 

Speci

ficity 

(%) 

IoU 

(%) 

Individu

al 

learners 

Pixel-

Based 
97.88 98.62 98.25 87.67 81.67 

Object

-

Based 

98.75 98.19 98.47 92.30 83.14 

Ensembl

e 

learners 

Pixel-

Based 
98.93 98.42 98.68 93.43 85.34 

Object

-

Based 

99.20 98.55 98.87 95.02 87.33 

 

For mathematical features, ensemble learners achieved 

an F1 score of 94.99%, indicating a strong balance between 

precision and recall, while the Intersection over Union 

(IoU) was 84.35%. This suggests that mathematical features 

effectively contribute to model performance, highlighting 

their ability to represent complex relationships within the 

data. In contrast, textural features yielded an even higher 

F1 score of 96.34% for ensemble learners, along with an 

IoU of 90.38%. This exceptional performance demonstrates 

that textural features are particularly beneficial for 

applications requiring detailed recognition of patterns and 

textures. When examining geometrical features, the metrics 

show a different trend. Ensemble learners recorded a 

precision of 98.64%, but the F1 score was only 63.24%. 

These unstable metrics suggest that geometrical features 

alone lack the capability to effectively detect relevant 

patterns, primarily due to their small number of only six 

features. The introduction of geometrical features aimed 

mainly at improving edge detection of objects, while the 

primary responsibilities for accurate identification rest with 

the other feature types. 

When considering all features collectively, ensemble 

learners achieved a commendable F1 score of 95.47% and 

an IoU of 93.03%. This suggests that combining multiple 

feature types enhances performance by offsetting potential 

weaknesses in any single feature type. 

 

 

 

 

 

 

 

 

Approach Recall (%) 
F1_score 

(%) 

PCA-KMeans 83.00 91.00 

Proposed approach 99.57 99.58 
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Table 6 Ablation study results showing the performance of different 

types of features in individual and ensemble learning models. 

Feature 

type 
Model 

Preci

sion 

(%) 

Reca

ll 

(%) 

F1_ 

score 

(%) 

Speci

ficity 

(%) 

IoU 

(%) 

Mathem

atical 

Individual 

learners 
90.89 94.51 92.63 85.86 79.21 

Ensemble 

learners 
95.15 94.84 94.99 91.77 84.35 

Textural 

Individual 

learners 
93.47 96.53 94.97 89.65 85.19 

Ensemble 

learners 
95.81 97.91 96.84 93.30 90.38 

Geometr

ical 

Individual 

learners 
99.27 63.59 77.51 55.59 22.26 

Ensemble 

learners 
98.64 63.29 77.10 63.24 33.04 

All 

features 

(propose

d) 

Individual 

learners 
94.86 97.32 96.07 91.77 88.09 

Ensemble 

learners 
97.25 98.35 97.80 95.47 93.03 

5. Conclusions 

This study presents a practical change detection scheme 

that leverages object detection through the segmentation of 

very high-resolution (VHR) images, complemented by 

feature extraction and various supervised learning 

techniques. Object-based segmentation enhances image 

homogeneity by preserving pixel relationships and reducing 

noise sensitivity, significantly outperforming traditional 

pixel-based methods. The introduction of textural features 

proves particularly effective, while ensemble classifiers 

demonstrate superior performance over individual models, 

underscoring their ability to generate accurate and reliable 

change maps even with minimal prior knowledge of the 

study area.  

The contributions of this work lie in developing a 

comprehensive change detection framework that combines 

advanced segmentation techniques with the extraction of a 

diverse range of textural, mathematical, and geometrical 

features. This framework effectively mitigates issues 

associated with noise sensitivity and within-class variability 

inherent in traditional methods. It also reduces the need for 

deep learning methods, which require extensive data, 

training time, and costs. 

Despite these advancements, some limitations remain, 

including the reliance on supervised learning and manual 

tuning of segmentation parameters. Future research should 

prioritize unsupervised or semi-supervised methods, 

automate segmentation processes, incorporate temporal 

data, and improve parameter optimization and feature 

weighting to enhance the framework’s scalability and 

applicability across various remote sensing challenges. 
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