تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,519,892 |
تعداد دریافت فایل اصل مقاله | 98,779,164 |
بررسی ویژگیهای طراحی مساکن ساخته شده با پرینترهای سهبعدی با روش موردپژوهی | ||
نشریه هنرهای زیبا: معماری و شهرسازی | ||
دوره 29، شماره 1، خرداد 1403، صفحه 7-23 اصل مقاله (1.36 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfaup.2025.381117.673002 | ||
نویسندگان | ||
میلاد رضازاده1؛ حامد مظاهریان* 2؛ محمدرضا متینی3 | ||
1دانشجوی دکتری معماری، گروه معماری، دانشکده معماری، دانشکدگان هنرهای زیبا، دانشگاه تهران، تهران، ایران . | ||
2دانشیار گروه معماری، دانشکده معماری، دانشکدگان هنرهای زیبا، دانشگاه تهران، تهران، ایران. | ||
3دانشیار گروه معماری، دانشکده معماری و شهرسازی، دانشگاه هنر ایران، تهران، ایران. | ||
چکیده | ||
این مطالعه یک بررسی نظام مند از نمونه های ساخته شده با فناوری پرینت سه بعدی در زمینه ی طراحی معماری و ساخت است. این تحقیق بر مبنای روش مورد پژوهی و با استفاده از روش ترکیبی انجام شده است. . در قسمت کمی پژوهش به جمعآوری دادههای عددی و در قسمت کیفی به بررسی ویژگیهای ظاهری، ساختاری و عملکردی ساختمانها با استفاده از مطالعه موردی و تحلیل متون مرتبط پرداخته ایم. بعد از بررسی مساکن ساخته شده نتایج ذیل حاصل گردید. بتن و سیستم پرینتر دروازه ای پرکاربردترین نوع مصالح و نوع پرینتر در این فناوری هستند. در مورد مسلح سازی میلگرد گذاری دستی و افزودن مواد به بتن از پرکاربردترین روش ها می باشد. در مورد ویژگی ها معماری باید عنوان کرد که پلان کشیده مستطیلی برای پرینتر دروزاه ای و پلان های سه شاخه و شعاعی برای پرینتر های بازوی رباتیک مناسبترند. در زمینه ی مجموعه سازی و نوع گسترش چیدمان نیز می توان اذعان کرد که چیدمان خطی شطرنجی از چیدمان شعاعی بیشتر مورد استفاده قرار گرفته است. بازوی رباتیک امکان ساخت فرم های آزاد را به ما می دهد، برای ساخت و سازهای زیاد جهت هزینه ی کمتر، سیستم دروازه ای و چیدمان خطی توصیه می شود. | ||
کلیدواژهها | ||
پرینت سه بعدی؛ طراحی معماری؛ فناوری ساخت افزایشی؛ مسکن؛ ملزومات طراحی | ||
مراجع | ||
Ahmed, G. H., Askandar, N. H., & Jumaa, G. B. (2022). A review of largescale 3DCP: Material characteristics, mix design, printing process, and reinforcement strategies. Structures 2022 Publisher: Elsevier. https://doi.org/10.1016/j.istruc.2022.06.068, Akulova, I. I., & Slavcheva, G. S. (2020). Methodical Approach to Calculation of the Maintenance Cost for 3D Built Printing Equipment. IOP Conference Series: Materials Science and Engineering, 753. https://DOI:10.1088/1757-899X/753/5/052056 Alami, A. H., Olabi, A. G., Ayoub, M., Aljaghoub, H., Alasad, S., & Abdelkareem, M. A. (2023). 3D Concrete Printing: Recent Progress, Applications, Challenges, and Role in Achieving Sustainable Development Goals. Buildings, 13(4), 924. https://doi.org/10.3390/buildings13040924ht Allouzi, R., Al-Azhari, W., & Allouzi, R. (2020). Conventional construction and 3D printing: A comparison study on material cost in Jordan. Journal of Engineering, 2020(1), 1424682. https://doi.org/10.1155/2020/1424682 Arnold, L., Jöhnk, J., Vogt, F., & Urbach, N. (2022). IIoT platforms’ architectural features–a taxonomy and five prevalent archetypes. Electronic Markets, 32(2), 927-944. https://link.springer.com/article/10.1007/s12525-021-00520-0 Asaf, O., Bentur, A., Larianovsky, P., & Sprecher, A. (2023). From soil to printed structures: A systematic approach to designing clay-based materials for 3D printing in construction and architecture. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2023.133783 Batikha, M., Jotangia, R., Baaj, M. Y., & Mousleh, I. (2022). 3D concrete printing for sustainable and economical construction: A comparative study. Automation in Construction, 134, 104087. https://doi.org/10.1016/j.autcon.2021.104087 Bazli, M., Ashrafi, H., Rajabipour, A., & Kutay, C. (2023). 3D printing for remote housing: Benefits and challenges. Automation in Construction, 148, 104772. https://doi.org/10.1016/j.autcon.2023.104772 Berman, B. (2012). 3-D printing: The new industrial revolution. Business horizons, 55(2), 155-162. https://doi.org/10.1016/j.bushor.2011.11.003 Besklubova, S., Skibniewski, M. J., & Zhang, X. (2021). Factors affecting 3D printing technology adaptation in construction. Journal of construction engineering and management, 147(5), 04021026. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002034 Bici, A., & Yunitsyna, A. (2023). Analysis of 3D printing techniques for building construction: a review. Construction Robotics, 7(2), 107-123. https://doi.org/10.1007/s41693-023-00108-4 Budiono, H. S., Hilmy, F., & Taufik, I. (2023). The Effect of Printing Speed Variations on Dimensional Stability of 3D Printing Results Made from Waste Bottle Filament. Jurnal E-Komtek (Elektro-Komputer-Teknik), 7(1), 187-194. https://doi.org/10.37339/e-komtek.v7i1.1114 Bulakh, I. (2019). Common features of architectural design of the medical purpose building. Science & Technique. https://doi.org/10.21122/2227-1031-2019-18-4-311-318 Buswell, R. A., Bos, F. P., Silva, W. R. L. d., Hack, N., Kloft, H., Lowke, D., Freund, N., Fromm, A., Dini, E., & Wangler, T. (2022). Digital fabrication with cement-based materials: process classification and case studies. Digital Fabrication with Cement-Based Materials: State-of-the-Art Report of the RILEM TC 276-DFC, 11-48. https://doi.org/10.1007/978-3-030-90535-4_2 Chathuranga, S., Jayasinghe, S., Antuchevičienė, J., Wickramarachchi, R., Udayanga, N., & Weerakkody, W. A. S. (2023). Practices Driving the Adoption of Agile Project Management Methodologies in the Design Stage of Building Construction Projects. Buildings. https://doi.org/10.3390/buildings13041079 Dancel, R. (2019). 3D printed house for disaster-affected areas. Disaster Risk Reduction and Infrastructure Development (DRRID) Forum, https://www.researchgate.net/profile/Robert-Dancel/publication/332833519_3D_Printed_House_for_Disaster_Affected_Areas/links/5ccbe4d54585153c8c6839f7/3D-Printed-House-for-Disaster-Affected-Areas.pdf Davidson, J. R., Appuhamillage, G. A., Thompson, C. M., Voit, W., & Smaldone, R. A. (2016). Design paradigm utilizing reversible Diels–Alder reactions to enhance the mechanical properties of 3D printed materials. ACS applied materials & interfaces, 8(26), 16961-16966. https://doi.org/10.1021/acsami.6b05118 Dörfler, K., Dielemans, G., Leutenegger, S., Jenny, S. E., Pankert, J., Sustarevas, J., Lachmayer, L., Raatz, A., & Lowke, D. (2024). Advancing construction in existing contexts: Prospects and barriers of 3d printing with mobile robots for building maintenance and repair. Cement and Concrete Research, 186, 107656. https://doi.org/10.1016/j.cemconres.2024.107656 El-Sayegh, S., Romdhane, L., & Manjikian, S. (2020). A critical review of 3D printing in construction: Benefits, challenges, and risks. Archives of Civil and Mechanical Engineering, 20(2), 1-25. https://doi.org/10.1007/s43452-020-00038-w Feng, L., & Yuhong, L. (2014). Study on the status quo and problems of 3D printed buildings in China. Global Journal of Human-Social Science Research, 14(5), 1-4. https://doi.org/10.3390/buildings14051216 García-Alvarado, R., Moroni-Orellana, G., & Banda-Pérez, P. (2021). Architectural evaluation of 3D-printed buildings. Buildings, 11(6), 254. https://doi.org/10.3390/buildings11060254 García-Alvarado, R., Moroni-Orellana, G., & Banda, P. (2022). Development of variable residential buildings with 3D-printed walls. Buildings, 12(11), 1796. https://doi.org/10.3390/buildings12111796 Garcia-Alvarado, R., Soza-Ruiz, P., Valenzuela-Astudillo, E., Martuffi-Lazo, D., & Duarte, J. P. (2024). Development of a Generative Design System for 3D-Printed Houses in Chile. Buildings, 14(9), 2939. https://doi.org/10.3390/buildings14092939 Gebhard, L., Mata-Falcón, J., Anton, A., Dillenburger, B., & Kaufmann, W. (2021). Structural behaviour of 3D printed concrete beams with various reinforcement strategies. Engineering Structures, 240, 112380. https://doi.org/10.1016/j.engstruct.2021.112380 Ghaffar, S. H., Corker, J., & Fan, M. (2018). Additive manufacturing technology and its implementation in construction as an eco-innovative solution. Automation in Construction, 93, 1-11. https://doi.org/10.1016/j.autcon.2018.05.005 Ghosh, B., & Karmakar, S. (2024). 3D Printing Technology and Future of Construction: A Review. IOP Conference Series: Earth and Environmental Science, https://doi.org/10.1088/1755-1315/1326/1/012001 Hager, I., Golonka, A., & Putanowicz, R. (2016). 3D printing of buildings and building components as the future of sustainable construction? Procedia Engineering, 151, 292-299. https://doi.org/10.1016/j.proeng.2016.07.357 Hossain, M. A., Zhumabekova, A., Paul, S. C., & Kim, J. R. (2020). A review of 3D printing in construction and its impact on the labor market. Sustainability, 12(20), 8492. https://doi.org/10.3390/su12208492 Hou, J.-U., Kim, D.-G., Choi, S., & Lee, H.-K. (2015). 3D print-scan resilient watermarking using a histogram-based circular shift coding structure. Proceedings of the 3rd ACM workshop on information hiding and multimedia security, https://doi.org/10.1145/2756601.2756607 Huber, T., Burger, J., Mata‐Falcón, J., & Kaufmann, W. (2023). Structural design and testing of material optimized ribbed RC slabs with 3D printed formwork. Structural Concrete, 24(2), 1932-1955. https://doi.org/10.1002/suco.202200633 Hwang, B.-g., Shan, M., & Supa’at, N. N. B. (2017). Green commercial building projects in Singapore: Critical risk factors and mitigation measures. Sustainable cities and Society, 30, 237-247. https://doi.org/10.1016/j.scs.2017.01.020 Iftekar, S. F., Aabid, A., Amir, A., & Baig, M. (2023). Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers, 15. https://doi.org/10.3390/polym15112519 Khoshnevis, B. (2004). Automated construction by contour crafting—related robotics and information technologies. Automation in Construction, 13(1), 5-19. https://doi.org/10.1016/j.autcon.2003.08.012 Kothapuram, S., Jiawei, S., Mei-Ling, L., & Han, L. DIGITAL VERNACULAR. https://doi.org/10.52842/conf.acadia.2012.187 Leng, Y., Shi, X., Hiroatsu, F., Kalachev, A., & Wan, D. (2023). Automated construction for human–robot interaction in wooden buildings: Integrated robotic construction and digital design of iSMART wooden arches. Journal of Field Robotics, 40(4), 810-827. https://doi.org/10.1002/rob.22154 Lu, B., Li, M., Lao, W., Weng, Y., Qian, S., Tan, M. J., & Leong, K. F. (2018). Effect of spray-based printing parameters on cementitious material distribution. 2018 International Solid Freeform Fabrication Symposium. https://doi.org/10.32656/2018_29sff_symposium_aug13-15_01 Mechtcherine, V., Grafe, J., Nerella, V. N., Spaniol, E., Hertel, M., & Füssel, U. (2018). 3D-printed steel reinforcement for digital concrete construction–Manufacture, mechanical properties and bond behaviour. Construction and Building Materials, 179, 125-137. https://doi.org/10.1016/j.conbuildmat.2018.05.202 Moghayedi, A., Mahachi, J., Lediga, R., Mosiea, T., & Phalafala, E. (2024). Revolutionizing affordable housing in Africa: A comprehensive technical and sustainability study of 3D-printing technology. Sustainable cities and Society, 105, 105329. https://doi.org/10.1016/j.scs.2024.105329 Moretti, M. (2023). WASP in the Edge of 3D Printing. In 3D Printing for Construction with Alternative Materials (pp. 57-65). Springer. https://doi.org/10.1007/978-3-031-09319-7_3 Nadgorny, M., Collins, J., Xiao, Z., Scales, P. J., & Connal, L. A. (2018). 3D-printing of dynamic self-healing cryogels with tuneable properties. Polymer Chemistry, 9(13), 1684-1692. https://doi.org/10.1039/c7py01945a Natapov, A., Parush, A., Laufer, L., & Fisher-Gewirtzman, D. (2022). Architectural features and indoor evacuation wayfinding: The starting point matters. Safety science, 145, 105483. https://doi.org/10.1016/j.ssci.2021.105483 Petrick, I. J., & Simpson, T. W. (2013). 3D printing disrupts manufacturing: how economies of one create new rules of competition. Research-Technology Management, 56(6), 12-16. https://doi.org/10.5437/08956308x5606193 Rahul, A., Santhanam, M., Meena, H., & Ghani, Z. (2019). 3D printable concrete: Mixture design and test methods. Cement and Concrete Composites, 97, 13-23. https://doi.org/10.1016/j.cemconcomp.2018.12.014 Robayo-Salazar, R., de Gutiérrez, R. M., Villaquirán-Caicedo, M. A., & Arjona, S. D. (2023). 3D printing with cementitious materials: Challenges and opportunities for the construction sector. Automation in Construction, 146, 104693. https://doi.org/10.1016/j.autcon.2022.104693 Schuldt, S. J., Jagoda, J. A., Hoisington, A. J., & Delorit, J. D. (2021). A systematic review and analysis of the viability of 3D-printed construction in remote environments. Automation in Construction, 125, 103642. https://doi.org/10.1016/j.autcon.2021.103642 Song, Y., & Liao, C. (2023). Research on the architectural features and artistic elements of traditional buildings in different regions of Jiangxi, China. Buildings, 13(7), 1597. https://doi.org/10.3390/buildings13071597 Sovetova, M., & Calautit, J. K. (2024). Thermal and energy efficiency in 3D-printed Buildings: Review of geometric Design, materials and printing processes. Energy and buildings, 114731. https://doi.org/10.1016/j.enbuild.2024.114731 Teixeira, J., Zuazua-Ros, A., Jesus, M., Rangel, B., & Sofia Guimarães, A. (2023). How 3DPC Will Transform Architectural Design. In 3D Printing for Construction with Alternative Materials (pp. 1-31). Springer. https://doi.org/10.1007/978-3-031-09319-7_1 Tian, J., Yuan, J., Li, H., Yao, D., & Chen, G. (2021). Advanced surface color quality assessment in paper-based full-color 3D printing. Materials, 14(4), 736. https://doi.org/10.3390/ma14040736 Uppala, S. S., & Tadikamalla, M. R. (2017). A review on 3D printing of concrete-the future of sustainable construction. i-Manager's Journal on Civil Engineering, 7(3), 49. https://doi.org/10.26634/jce.7.3.13610 Volpe, S., Sangiorgio, V., Fiorito, F., & Varum, H. (2024). Overview of 3D construction printing and future perspectives: A review of technology, companies and research progression. Architectural Science Review, 67(1), 1-22. https://doi.org/10.1080/00038628.2022.2154740 Wang, C., & Zhou, Z.-y. (2023). Optical Properties and Lampshade Design Applications of PLA 3D Printing Materials. BioResources, 18(1). https://doi.org/10.15376/biores.18.1.1545-1553 Wilson, T. T., Mativenga, P. T., & Marnewick, A. L. (2023). Sustainability of 3D Printing in Infrastructure Development. Procedia CIRP, 120, 195-200. https://doi.org/10.1016/j.procir.2023.08.035 Wu, P., Wang, J., & Wang, X. (2016). A critical review of the use of 3-D printing in the construction industry. Automation in Construction, 68, 21-31. https://doi.org/10.1016/j.autcon.2016.04.005 Xiao, J., Ji, G., Zhang, Y., Ma, G., Mechtcherine, V., Pan, J., Wang, L., Ding, T., Duan, Z., & Du, S. (2021). Large-scale 3D printing concrete technology: Current status and future opportunities. Cement and Concrete Composites, 122, 104115. https://doi.org/10.1016/j.cemconcomp.2021.104115. Xiao, J., Liu, H., Ding, T., & Ma, G. (2021). 3D printed concrete components and structures: An overview. Sustain. Struct, 1(000006), 10-54113. https://doi.org/10.54113/j.sust.2021.000006 Youssef, M., & Abbas, L. (2023). Applying 3d printing technology in constructing sustainable houses. Architecture and Planning Journal (APJ), 29(1), 4. https://doi.org/10.54729/2789-8547.1190 Yuan, J., Chen, C., Yao, D., & Chen, G. (2020). 3D printing of oil paintings based on material jetting and its reduction of staircase effect. Polymers, 12(11), 2536. https://doi.org/10.3390/polym12112536 Zhang, Y., He, M., Wang, L., Yan, J., Ma, B., Zhu, X., Ok, Y. S., Mechtcherine, V., & Tsang, D. C. (2022). Biochar as construction materials for achieving carbon neutrality. Biochar, 4(1), 59. https://link.springer.com/article/10.1007/s42773-022-00182-x Tofani, L., et al. (2019). “Building the Future: 3D Printing in Architecture.” *Journal of Building Technology*. https://doi.org/10.1016/b978-0-323-58118-9.05001-6 | ||
آمار تعداد مشاهده مقاله: 124 تعداد دریافت فایل اصل مقاله: 127 |