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Abstract: Recent developments in the application of artificial intelligence (AI) in predicting 

weld quality and mechanical properties make it important to investigate the viability of AI in 

helping to eliminate human efforts. This paper contributes to this development by developing an 

artificial intelligence (AI) algorithm to determine high-strength steel's mechanical properties, 

particularly in weld joints created through dissimilar gas metal arc welding of S700MC and 

S960QC steels. A mathematical model based on artificial neural networks (ANNs) was employed 

to demonstrate its viability. Sixteen experiments were conducted, generating data on yield and 

tensile strength concerning the welding parameters and a filler wire with a similar carbon 

equivalent. Initially, the algorithm was set up to predict joint characteristics using only welding 

parameters as input variables. However, to enhance the accuracy of the predictions, the carbon 

equivalent of the filler metal was incorporated as an additional input variable. This adjustment 

resulted in improved prediction outcomes compared to those obtained without considering the 

filler wire. The implementation of the AI algorithm was carried out using MATLAB, specifically 

its R2017b version. The algorithm's ability to predict mechanical properties based on the given 

input variables showcases its potential in optimizing welding processes and ensuring the desired 

mechanical properties of weld joints in high-strength steels are achieved. The findings are 

beneficial for the welding industry and serve as an educational tool. 
 

 

Keywords: Gas-arc welding, dissimilar welding, high-strength steels, artificial neural network, 

S700MC, S960QC. 



 

 

 

 

 

I. Introduction 
 

The use of new materials in modern industries has 

boosted the need for new developments in 

predicting weld mechanical properties. Thick and 

thin metal plates of increasingly diverse materials 

are used throughout the industry and hence the 

need to effectively predict the mechanical 

properties is in high demand. Considering that the 

mechanical properties of weld metal are 

influenced by both its chemical composition and 

thermal history during welding. The study of the 

mechanical characteristics of materials is a 

critical area of mechanical engineering since it 

ensures that the parts used in various mechanisms 

will be able to withstand different loads while 

operating. The welding of mechanical parts, 

although it allows parts to be joined in a 

sufficiently homogeneous manner, has the 

disadvantage of not preserving the characteristics 

of the materials at the welded joint (Bayock et al., 

2020). This disadvantage is even more 

pronounced in the case of dissimilar welding. The 

study of the new mechanical characteristics at the 

joint is therefore essential to ensuring the 

conformity of the welded parts. These 

mechanical characteristics depend not only on the 

type of welding process used but also on the 

mechanical characteristics of the base metal and 

the filler wire, the welding time, and the applied 

contact force. (Bayock et al., 2019), (Palanivel et 

al., 2017), (Winiczenko et al., 2016). The choice 

of a given welding process depends, among other 

factors, on the mechanical and thermal 

characteristics of the base metal (Mishra et 

al.,2020). However, dissimilar welding presents 

an additional challenge given the differences in 

the mechanical and thermal characteristics of the 

base metals. This limits the choice of welding 

method Odebiyi, et al., 2019), (Penttilä et al., 

2019). The application of dissimilar is to ensure 

that the different melting points of the materials 

do not prevent a homogeneous weld joint which 

is very important in achieving good welded 

mechanical properties ( Bayock et al., 2020). To 

achieve good mechanical properties, gas-metal 

arc welding is one of the methods used. Its main 

parameters are current intensity, welding speed, 

and thermal energy input (Uhrlandt et al., 2016), 

(Rajamanickam, et al., 2017). In addition to these 

parameters, the physical and chemical 

characteristics of the materials, their geometries, 

and the properties of the filler metal must be 

considered to obtain a welded joint of good 

quality (Uhrlandt et al., 2016), (Park et al., 2024), 

(Singh et al., 2022).  

The weld quality is determined by the quality of 

the joint obtained, which must have mechanical 

characteristics as close as possible to those of the 

original materials. To ensure this closeness, 

several research methods are used, the most 

important of which is experimentation. This 

method consists mainly of destructive testing and 

requires the use of several samples. Artificial 

intelligence methods are increasingly being 

considered for consolidating experimental 

methods to reduce costs (Mishra, 2020), (Merayo 

et al., 2020) . The most used methods are artificial 

neural networks and genetic algorithms. (Gyasi et 

al., 2017), (Tran et al., 2023) showed that, after 

comparing several artificial intelligence 

techniques, algorithms based on artificial neural 

networks produce better approximation results. 

The mechanical characteristics studied in their 

work included tensile strength, yield strength, 

hardness, and grain size (Gupta et al., 2016), 

(Payares-Asprino et al., 2021). 

However, determining the mechanical 

characteristics of welded joints experimentally is 

expensive, given the ratio of time to cost. The 

value of the materials, therefore, makes any waste 

expensive. The use of artificial intelligence 

methods is one solution used to overcome this 

challenge (Azizi  et al., 2016), (Mishra et al., 

2020). 

The rise of artificial intelligence has led to the 

investigation of the use of various machine 

learning techniques in welding. Some studies 



 

 

 

focus on the geometry and welding parameters 

(Agbulut et al., 2020), while others focus on the 

mechanical characteristics of welds. (Park et al., 

2024) used an artificial neural network to predict 

the yield strength of austenitic stainless-steel 

welds. (Akshansh et al., 2020) compared the 

effectiveness of an artificial neural network 

against that of a decision tree regression model to 

predict the tensile strength of weld joints obtained 

by friction stir welding of 6061-T6 aluminium 

alloy from the work of (Elatharasan et al., 2013). 

The control of weld joint characteristics was 

studied in the work of (De Filippis et al., 2016), 

who used an artificial neural network to predict 

and control the mechanical properties of 

aluminium plates welded using the friction 

welding process. (Gupta et al., 2016) proposed an 

approach based of a multi-objective optimization 

on friction stir welding of dissimilar AA5083-O 

and AA6063-T6 aluminium alloys. (Ajith Raj et 

al., 2018) Investigated several machine learning 

methods to predict the quality of a welded 304 

stainless steel weld joint through its tensile 

strength and hardness. (Azizi et al. 2016) used a 

ring probabilistic logic neural network and 

genetic algorithm to study grain size during 

friction welding. Very few techniques have been 

investigated, hence the importance of extending 

this field to other welding techniques. 

This work considers the dissimilar welding of 

high-strength steels, which are widely used in 

mechanical engineering due to their combined 

strength and malleability (Kim et al., 2024), 

(Wang et al., 2020). 

This paper investigates a method for predicting 

the tensile strength and yield strength of welded 

materials. The algorithms implemented are based 

on an artificial neural network, and the welding 

method chosen is a gas metal arc. In addition, the 

work draws an analogy in highlighting the 

importance of the carbon equivalent of the filler 

material, which evaluates the effect of its alloying 

material in welding by using the predicting 

mechanism. The algorithms used in the literature 

mainly consider welding parameters, such as 

welding current, welding speed, heat input, and 

carbon equivalent. To know the viability of AI 

predictable developed, the work of (Bayock et al., 

2020) , (Bayock et al., 2019), which focused on 

the study of the microstructure and mechanical 

properties of dissimilar S700MC/S960QC high-

strength steels was used. In their work, the 

specimens were welded using a gas metal arc 

welding process, and the thermal profile and 

cooling time, along with the mechanical 

properties of the welded joint, were investigated 

using various experimental techniques (Kim et 

al., 2022), (Chaki et al., 2019). The values 

obtained for the tensile strength and yield 

strength and the corresponding welding 

parameters are the datasets used in this research. 

The deployment of the algorithm is performed in 

MATLAB R2017b, and two models are 

considered. One in which the input parameters 

are exclusively the welding parameters; a second 

model which includes the carbon equivalent of 

the filler metal as an additional variable was 

applied. 

 

II. Materials and methods 

 

The experiment was conducted using dissimilar 

S700MC and S960QC materials whose 

mechanical characteristics are displayed in Table 

1 along with those of the filler wire used. The 

carbon equivalent of the investigation steels was 

calculated according to the following equation 

(Banik et al., 2021): 

CE

= %C +
%Mn

6

+
(%Cr + %Mo + %V)

5

+
(%Ni + %Cu)

15
 

(1) 

 



 

 

 

Carbon equivalent is an essential predictor of 

steel hardenability. It can be a cause of reduction 

of hydrogen-induced cracking (Alhassan et al., 

2021). 

 

Table 1: Chemical characteristics of the based metal and filler wire 

Mat

erial 

C Si Mn Al B Nb Ti V Cu Cr Ni Mo N P S CE* 

S70

0M

C 

0.05

6 

0.16 1.18 0.02

7 

0.00

2 

0.04

4 

0.12 0.00

6 

0.02 0.06

2 

0.06

6 

0.01

50 

0.00

5 

0.01 0.00

5 

0.38 

S96

0QC 

0.09 0.21 1.05 0.03 0.00

2 

0.00

3 

0.03

2 

0.00

8 

0.02

5 

0.82 0.04 0.15

8 

0.17

5 

0.01 0.00

4 

0.49 

 

Metal C Si Mn P S Ni Cr Mo Cu Al Ti+Z

n 

CE 

16834-A G 69 6 M21 

Mn4Ni1.5CrMo 

0.0 7 0.5 0 1.70 0.0 12 0.0 2 1.6 0 0.2 0 0.4 5 0.3 - 0.05 0.55 

EN ISO 16834-A - G 

89 5 

M21 Mn4Ni2.5CrMo 

AWS 

A5.28: ER120S-G 

0.0 56 0.1 6 1.1 8 0.0 1 0.0 05 0.0 66 0.0 62 0.0 15 0.0 2 0.0 27 0.12 0.38 

NiCrMo700 0.1 2 0.2 1 1.9 - - 2.3 5 0.4 5 0.5 5 0.3 0 - - 0.34 

*CE: Carbone equivalent 

Table 2 : Mechanical characteristics of the samples and filler wire 

 Yield strength 

(MPa) 

Tensile strength 

(MPa) 

Elongation (A5%) Vickers Hardness 

(HV5) 

S700MC 768 822 12 280 

S960QC 960 1000 18 320 

16834-A G 69 6 M21 

Mn4Ni1,5CrMo 

780 830 17 270 

EN ISO 16834-A - G 89 5 

M21 Mn4Ni2,5CrMo AWS 

A5.28: ER120S-G 

960 1038 20 390 

NiCrMo700 780 830 ≥ 17 270 

 

Gas metal arc welding was performed 

with Ar + 18% CO2 as the shielding gas at a flow 

rate of 17 l/min. Figure 1 shows the setup used 

during the welding process. The ABB IRC 5 

robot control unit, which is an automated gas-arc 

welding robot using a preregistered laser profile, 

was used to carry out the welding process. 

Welding is performed after two passes in this 

work, and we consider the results obtained from 

those two passes separately. 



 

 

 

 

Fig. 1 . Welding setup (Bayock et al., 2020)  

 

Non-destructive testing was carried out using a 

Vickers Wilson Wolpert 452SVD hardness-

testing machine (ITW, Chicago, IL, USA). The 

microstructure analysis of the materials and the 

chemical composition of the heat-affected zone 

were determined using a Hitachi SU3500 

instrument (Hitachi High-Technologies America, 

IL, USA). Destructive tensile testing was carried 

out using ZWICK/ROZ Z 330 RED (Zwick 

Rowell, Ulm, Germany). 

The MATLAB R2017b built-in neural network 

function was used for this work. The neural 

network-based algorithm was set up using the 

following variables: the intensity of the electric 

current [in A], the welding speed [in mm/s], the 

heat input [in kJ/mm], and the carbon equivalent 

of the filler wire. To ensure that the ranges of all 

variables were the same and therefore improve 

the accuracy of the prediction, the data were 

normalized using Equation 2 (Gupta et al., 2016), 

(Kesse et al. 2020): 

 

x̂

=
0,8

Δ
x

+ (0,9 −
0,8xmax

Δ
) 

(2) 

 

where x̂ is the normalized value of the data, 

 x Is its original value, and  Δ = xmax − xmin . 

Table 3 displays the actual values of the variables 

used during the experiments and the 

corresponding yield strength and tensile strength 

(Bayock et al. 2020), (Rubio-Ramirez et 

al.,2020), (Wang et al., 2020). Table 4 shows the 

normalized values obtained. 

 

Table 3: Experimental results 

 

N° Welding 

current [A] 

Welding 

speed 

[mm/s] 

Heat 

input Q 

[kJ/mm] 

Carbon 

Equivalent 

(EC) 

Yield 

Strength 

[MPa] 

Tensile 

strength 

[MPa] 

1 203 6.2000 0.7000 0.5500 762 813.3000 

2 203 4 1 0.3400 789.6000 795.0000 

3 203 6.2500 0.8000 0.4500 776.3000 833.3000 



 

 

 

4 206 4 1.1 0.3400 761 795.4000 

5 206 4 1 0.55 716 813.0000 

6 206 3 1.5 0.34 720 773.5899 

7 208 6.2 0.71 0.45 752 831.5900 

8 208 4 1.2 0.45 700 823.9000 

9 210 3 1.5 0.55 706.3 770.3000 

10 211 4.5 1.8 0.45 716.3 790.3090 

11 212 4.67 0.7 0.34 788 831.5900 

12 215 6.2 0.7 0.55 795 818.3890 

13 215 6.2 0.8 0.45 763 821.9000 

14 215 6.2 0.7 0.34 753 841.9000 

15 215 6.2 1 0.34 749 794.6000 

16 215 6.2 1.5 0.45 702 772.1000 

17 220 3 1.5 0.34 700 801.9090 

18 221 4 0.7 0.55 688.5 824.0000 

19 221 4.5 0.7 0.43 691 758.3900 

20 221 6.2 1 0.45 712 780.2900 

 

Table 4: Normalized data 

 

N° Welding 

current [A] 

Welding 

speed [mm/s] 

Heat input 

Q [kJ/mm] 

Carbon 

equivalent 

(CE) 

Yield 

strength  

[MPa] 

Tensile 

strength 

[MPa] 

1 0.1000 0.8877 0.1000 0.9000 0.6744 0.6263 

2 0.1000 0.3462 0.3182 0.1000 0.8631 0.4512 

3 0.1000 0.9000 0.1727 0.5190 0.7721 0.8177 

4 0.2333 0.3462 0.3909 0.1000 0.6675 0.4550 

5 0.2333 0.3462 0.3182 0.9000 0.3598 0.6234 

6 0.2333 0.1000 0.6818 0.1000 0.3872 0.2455 

7 0.3222 0.8877 0.1073 0.5190 0.6060 0.8005 

8 0.3222 0.3462 0.4636 0.5190 0.2504 0.7191 

9 0.4111 0.1000 0.6818 0.9000 0.2935 0.2148 

10 0.4556 0.4692 0.9000 0.5190 0.3619 0.4062 

11 0.5000 0.5111 0.1000 0.1000 0.8521 0.8005 

12 0.6333 0.8877 0.1000 0.9000 0.9000 0.6742 

13 0.6333 0.8877 0.1727 0.5190 0.6812 0.7086 

14 0.6333 0.8877 0.1000 0.1000 0.6128 0.9000 

15 0.6333 0.8877 0.3182 0.1000 0.5855 0.4474 

16 0.6333 0.8877 0.6818 0.5190 0.2641 0.2321 

17 0.8556 0.1000 0.6818 0.1000 0.2504 0.5172 

18 0.9000 0.3462 0.1000 0.9000 0.1718 0.7287 

19 0.9000 0.4692 0.1000 0.4429 0.1889 0.1000 

20 0.9000 0.8877 0.3182 0.5190 0.3325 0.3096 

 



 

 

 

The parameters used to set up the algorithm are 

shown in Table 5, and the control parameters are 

the absolute error and relative error given by 

Equation 3. 

 

e =
𝑋′ − 𝑋

𝑋
          or        e(%)

=
𝑋′ − 𝑋

𝑋
∗ 100 

(3) 

 

where  𝑋  is any given experimental data 

and 𝑋′is the corresponding predicted value. 

Table 5 : Algorithm parameters 

 

To avoid overfitting, only 55% of the data are 

chosen for the training phase. 30% of the data 

are used for the validation phase of the 

algorithm and 15% are used for testing. 

The neural network algorithm 

The neural network algorithm works like the 

human brain. The artificial neural network 

(ANN) consists of interconnected artificial 

neurons that can be used in data fitting, 

prediction, or optimization, among other 

applications (Afzal et al., 2021), (Bejani et al., 

2021). Input data is processed using weights on 

every neuron and a bias. An activation function is 

then used to find the best fit. The principle of the 

neural network is shown in Figure 2 (Abiodun et 

al., 2018), (Wu et al., 2021) and 

(Mohammadizadeh et al., 2023). 

The built-in MATLAB function for the neural 

network can be accessed using the path 

MATLAB R2017b >> APPS >> Neural Net 

Fitting. The goal is to find the network with the 

best combination of coefficients to obtain the best 

fit from the experimental data. 

 

 

 

Fig. 2 Artificial Neural network principle 

 

III. RESULTS AND 

DISCUSSION 

In this paper, an artificial intelligence (AI) 

algorithm was designed to determine the 

mechanical properties of high-strength steels, 

particularly in weld joints created through 

dissimilar gas metal arc welding of S700MC and 

S960QC steels. To achieve the said objective two 

approaches were used namely Yield and Tensile 

strength prediction without filler properties in the 

input and yield and tensile strength prediction 

with filler properties in the input. 

Model without the filler wire’s properties as 

input 

Yield strength’s results 

Number of 

experiments 

Training 

data 

Validation 

data 

Test 

data 

Activation 

function 

Evaluation 

function 

20 11 6 3 Levenberg‒

Marquardt at 

backpropagation 

Mean square 

Error 



 

 

 

The distribution of the absolute error obtained 

when determining the yield strength is shown in 

Figure 3. The error is well distributed around zero 

and ranges from -0.2037 to 0.1689. Considering 

the relative errors in absolute value, the average 

of relative errors is 0.0790. The data from the test 

phase appear to have a smaller absolute error 

compared to the data from the training and 

validation phases used to set the algorithm. This 

shows the ability of the algorithm to produce 

good results for unobserved data. 

 

 

Fig.3. Histogram error for the yield strength without the carbon equivalent of filler wire as input 

 

Figure 4 shows the regression of the predicted 

data against the experimental data. It represents 

the regression of the training data, the validation 

data, and the test data. The regression of all the 

data is also shown, along with the corresponding 

regression coefficient. The regression of the 

training data shows an approximation of the 

experimental data by the data predicted by the 

algorithm, with a regression coefficient R = 

0.9456. The values of the regression coefficients 

for the validation and test phases are 0.9243 and 

0.9758 respectively. The regression of all the data 

shows some points not on the regression line and 

an overall regression coefficient of 0.9503. 

 

 



 

 

 

 

Fig. 4. Regression for the yield strength without the carbon equivalent of filler wire as input 

 

Table 6 shows the relative errors for all the data 

used. The normalized yield strength data and the 

values predicted by the algorithm are shown. 

These data are used to determine the 

corresponding relative error and to deduce the 

predicted value of the yield strength in MPa, 

given the actual experimental values of the yield 

strength in MPa. The relative error is calculated 

from Equation 3. Therefore, knowing the 

experimental data and the distribution of the 

relative error enables us to deduce the predicted 

value using Equation 4 (Pradhan et al., 2022). 

𝑋′ = 𝑋(e + 1) (4) 

 

From Table 6, the approximation produces a 

relative error distributed between 0.0031 and 

0.1684 for all datasets used. Considering the 

relative errors in absolute value, the average of 

relative errors is 0.0790. As a result, the algorithm 

approximates the yield strength with a maximum 

error of 16.8411%. 

 

 

 



 

 

 

Table 6: Predicted values of yield strength without filler wire as an input parameter 

 

 

 

Tensile strength results 

The prediction of the tensile strength produced 

a distribution of absolute errors, as shown in 

Figure 5. The absolute error is well distributed 

around. The error lies between -0.1458 and 

0.1245. The maximum absolute value of the error 

is 0.1458 which corresponds to the test dataset. 

 

 

N° Experimenta

l Yield 

Strength  

normalized 

Predicted 

Yield Strength   

Normalized 

Relative error Experimental 

Yield Strength 

[MPa] 

 

Predicted 

Yield Strength 

[MPa] 

 

1 0.6744 0.6381 -0.0538 762.0000 720.9568 

2 0.8631 1.0054 0.1649 789.6009 919.7347 

3 0.7721 0.7503 -0.0283 776.3888 754.3236 

4 0.6675 0.6505 -0.0255 761.0988 741.6032 

5 0.3598 0.4302 0.1957 716.0898 856.0934 

6 0.3872 0.3988 0.0300 720.0655 741.6256 

7 0.6060 0.5545 -0.0850 752.0456 688.1276 

8 0.2504 0.2671 0.0666 700.0655 746.5954 

9 0.2935 0.2944 0.0032 706.3567 708.5546 

10 0.3619 0.3719 0.0277 716.3456 736.1387 

11 0.8521 0.7644 -0.1029 788.0565 706.9067 

12 0.9000 0.9375 0.0417 795.0566 828.1665 

13 0.6812 0.6370 -0.0649 763.0755 713.5156 

14 0.6128 0.5953 -0.0286 753.0566 731.4967 

15 0.5855 0.6159 0.0520 749.0655 787.9565 

16 0.2641 0.3086 0.1684 702.0980 820.2243 

17 0.2504 0.2179 -0.1297 700.0908 609.2032 

18 0.1718 0.1536 -0.1061 688.5980 615.4723 

19 0.1889 0.1667 -0.1176 691.0545 609.7634 

20 0.3325 0.3028 -0.0894 712.0566 648.3745 



 

 

 

 

Fig. 5. Histogram error for the tensile strength without filler wire ‘s properties 

 

The regression of the predicted data against the 

experimental data is shown in Figure 6. For the 

training phase, the regression coefficient R = 

0.9922. For the validation and test phases, the 

regression coefficients are respectively 0.9008 

and -0.7976. The regression of all samples shows 

no particularly isolated point and an overall 

regression coefficient of 0.9448 Table 7 shows 

the relative errors of the datasets used. The 

normalized tensile strength data and the values 

predicted by the algorithm are shown. These data 

are used to determine the corresponding relative 

error and to deduce the predicted value of the 

tensile strength in MPa, given the actual 

experimental values of the tensile strength in 

MPa. It is shown that this tensile strength 

prediction can be an issue in terms of the 

weldability of such high-strength and ultra-high-

strength steel. The dependency of filler wire with 

and new criterion of carbon equivalent is 

inevitable in the improved prediction of the 

algorithm. It is important to notice the risk of 

hydrogen-induced cracking in the heat-affected 

zone of the welded joints. In that case, the process 

may need to be preheated.  

 

 

 



 

 

 

 

Fig. 6. Regression for the yield strength without the carbon equivalent of filler wire as input 

 

The relative error is determined using Equation 3, 

and the predicted tensile strength values are 

determined from the experimental values using 

Equation 4. The relative error obtained ranges 

from 0.0005 to 0,1667. Considering the relative 

errors in absolute value, the average of the 

relative errors is 0.0653. 

 

 

Table 7: Predicted values of tensile strength without filler wire as an input parameter 

N° Experimen

tal Tensile 

Strength 

normalized 

Predicted 

Tensile 

Strength 

Normalized 

Relative error Experimental 

Tensile 

Strength [MPa] 

 

Predicted 

Tensile 

Strength [MPa] 

 

1 0.6263 0.5690 -0.0914 813.3766 738.9387 

2 0.4512 0.4514 0.0006 795.0676 795.4465 

3 0.8177 0.6813 -0.1668 833.3676 694.3267 

4 0.4550 0.4929 0.0832 795.6554 861.5976 

    5 0.6234 0.6182 -0.0084 813.0566 806.1768 



 

 

 

 

A model with the filler wire’s properties as 

input 

 

Yield strength’s results  

Figure 7 shows a well-distributed absolute 

error around zero when determining the yield 

strength. For these datasets, the absolute errors 

are between -0.1339 and 0.2515. Figure 8 allows 

us to better appreciate the neural network 

algorithm's approximation of the yield stress 

values, with some values proving not fully on the 

regression line. However, the regression 

coefficient of 0.9669 allows us to conclude that 

the algorithm obtained sufficiently captures the 

information on the yield strength of the weld 

joint. The regression of the training data shows a 

regression coefficient of 0.9650. The regression 

coefficients obtained for the validation and test 

phases are respectively 0.9949 and 0.9764. 

 

 

Fig. 7. Histogram error for the yield strength with the carbon equivalent of filler wire as input 

6 0.2455 0.2214 -0.0980 773.5655 697.6965 

7 0.8005 0.7863 -0.0177 831.5576 816.7966 

8 0.7191 0.7178 -0.0018 823.0676 821.4898 

9 0.2148 0.2077 -0.0332 770.3677 744.7775 

10 0.4062 0.4046 -0.0039 790.3566 787.2489 

11 0.8005 0.7089 -0.1144 831.5234 736.3778 

12 0.6742 0.6676 -0.0097 818.3342 810.3787 

13 0.7086 0.6968 -0.0166 821.9664 808.2357 

14 0.9000 0.8939 -0.0067 841.9565 836.2365 

15 0.4474 0.4941 0.1046 794.6655 877.6987 

16 0.2321 0.2725 0.1742 772.1655 906.6189 

17 0.5172 0.4600 -0.1106 801.9765 713.2078 

18 0.7287 0.7759 0.0648 824.0980 877.4167 

19 0.1000 0.0972 -0.0283 758.3654 736.8876 

20 0.3096 0.3627 0.1717 780.5662 914.1878 



 

 

 

 

Fig. 8. Regression for the yield strength with the carbon equivalent of filler wire as input 

 

Table 8 shows the relative errors of all the data 

studied and the approximate values of the yield 

strength. The output data, consisting of the values 

obtained experimentally, are normalized and 

presented, as well as the approximate values 

obtained by the algorithm. The relative errors 

obtained for this set of data allow us to deduce the 

predicted values of the yield strength. The 

relative errors are distributed between 0.0058 and 

0.0773 in absolute value. Given the low relative 

error, the approximation for these data is 

considered satisfactory. When considering the 

relative errors in absolute value, the average of 

relative errors is 0.0399, which is much better as 

compared to the model without the carbon 

equivalent of filler wire as input. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 8: Predicted values of yield strength with filler wire as input parameter 

 

 

 

Figure 9 shows the error distribution when 

determining the tensile strength. The errors are 

well distributed around zero and range from -

0.1822 and 0.1051.  Figure 10 shows the 

approximation between the results obtained by 

the algorithm used and the experimental results. 

The overall regression coefficient is 0.9797. The 

regression obtained with the training data is 

0.9981, which justifies the fact that the absolute 

errors illustrated by the error histogram are closer 

to zero for the training data. The regression 

coefficients for the validation and test phases are 

0.9689 and 0.9982 respectively. The prediction 

values of yield strength with filler wire as an input 

parameter led to good weld behaviours. The 

optimum mechanical properties are because of 

the evaluation of the carbon equivalent of 

different materials used. Modern materials (high-

strength or ultra-high-strength steels) made using 

complex alloying elements in their composition 

have exhibited unprecedented weldability. It is 

important to recommend that welders have a 

general idea about the hardenability of the 

different welded-based materials and filler wire 

(Alhassan et al., 2021).  

N° Experimen

tal Yield 

Strength  

normalized 

Predicted 

Yield Strength 

Normalized 

Relative 

error 

Experimental 

Yield Strength 

[MPa] 

 

Predicted 

Yield Strength 

[MPa] 

 

1 0.6744 0.6381 0.0058 762.0345 766.4452 

2 0.8631 1.0054 0.0255 789.6565 809.7670 

3 0.7721 0.7503 0.0219 776.3565 793.2567 

4 0.6675 0.6505 0.0176 761.0565 774.7838 

5 0.3598 0.4302 -0.0673 716.0565 667.7789 

6 0.3872 0.3988 -0.0267 720.0567 700.7099 

7 0.6060 0.5545 -0.0774 752.0565 693.8287 

8 0.2504 0.2671 0.0970 700.0565 767.9389 

9 0.2935 0.2944 0.0221 706.3565 721.8998 

10 0.3619 0.3719 -0.0596 716.3565 673.6479 

11 0.8521 0.7644 -0.0743 788.0567 729.4793 

12 0.9000 0.9375 -0.0170 795.0908 781.4698 

13 0.6812 0.6370 -0.0276 763.0783 741.9903 

14 0.6128 0.5953 0.0302 753.0234 775.7897 

15 0.5855 0.6159 0.0045 749.0357 752.3893 

16 0.2641 0.3086 -0.0124 702.0546 693.2898 

17 0.2504 0.2179 -0.0661 700.0467 653.7289 

18 0.1718 0.1536 0.0245 688.5765 705.3789 

19 0.1889 0.1667 0.0769 691.0786 744.1687 

20 0.3325 0.3028 0.0446 712.0686 743.7576 



 

 

 

 

Fig. 9. Histogram of the tensile strength for the carbon equivalent of the filler wire 

 

Figure 10 shows the approximation between 

the results obtained by the algorithm used and the 

experimental results. The overall regression 

coefficient is 0.9797. The regression obtained 

with the training data is 0.9981, which justifies 

the fact that the absolute errors illustrated by the 

error histogram are closer to zero for the training 

data. The regression coefficients for the 

validation and test phases are 0.9689 and 0.9982 

respectively. 

 



 

 

 

Fig.  10 : Regression for the tensile strength with the carbon equivalent of filler wire as input 

 

Table 9 shows the relative errors of and 

approximated values for the tensile strength. The 

relative error is distributed between 0.0000 and 

0.1104 in absolute value. When considering the 

relative errors in absolute value, the average of 

relative errors is 0.02909275, which is much 

better as compared to the model without the 

carbon equivalent of filler wire as input. That is 

why the research results of (Alhassan et al., 

2021), evaluated the impact of carbon equivalent 

on the weldability of metal. It is just a positive 

aspect in terms of tensile strength evaluation. The 

carbon equivalent avoids a weld defect and 

optimizes the mechanical properties of the 

welded joint. 

 

Table 9: Predicted values of tensile strength with filler wire’s carbon equivalent as an input 

parameter 

 

 

 Conclusion 

This study was carried out using two 

approaches. In the first approach, where only gas-

metal arc welding parameters were used as input 

data, the algorithm showed promising results for 

predicting yield strength and tensile strength of 

welded joints. However, some data points 

N° Experimen

tal  Tensile 

Strength  

normalized 

Predicted 

Tensile 

Strength 

Normalized 

Relative 

error 

Experimental 

Tensile 

Strength [MPa] 

 

Predicted 

Tensile 

Strength [MPa] 

 

1 0.6263 0.6558 0.0471 813.3000 851.5990 

2 0.4512 0.4512 0.0000 795.0000 795.0290 

3 0.8177 0.8421 0.0298 833.3089 858.1409 

4 0.4550 0.4550 0.0000 795.4787 795.4123 

5 0.6234 0.6235 0.0000 813.0789 813.0123 

6 0.2455 0.2488 0.0138 773.5898 784.1832 

7 0.8005 0.8005 0.0000 831.5898 831.4823 

8 0.7191 0.7191 0.0000 823.0888 823.0145 

9 0.2148 0.2148 0.0000 770.3898 770.2954 

10 0.4062 0.4062 0.0000 790.3870 790.3076 

11 0.8005 0.8005 0.0000 831.8995 831.5498 

12 0.6742 0.7341 0.0890 818.3989 891.1089 

13 0.7086 0.7759 0.0949 821.9900 899.9189 

14 0.9000 0.8006 -0.1104 841.9988 748.9489 

15 0.4474 0.4473 -0.0001 794.6800 794.5400 

16 0.2321 0.2253 -0.0292 772.1800 749.5778 

17 0.5172 0.4958 -0.0414 801.9900 768.6878 

18 0.7287 0.7464 0.0243 824.0900 843.9978 

19 0.1000 0.1000 0.0000 758.3900 758.3087 

20 0.3096 0.2781 -0.1018 780.2890 700.8189 



 

 

 

exhibited greater absolute errors, possibly due to 

factors such as variations in welding conditions 

or material properties not fully captured by the 

input parameters. In the second approach, where 

the carbon equivalent of the filler wire was added 

as an input variable, the prediction performance 

improved for both yield strength and tensile 

strength. The regression coefficients went from 

0.9503 to 0.9669 and from 0.9448 to 0.9797 for 

the yield strength and tensile strength 

respectively. The average of the absolute values 

of relative errors decreased from 0.0790 to 

0.0399 and from 0.0653 to 0.0290. These results 

suggest an enhanced predictive capability with 

the inclusion of filler wire properties. These 

findings highlight the importance of considering 

additional factors, such as filler wire 

characteristics, in accurately predicting the 

mechanical properties of weld joints. Despite 

some outliers in prediction errors, the overall 

performance of the algorithm seems promising, 

particularly with the refinement achieved by 

incorporating the carbon equivalent of the filler 

wire. Future studies could be conducted to 

develop a neural network, which leads to a 

prediction of the mechanical properties and 

microstructural constituents of the welded joints 

of dissimilar high-strength steel. 
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