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1 Introduction

In this paper we consider only finite, undirected and simple graphs. Cordial labeling was
introduced by Cahit[2] in the year 1987. Prime labeling behaviour of planter graph, du-
plication of planter graph, fusion of planter graph,switching of planter graph, joining of
two copies of planter graph were studied by A.Edward samuel and S.Kalaivani[4]. Dafik,
Riniatul Nur Wahidah hve been examined the Rainbow Antimagic coloring of special
graphs like volcano, sandat graph, sunflower,octpus, semijahangir [3]. Prihandini,R M.,
at.el have been studied the elegant labeling of shackle graphs and diamond ladder graphs
[16]. Classical meanness of some graphs such as one-side step graph,double-sided step
graph,grid,slanding ladder,diamond ladder,lattitude ladder was studied by Alanazi et. al
[1]. In [17] Yeni Susanti et. al studied the edge odd geaceful labeling behaviour of prism,
antiprism, cartesian product graphs. The notion of pair diference cordial labeling of a
graph was introduced in [7]. The pair difference cordial labeling behaviour of certain
graphs like path, cycle, star, wheel,triangular snake,alternate triangular snake, butterfly
etc have been investigated in [8-15]. In this paper we investigate the pair difference cor-
dial labeling behaviour of diamond ladder graph,lattitude ladder, octopus graph,pagoda
graph, planter graph, semi jahangir graph . Terms not defined here are follow from Gal-
lian[6] and Harary[7].

2 Preliminaries

Definition 2.1. [1]. The diamond ladder graph is the graph obtained from ladder Ln and
it is denoted by DLn. Let V (DLn) = {xi : 1 ≤ i ≤ n}∪{yi : 1 ≤ i ≤ n}∪{zi : 1 ≤ i ≤ 2n}
and E(DLn) = {xixi+1, yiyi+1 : 1 ≤ i ≤ n − 1} ∪ {xiyi : 1 ≤ i ≤ n} ∪ {xiz2i−1, yiz2i−1 :
1 ≤ i ≤ n} ∪ {xiz2i, yiz2i : 1 ≤ i ≤ n} ∪ {z2iz2i+1 : 1 ≤ i ≤ n− 1}. It is easy to verify that
the DLn has 4n vertices and 6n− 1 edges.

Definition 2.2. [4]. Let Fn = Pn + K1, n ≥ 2 where Pn be the path u1u2u3 · · ·un and
V (K1) = {u}. Let Cn be the cycle v1v2v3 · · · vnv1, n ≥ 3. The planter graph Rn, n ≥ 3 is
obtained from Fn and Cn by identifying the vertices u and v1. That is V (Rn) = {ui, vi :
1 ≤ i ≤ n} and E(Rn) = {uiui+1, vivi+1 : 1 ≤ i ≤ n − 1} ∪ {v1ui : 1 ≤ i ≤ n} ∪ {v1vn}.
The planter graph has 2n vertices and 3n− 1 edges.

Definition 2.3. [3]. The octopus graph On is the graph whose vertex set V (On) =
{u, ui, vj : 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1} and the edge set E(On) = {uiui+1 : 1 ≤ i ≤
n− 1} ∪ {uui, uvi : 1 ≤ i ≤ n}. The octopus graph has 2n+ 1 vertices and 3n− 1 edges.

Definition 2.4. [1]. Let n be an even integer . The lattitude ladder graph LLn,n ≥ 4 is
the graph with vertex set V (LLn) = {xi : 1 ≤ i ≤ n} and edge set E(LLn) = {xixi+1 :
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1 ≤ i ≤ n− 1} ∪ {xixn+2−i : 2 ≤ i ≤ n
2
}.

Definition 2.5. [6]. The pagoda graph PGn,n ≥ 3 is the vertex set V (PGn) = {u, ui, vi :
1 ≤ i ≤ n} and edge set E(PGn) = {uiui+1, vivi+1 : 1 ≤ i ≤ n − 1} ∪ {uivi : 1 ≤ i ≤
n} ∪ {u1u, v1u}. The pagoda graph has 2n+ 1 vertices and 3n edges.

Definition 2.6. [6]. D∗
n is the graph with the vertex set V (D∗

n) = {xi : 1 ≤ i ≤ n} ∪ {yi :
1 ≤ i ≤ n} ∪ {zi : 1 ≤ i ≤ 2n} and the edge set E(D∗

n) = {xixi+1, yiyi+1 : 1 ≤ i ≤
n−1}∪{xiz2i−1, yiz2i−1 : 1 ≤ i ≤ n}∪{xiz2i, yiz2i : 1 ≤ i ≤ n}∪{z2iz2i+1 : 1 ≤ i ≤ n−1}.
The D∗

n graph has 4n vertices and 7n− 3 edges.

Definition 2.7. [6]. The volcano graph Vn is the graph with the vertex set is V (Vn) =
{x, y, z} ∪ {xi : 1 ≤ i ≤ n} and the edge set is E(Vn) = {xy, yz, xz} ∪ {xxi : 1 ≤ i ≤ n}.
Vn has n+ 3 vertices and n+ 3 edges.

3 Pair difference cordial labeling

Definition 3.1. Let G = (V,E) be a (p, q) graph.
Define

ρ =

{
p
2
, if p is even

p−1
2
, if p is odd

and L = {±1,±2,±3, · · · ,±ρ} called the set of labels.
Consider a mapping f : V −→ L by assigning different labels in L to the different ele-
ments of V when p is even and different labels in L to p-1 elements of V and repeating
a label for the remaining one vertex when p is odd.The labeling as defined above is said
to be a pair difference cordial labeling if for each edge uv of G there exists a labeling
|f(u)− f(v)| such that

∣∣∆f1 −∆fc
1

∣∣ ≤ 1, where ∆f1 and ∆fc
1
respectively denote the

number of edges labeled with 1 and number of edges not labeled with 1.A graph G for
which there exists a pair difference cordial labeling is called a pair difference cordial graph.

4 main results

Theorem 4.1. The pagoda graph PGn is pair difference cordial for all values of n ≥ 3.

Proof. Let us consider the vertex set and edge set from definition 2.1.
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Assign the label 1, 2, 3, · · · , n to the vertices u1, u2, u3, · · · , un respectively. Assign the
labels −1,−2 respectively to the vertices v1, v2 and assign the labels −4,−3 respectively
to the vertices v3, v4 . Next assign the labels −5,−6 to the vertices v5, v6 respectively
and assign the labels −8,−7 respectively to the vertices v7, v8. Proceeding like this until
reach vn. Finally assign the label 2 to the vertex u.

Note that the vertices vn−1, vn to the vertex −n,−n+1 when n ≡ 0 (mod 4). The vertices
vn−1, vn to the vertex −n+ 2,−n when n ≡ 1 (mod 4).
The verticesvn−1, vn to the vertex −n+ 1,−n when n ≡ 2 (mod 4). The vertices
vn−1, vn to the vertex −n+ 1,−n when n ≡ 3 (mod 4).

The Table 1 given below establish that this vertex labeling is a pair difference cordial
labeling of PGn for all values of n ≥ 3.

Nature of n ∆f1 ∆fc
1

n ≡ 0 (mod 4) 3n
2

3n
2

n ≡ 1 (mod 4) 3n+1
2

3n−1
2

n ≡ 2 (mod 4) 3n
2

3n
2

n ≡ 3 (mod 4) 3n+1
2

3n−1
2

Table 1:

Theorem 4.2. On is pair diffference codial if and only if 2 ≤ n ≤ 4.

Proof. Case 1. 2 ≤ n ≤ 4.
The pair difference cordial labeling of On , 2 ≤ n ≤ 4 is shown in the following figure 1
Case 2. n ≥ 5.

The maximum possible number of edges with the label 1 is
∆f1 = n− 1︸ ︷︷ ︸

for the pathPn

+ 2︸︷︷︸
for the star

. Therefore ∆f1 = n + 1. Since |E(On)| = 3n − 1, ∆f1
c =

(3n− 1)− (n+ 1) = 2n− 2. Hence |∆f1 −∆f1
c| = 2n− 2− n− 1 = n− 3 > 1, which is

a contradiction.
Hence the octopus graph On is not pair difference cordial for all values of n ≥ 5.

Theorem 4.3. The volcano graph Vn is pair difference cordial if and only if 1 ≤ n ≤ 4.

Proof. Let us consider the vertex set and edge set from definition 2.7.
There are two cases arises.
Case 1. 1 ≤ n ≤ 4.
The pair difference cordial labeling of Vn , 1 ≤ n ≤ 4 is shown in the following figure 2
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Figure 1: case 1

Case 2. n ≥ 5.

The maximum possible number of edges with the label 1 is ∆f1 = 3. Since|E(Vn)| = n+3,
∆f1

c = (n+ 3)− 3 = n. Hence |∆f1 −∆f1
c| = n− 3 > 1 when n ≥ 5, which is a contra-

diction.
Hence the volcano graph Vn is not pair difference cordial for all values of n ≥ 5.

Theorem 4.4. The Planter graph Rn is pair difference cordial for all values of n ≥ 3.

Proof.
Let us consider the vertex set and edge set from definition 2.2.

Assign the label 1, 2, 3, · · · , n to the vertices u1, u2, u3, · · · , un respectively. Assign the
labels −1,−2 respectively to the vertices v1, v2 and assign the labels −3,−5 respectively
to the vertices v3, v4 . Next assign the labels −4,−6 to the vertices v5, v6 respectively
and assign the labels −7,−9 respectively to the vertices v7, v8. Proceeding like this until
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Figure 2: case 2

reach vn.

Note that the vertices vn−1, vn to the vertex −n+1,−n when n ≡ 0 (mod 4). The vertices
vn−1, vn to the vertex −n,−n+ 1 when n ≡ 1 (mod 4).
The verticesvn−1, vn to the vertex −n+ 2,−n when n ≡ 2 (mod 4). The vertices
vn−1, vn to the vertex −n+ 1,−n when n ≡ 3 (mod 4).

The Table 2 given below establish that this vertex labeling is a pair difference cordial
labeling of Rn for all values of n ≥ 3.

Nature of n ∆f1 ∆fc
1

n ≡ 0 (mod 4) 3n
2

3n−2
2

n ≡ 1 (mod 4) 3n−1
2

3n−1
2

n ≡ 2 (mod 4) 3n−2
2

3n
2

n ≡ 3 (mod 4) 3n−1
2

3n−1
2

Table 2:

Theorem 4.5. The diamond ladder graph DLn is pair difference cordial for all values of
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n ≥ 2.

Proof.
Let us consider the vertex set and edge set from definition 2.1.
There are two cases arises.
Case 1. n is even.

Assign the labels 2, 6, 10, · · · , 2n − 2 to the vertices x1, x3, x5, · · · , xn−1 respectively and
assign the labels −2,−6,−10, · · · ,−(2n−2) respectively to the vertices x2, x4, x6, · · · , xn.
Next assign the labels 4, 8, 12, · · · , 2n to the vertices y1, y3, y5, · · · ,
yn−1 respectively and assign the labels −4,−8,−12, · · · ,−2n respectively to the vertices
y2, y4, y6, · · · , yn.

Assign the labels 1, 5, 9, · · · , 2n−3 to the vertices z1, z5, z9, · · · , z2n−3 respectively and as-
sign the labels −1,−5,−9, · · · ,−(2n−3) respectively to the vertices z3, z7, z11, · · · , z2n−1.
Now assign the labels 3, 7, 11, · · · , 2n− 1 to the vertices z2, z6, z10, · · · , z2n−2 respectively
and assign the labels −3,−7,−11, · · · ,−(2n−1) to the vertices z4, z8, z12, · · · , z2n respec-
tively.
Case 2. n is odd.

Assign the labels 2, 6, 10, · · · , 2n−4 to the vertices x1, x3, x5, · · · , xn−2 respectively and as-
sign the labels −2,−6,−10, · · · ,−(2n−4) respectively to the vertices x2, x4, x6, · · · , xn−1.
Next assign the labels4, 8, 12, · · · , 2n−2 to the vertices y1, y3, y5, · · · , yn−2 respectively and
assign the labels−4,−8,−12, · · · ,−(2n−2) respectively to the vertices y2, y4, y6, · · · , yn−1.

Assign the labels 1, 5, 9, · · · , 2n−5 to the vertices z1, z5, z9, · · · , z2n−5 respectively and as-
sign the labels −1,−5,−9, · · · ,−(2n−5) respectively to the vertices z3, z7, z11, · · · , z2n−3.
Now assign the labels 3, 7, 11, · · · , 2n− 3 to the vertices z2, z6, z10, · · · , z2n−4 respectively
and assign the labels −3,−7,−11, · · · ,−(2n − 3) to the vertices z4, z8, z12, · · · , z2n−2 re-
spectively.
Finally assign the labels 2n−1, 2n,−(2n−1),−2n to the vertices xn, z2n−1, z2n, yn respec-
tively.
The Table 3 given below establish that this vertex labeling is a pair difference cordial
labeling of DLn for all values of n ≥ 2.

Nature of n ∆f1 ∆fc
1

n ≡ 0, 2 (mod 4) 3n 3n− 1
n ≡ 1, 3 (mod 4) 3n− 1 3n

Table 3:
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Theorem 4.6. The lattitude ladder graph LLn is pair difference cordial for all even val-
ues of n ≥ 4.

Proof. Let us consider the vertex set and edge set from definition 2.4.
Assign the labels 1, 2, 3, · · · , n

2
to the vertices x1, x2, x3, · · · , xn

2
and assign the labels

−1,−2,−3, · · · , n−4
2

respectively to the vertices xn+
2
,xn+

2
,xn+

2
, · · ·xn−2. Finally assign

the labels n
2
,n−2

2
to the vertices xn−1, xn.

The Table 4 given below establish that this vertex labeling is a pair difference cordial
labeling of LLn for all even values of n ≥ 4.

Nature of n ∆f1 ∆fc
1

n ≡ 0 (mod 4) 3n−8
2

3n−6
2

n ≡ 2 (mod 4) 3n−4
2

3n−4
2

Table 4:

Theorem 4.7. The graph D∗
n is pair difference cordial for all values of n ≥ 3.

Proof.
Let us consider the vertex set and edge set from definition 2.6.
There are two cases arises.
Case 1. n is even.

Assign the labels 2, 6, 10, · · · , 2n − 2 to the vertices x1, x3, x5, · · · , xn−1 respectively and
assign the labels −2,−6,−10, · · · ,−(2n−2) respectively to the vertices x2, x4, x6, · · · , xn.
Next assign the labels 4, 8, 12, · · · , 2n to the vertices y1, y3, y5, · · · ,
yn−1 respectively and assign the labels −4,−8,−12, · · · ,−2n respectively to the vertices
y2, y4, y6, · · · , yn.

Assign the labels 1, 5, 9, · · · , 2n−3 to the vertices z1, z5, z9, · · · , z2n−3 respectively and as-
sign the labels −1,−5,−9, · · · ,−(2n−3) respectively to the vertices z3, z7, z11, · · · , z2n−1.
Now assign the labels 3, 7, 11, · · · , 2n− 1 to the vertices z2, z6, z10, · · · , z2n−2 respectively
and assign the labels −3,−7,−11, · · · ,−(2n−1) to the vertices z4, z8, z12, · · · , z2n respec-
tively.

Case 2. n is odd.

Assign the labels 2, 6, 10, · · · , 2n−4 to the vertices x1, x3, x5, · · · , xn−2 respectively and as-
sign the labels −2,−6,−10, · · · ,−(2n−4) respectively to the vertices x2, x4, x6, · · · , xn−1.
Next assign the labels 4, 8, 12, · · · , 2n−2 to the vertices y1, y3, y5, · · · , yn−2 respectively and
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assign the labels−4,−8,−12, · · · ,−(2n−2) respectively to the vertices y2, y4, y6, · · · , yn−1.

Assign the labels 1, 5, 9, · · · , 2n−5 to the vertices z1, z5, z9, · · · , z2n−5 respectively and as-
sign the labels −1,−5,−9, · · · ,−(2n−5) respectively to the vertices z3, z7, z11, · · · , z2n−3.
Now assign the labels 3, 7, 11, · · · , 2n− 3 to the vertices z2, z6, z10, · · · , z2n−4 respectively
and assign the labels −3,−7,−11, · · · ,−(2n − 3) to the vertices z4, z8, z12, · · · , z2n−2 re-
spectively.
Finally assign the labels 2n−1, 2n,−(2n−1),−2n to the vertices xn, z2n−1, z2n, yn respec-
tively.
The Table 5 given below establish that this vertex labeling is a pair difference cordial
labeling of D∗

n for all values of n ≥ 3.

Nature of n ∆f1 ∆fc
1

n is even 3n− 1 3n− 1
n is odd 3n− 1 3n− 1

Table 5:
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