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Abstract 
Identification of gas reservoirs as a main natural resource due to their economic importance has always been 

one of the most important issues in research studies in the oil and gas fields. Accurate localization of a gas 

reservoir through seismic data has been broadly studied. The final destination of all seismic attributes is to 

distinguish a specific feature. Accordingly, many seismic attributes have been developed, among which short-

time Fourier transform (STFT)-based methods play an important role. The location of gas reservoirs can be 

detected, taking advantage of its particular criteria in seismic data. Generally, seismic signals are non-stationary 

as their frequency responses vary with time. Thus we propose an attribute that utilizes mixed components of 

STFT (MC-STFT). The novelty about this method is that without altering STFT method or adding any 

complexity, MC-STFT is able to detect gas reservoirs at high resolution. Simplicity and time efficiency can 

make a method superior. In fact, this method takes advantage of extracting three frequency components 

obtained by STFT. In the next step, we can do the second iteration of the procedure, this will represent the 

degree of sharpness of reduction in amplitude and again do the same jobs as before and it leads to this, making 

it more specific. We apply this method to three data sets, first, Marmousi model and then two other real seismic 

zero-offset sections. To evaluate the proposed method compared with the Synchrosqueezing STFT (SSTFT). 

The results confirm the good performance of MC-STFT in high-resolution gas reservoir detection. 
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1. Introduction 

The location of gas reservoirs can be detected 

using its particular criteria in seismic data. 

Generally, seismic signals are non-stationary 

as their frequency responses vary with time. 

There are some techniques called Time-

Frequency Decomposition (TFD) which map 

a 1D signal into a 2D plane of time and 

frequency. In this way, the frequency content 

of the signal with respect to time can be 

revealed. Therefore, TFD methods are used as 

spectral decomposition in both seismic 

processing and interpretation (Reine et al., 

2009; Chen et al., 2014). For example, Partyka 

et al., (1999) adopted the windowed discrete 

Fourier transform (DFT) for reservoir 

characterization. To detect low-frequency 

shadows beneath hydrocarbon reservoirs, 

Castagna et al. (2003) applied the matching-

pursuit decomposition. Sinha et al. (2005) 

proposed a novel method of taking a Fourier 

transform of the inverse continuous wavelet 

transform (CWT) as a time-frequency map to 

identify subtle stratigraphic features (Zhang et 

al., 2019). Wu and Yatong (2018) developed a 

synchrosqueezing wavelet transform (SWT) 

to reallocate the wavelet transform values to 

different points and produce a sharp spectral 

decomposition for the input signal (Mateo et 

al., 2020). Li and Xiaodong (2008) took 

advantage of the smoothed pseudo-Wigner-

Ville distribution (SPWVD) for carbonate 

reservoir characterization. Lu & Qiang (2009) 

applied the deconvolutive short-time Fourier 

transform (DSTFT) method, which improves 

the time and frequency resolution of the STFT 

spectrogram by 2D deconvolution on seismic 

spectral decomposition. Liu et al. (2011) 

proposed a spectral decomposition method in 

which time-varying Fourier coefficients are 

used to define a time-frequency map (Zhuang 

et al., 2020).  

Spectral decomposition has been applied in 
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exploration fields such as hydrocarbon 

detection, seismic attenuation analysis, 

channel identification, and thin-layer 

thickness estimation (Quan & Jerry, 1997; 

Gao et al., 1999; Lu & Fangyu, 2013; Zhou et 

al., 2019; Odegard et al., 1997). Conventional 

spectral decompositions have some 

restrictions such as the Heisenberg uncertainty 

principle and cross-terms which limit their 

applications in signal analysis. In an effort to 

overcome some of the limitations, the STFT 

has been used (Siddique et al., 2023; Yang et 

al., 2019). Recently, valuable efforts have 

been made to cover these limitations, 

Barabadi et al. (2024) used synchroextracting 

transform for AVO analysis in time 

frequency, and Shirazi et al. (2023) employed 

Multi-synchrosqueezing transform to detect 

shallows gas. 

In this article, we propose a novel seismic 

attribute to detect gas reservoirs, which is 

based on STFT (Cohen, 1989). The 

superiority of this method relies not only on 

its simplicity (which does not add any 

mathematical burden to the STFT method), 

but also on the high-resolution 

characterization it provides. This method 

takes advantage of seismic low-frequency 

shadows as a gas reservoir indicator. The 

novelty behind this algorithm is in the seismic 

signal transformation from the time domain to 

the time-frequency domain using STFT and 

then extraction of three frequency sections of 

each signal. This approach converts the 

seismic zero-offset section into a 2D image of 

the gas reservoir.  

We assess the performance of the proposed 

algorithm against three models including  

the Marmousi model and the other two  

real data. The results show that the first 

iteration of this algorithm can locate gas 

reservoirs at high resolution, which can also 

be much more accurate by applying the 

second iteration in comparison to the method 

SSTFT.  

 

2. Theory 

2-1. Short Time Fourier Transform (STFT) 

This section first deals with the STFT  

 

formulation used in this study and then the 

STFT-proceeding algorithm to obtain the final 

gas reservoir image. 

The discrete-time STFT method is formulated 

as: 
 

𝑋𝑆𝑇𝐹𝑇[𝑚ˎ 𝜔] = ∑ 𝑥[𝑛]∞
𝑛=−∞ 𝑤[𝑛 −𝑚]𝑒−𝑖𝜔𝑛       

                                                                    (1) 

𝑤(𝑚) = 𝑎𝑒
−
(𝑚−𝑏)2

2𝑐2            (2) 
 

where 𝑤(𝑚) is the window function (which is 

Gaussian in this study). In the Gaussian 

window, 𝑎 is the height of the curve’s peak, 𝑏 

is the position of the center of the peak, and c 

is the standard deviation. 𝑚 and 𝜔 are discrete 

time shift and angular frequency, respectively, 

and 𝑥[𝑛] is the seismic signal.  

 

2-2. Mixed Components of STFT (MC-

STFT) 

The STFT of 𝑥[𝑛] can be interpreted as the 

Fourier transform of the product 𝑥[𝑛]𝑤[𝑛 −
𝑚]. Thus as it is clear, in this study, there are 

no changes in the STFT formulation. The next 

step is to extract three frequency component 

sections from the time-frequency domain 

obtained by applying STFT on each seismic 

trace. 

{
 
 

 
  𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 (𝑓) 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝐶1(𝑚ˎ 𝑓1)ˎ      𝑓1 =

𝐹𝑁
10⁄

𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 (𝑓) 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝐶2(𝑚ˎ 𝑓2)ˎ      𝑓2 =  
𝐹𝑁

5⁄

𝑡ℎ𝑒 𝑡ℎ𝑖𝑟𝑑 (𝑓) 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 𝐶3(𝑚ˎ 𝑓3)ˎ     𝑓3 = 
𝐹𝑁

3⁄

          

                                                                    (3) 
 

where 𝐹𝑁 is the Nyquist frequency of seismic 

signals. Now, these frequency components are 

normalized so that the effect of intensity of 

each frequency will be the same. Therefore, 

they are denoted by 𝐶1ˎ 𝑁, 𝐶2ˎ 𝑁 and 𝐶3ˎ 𝑁. The 

final step is to multiply these component 

sections as below and get the final image. 

𝐺(𝑚ˎ 𝑑𝑖) = (𝐶1ˎ𝑁 ∗ 𝐶2ˎ𝑁 ∗ 𝐶3ˎ𝑁)𝑖                (4) 

where 𝐺(𝑚ˎ 𝑑𝑖) is the final gas reservoir 

image, and 𝑑𝑖 is the horizontal distance in 

seismic zero-offset section (i.e. the ith trace). 

To obtain a more accurate gas reservoir 

location, we can do the second iteration of this 

procedure. The first and the second iterations 

are summarized as shown in the Table 1.
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Table 1. The algorithm of the first and the second iterations of the method. 
 

 𝑘 = 1,   𝑓𝑖𝑟𝑠𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

1- 𝑥𝑖[𝑛] , 𝑎𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑡𝑟𝑎𝑐𝑒 𝑜𝑓 𝑧𝑒𝑟𝑜 − 𝑜𝑓𝑓𝑠𝑒𝑡 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

2- 𝑋𝑆𝑇𝐹𝑇ˎ 𝑖ˎ 𝑘[𝑚ˎ 𝑓] = 𝑆𝑇𝐹𝑇(𝑥𝑖[𝑛] )  

3- 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝐶1ˎ 𝑁ˎ 𝑘, 𝐶2ˎ 𝑁ˎ 𝑘 𝑎𝑛𝑑 𝐶3ˎ 𝑁ˎ 𝑘 

4- 𝐺𝑘ˎ 𝑖(𝑚) = (𝐶1ˎ 𝑁ˎ 𝑘 ∗ 𝐶2ˎ 𝑁ˎ 𝑘 ∗ 𝐶3ˎ 𝑁ˎ 𝑘)𝑖 

 𝑘 = 2,  𝑠𝑒𝑐𝑜𝑛𝑑 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

5- 𝐺𝑘−1ˎ 𝑖(𝑚),  𝑎𝑠 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝑔𝑎𝑠 𝑖𝑚𝑎𝑔𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

6- 𝑋𝑆𝑇𝐹𝑇ˎ 𝑖ˎ 𝑘[𝑝ˎ 𝑓] = 𝑆𝑇𝐹𝑇(𝐺𝑘−1ˎ 𝑖(𝑚)) 

7- 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝐶1ˎ 𝑁ˎ 𝑘, 𝐶2ˎ 𝑁ˎ 𝑘 𝑎𝑛𝑑 𝐶3ˎ 𝑁ˎ 𝑘 

8- 𝐺𝑘ˎ 𝑖(𝑝) = (𝐶1ˎ 𝑁ˎ 𝑘 ∗ 𝐶2ˎ 𝑁ˎ 𝑘 ∗ 𝐶3ˎ 𝑁ˎ 𝑘)𝑖 

 
2.3. Synchrosqueezing STFT (SSTFT) 

The SSTFT is a combination of the STFT and 

the synchrosqueezing method. The 

synchrosqueezing method is used to sharpen 

the STFT map, and therefore, generates a 

concentrated time-frequency map named 

SSTFT (Auger et al., 2013). 

The SSTFT is given by: 

 
    

    (5) 

Where 

𝑤𝑘 −𝑤𝑘−1 = (∆𝑤)𝑘                              (6) 

This is the forward transform. The energies of 

the STFT are squeezed to the instantaneous 

frequency locations according to Equation (5) 

in order to get a concentrated time-frequency 

representation. 

 

3. Results and Discussion 

In this study, we assess the performance of the 

proposed algorithms (i.e. both first and the 

second iteration). We do this with three 

models, first with a real well-known 

Marmousi model then two other real models.  

 

3-1. Marmousi Model 

This model is a 3500 m of depth and 17000 m 

of distance in which there are some gas 

reservoirs (figure 1). We picked one of these 

reservoirs to test out the algorithm. As shown 

in Figure 1, there is a gas reservoir on the top 

left of this geological section (Martin et al., 
2006). Therefore, we cropped the original 

section, which is the pre-stack depth migration 

image of the area (Figure 2), from 1875 m to 

6250 m in distance and from 0 s to 1.37 s in 

time (Figure 2). The cropped section (Figure 

3) is then used to apply our algorithm. The 

result of applying the first iteration of MC-

STFT in this section leads to locating the gas 

reservoir but there is still an anomaly at the 

water bottom (Figure 4a). Other anomalies but 

the gas reservoir will be attenuated by the 

second iteration (Figure 4b). As it is clear 

from Figure 4b, the second iteration 

eliminates the water bottom effect and just gas 

reservoir anomaly can be seen. The result of 

SSTFT in figure 4c shows good performance 

of it, however, the MC-STFT confirms its 

power to localize the gas reservoir zone.
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Figure 1. Marmousi model, structural elements, horizons and lithologies.  

 

 
Figure 2. Marmousi zero-offset section (the red box shows the cropped part). 

 

 
Figure 3. Marmousi cropped zero-offset section (the red circle represents the gas reservoir). 
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                                          (a)                                                                             (b) 

 

 
                                                                                  (c) 

 
Figure 4. a) The first iteration of MC-STFT. Anomaly shows gas reservoir. b) The second iteration of MC-STFT. c) The 

result of SSTFT. 

 

3-2. Real model 1 

This model is a zero-offset section with 996 

ms of the time axis and 1310 m of distance 

(Figure 5). There is a gas reservoir in this 

model, which is shown by the red circle. The 

first and the second iterations of the proposed 

algorithm are applied in this section. The first 

iteration bolds the gas reservoir in such a way 

that there is an anomaly in the gas area (Figure 

6a). Although there are still some slight 

anomalies in other parts of the section, for 

example, other anomalies can be seen at the 

bottom of the section. However, the peak of 

the amplitudes lies in the gas area. The second 

iteration, on the other hand, located the gas 

reservoir more accurately and increased the 

detection resolution (Figure 6b).  Figure 6c 

shows the output of SSTFT, the good 

performance of which is clear but not the same 

as the second iteration of MC-STFT.
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Figure 5. Zero-offset section in which the gas reservoir is represented by the red circle. 

 

 
                                           (a)                                                                    (b) 
 

 
                                                                                (c) 
 

Figure 6. a) Gas reservoir anomaly after the first iteration of MC-STFT. b) The section after the second iteration of MC-

STFT. c) The result of SSTFT. 
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3-3. Real model 2 

This model is a block in the Dutch sector  

of the North Sea which is a zero-offset section 

with 1356 ms of time axis and 23.75 km  

of distance (Figure 7). The gas reservoir  

is located approximately in the middle  

right part of the section which is shown by  

the red circle. The first and the second 

iterations of MC-STFT are applied in this 

section. The first iteration can distinguish the 

gas reservoir accurately enough (Figure 8a). 

The remaining anomalies that might be 

misleading in locating gas reservoirs will 

considerably vanish by the second iteration of 

MC_STFT (Figure 8b). Applying the result of 

SSTFT is shown in Figure 8c, and it 

succeeded in identifying the gas zone with 

high resolution.

 

 
Figure 7. North Sea zero-offset section and the gas target. 

 

 
                                              (a)                                                                          (b) 
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                                                                                  (c) 
 

Figure 8. a) The result of applying first iteration of MC-STFT. b) Second iteration output of MC-STFT. c) The result of 

SSTFT. 
 

STFT offers a compromise between time and 

frequency resolution, which is controlled by 

the window size used during the 

transformation process. Although STFT 

provides a constant time-frequency resolution 

across all frequencies, this can limit its 

effectiveness in analyzing signals with rapid 

transient changes because it cannot adapt its 

resolution to signal characteristics 

dynamically. This investigation has 

demonstrated that while STFT offers a 

straightforward and computationally efficient 

approach, it is constrained by a fixed time-

frequency resolution trade-off, which may not 

adequately capture the intricate dynamics of 

signals with rapidly varying frequencies. 

 

4. Conclusion  

In this study, we employed STFT in an 

algorithm to detect gas reservoirs from 

seismic zero-offset sections. This method 

adds no complexity to STFT methodology and 

uses the simple original STFT. In fact, 

extracting three components of STFT of the 

zero-offset section and multiplying them is the 

key that creates this attribute. Two iterations 

of this algorithm are proposed so that the first 

one distinguishes the gas reservoir with high 

accuracy from other events. Consequently, the 

second iteration increases detection resolution 

and makes an absolutely precise image. MC-

STFT for all of its potential, seismic data are 

subject to a wide variety of noise-related 

problems that can and do limit its usefulness. 

Therefore, in the first stage, pre-processing is 

needed. In addition, the fixed window size 

used in STFT can be a significant limitation, 

as it imposes a trade-off between the time and 

the frequency resolution. Narrow windows 

give good time but poor frequency resolution, 

and vice versa. However, simplicity and 

efficiency can make a method superior. 

Results, which tested the proposed algorithm 

on three real data, also show that the first 

iteration of MC-STFT can locate gas 

reservoirs but with some other weak 

amplitude anomalies. However taking 

advantage of the second iteration of this 

method considerably increases the accuracy of 

gas reservoir location. Also, it should be 

mentioned that the steps and parameters of the 

designed algorithm could be optimized in 

future works to improve its performance for 

gas reservoir identification. To evaluate the 

proposed method, SSTFT is also employed 

and applied to the data, the outputs show its 

power to localize and identify gas zones. 

Totally, the final results approved more power 

and higher resolution of MC-STFT in 

comparison with SSTFT for gas reservoir 

detection.  
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