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Abstract 

This study presents first principles derivation of the partial differential equations (PDEs) for 

flexural solutions of Mindlin’s first order shear deformation plate theory (MFSDPT). The 

PDEs were formulated using the kinematics, constitutive and equilibrium equations in an 

equilibrium approach. The resulting PDEs are coupled system of three PDEs in three unknown 

displacements – one transverse displacement w and two rotations  x  and . y  The study 

considered a simply supported thick plate bending problem for illustrative solutions. Double 

finite sine transformation methodology (DFSTM) was utilized for solutions in that double sine 

kernel functions of the transformation satisfies the simply supported boundary conditions. The 

DFSTM simplified the system of PDEs to a system of three algebraic equations with 

displacement amplitudes Wmn, Amn and Bmn for w,  x  and  y  respectively. Analytical solutions 

were obtained for uniformly and linearly distributed loadings transversely applied on the 

domain. The present results for in-plane and transverse displacements are comparable to 

previously obtained results. The MFSDPT results are closed form in the theoretical framing of 

small displacement elasticity theory for homogeneous, isotropic thick plates. The DFSTM has 

been shown to give accurate solutions to the resulting equations. 

 

Keywords: Mindlin plate, first order shear deformation plate theory, double finite sine 

transform method, integral transform, differential equation of equilibrium 
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1. Introduction 

Plates are load transmitting structures used 

in naval, aeronautical, spacecraft, building, 

machine and civil structures. They are 

known to have in-plane dimensions that are 

much larger than their transverse 

dimensions. The in-plane dimensions are 

length and breadth while the transverse 

dimension is the depth, h. They can be 

subjected to static, dynamic or in-plane 

compressive forces. Depending on their 

natural properties, they can be isotropic, 

anisotropic, orthotropic; homogenous or 

non-homogenous. When made of different 

materials, they are called composite plates 

(Pagano, 1970). They can also be made of 

laminae and hence become laminated 

plates. They can be of different shapes – 

rectangular, skewed, circular, trapezoidal, 

rhombic, or polygonal. 

 The behaviour of plates is largely 

determined by the ratios of the least in-

plane dimension to the thickness, h. Plates 

are called thin when the ratio of the 

thickness to the width is less than 0.05; 

called moderately thick when this ratio 

exceeds 0.05 but less than 0.1; and thick 

when the ratio exceeds 0.20. 

Commonly, thin plates have ratios of 

width (a) to thickness (h) lying between 8 

and 100. Thick plates have 10.a
h
  When 

the ratio of depth to breadth is greater than 

0.10, the use of thick plate theories become 

imperative because it becomes thick. 

 Kirchhoff (1850) derived Kirchhoff 

plate theory (KPT) for plates bending using 

the Navier-Kirchhoff hypotheses requiring 

rectilinear lines originally orthogonal to the 

plate’s middle surface remaining rectilinear 

and orthogonal to the plate’s mid surface 

after flexural deformations, and also 

remains unstretched (Alcybeev et al, 2022; 

Goloskokov and Matrosov, 2022; 

Singhatandgid and Singhanart, 2019). 

 The Navier-Kirchhoff orthogonality 

assumptions imply that transverse shear 

deformation effects are neglected in the 

formulation, thus restricting validity for 

resulting theory to slender plates where 

transverse shearing deformation effects do 

not significantly affect the flexural or 

buckling behaviours (Ike, 2022; Mama et al, 

2020). KPT gives a fourth order partial 

differential equation in terms of the 

transverse displacement, and has been 

solved using several methods yielding good 

results for thin plate bending, but 

unsatisfactory results for moderately thick 

and thick plates. 

 Classical plate bending theory (CPBT) 

is one of the oldest theories used for plate 

bending solutions. The CPBT equations 

exclude transverse shear deformation 

effects and this limits it to thin plates. It has 

been observed that CPBT underestimates 

the deflection of thick plates, rendering it 

unsafe for use in thick plate bending 

analysis. The CPBT also gives 

overestimated values for natural vibration 

frequencies and stability loads when 

applied to moderately thick plates. The 

errors of the CPBT when used for thick 

plate analysis increase with increase in the 

plate thickness. The drawbacks of the 

CPBT have resulted in the search for 

refined, sinusoidal, hyperbolic and 

parabolic plate theories for the analysis of 

moderately thick plates. 

 Several researchers have formulated 

other theories that consider transverse 

shearing deformation effects on bending 

and buckling solutions of plates. The 

effects of transverse shear deformation is 

significant for the flexural and stability 

solutions of moderately thick and thick 

plates. 

 The formulations of the first order 

shear deformable plate theories involve the 

introduction of transverse shear correction 

coefficient. The shear correction 

coefficient is required in order to correct the 

transverse shear stresses obtained by 

Mindlin’s FOSDPT. This is because the 

FOSDPT yields constant values of 

transverse shearing stresses across the plate 

depth, rather than parabolic or quadratic 
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transverse shearing stresses distribution 

obtained using classical mathematics 

theories of elasticity. The fact that 

transverse shear stress-free boundary 

conditions are violated in the FOSDPT has 

been considered to be a serious limitation 

of FOSDPTs. 

 However, transverse shear stress 

correction coefficients ameliorate the 

discrepancies obtained in the FOSDPT 

estimation of transverse shear forces and 

the elasticity solutions. Extensive research 

works have been presented for issues of 

determinations use of transverse shearing 

stress correction parametres.  

 Mindlin (1951) used a displacement 

based procedure to derive another theory 

called Mindlin plate theory (MiPT), 

another first order shear deformable plate 

theory. The GPDE are represented by three 

equations, with three unknown 

displacements – two rotations and one 

transverse deflections. 

 In MiPT, the transverse shear stress at 

the plate surfaces ( 0.5 )z h=   are constant 

and hence violate the transverse shear stress 

free boundary conditions at the plate 

surfaces. In order to overcome this defect, 

transverse shear stress correction factors 

were defined in order to ensure the 

prediction of correct strain energy of 

deformation. 

 Nwoji et al (2018) studied the bending 

solutions of simply supported rectangular 

Mindlin plates under bisinusoidal 

transverse loading covering the plate. They 

obtained closed form analytical solutions 

that satisfied the PDEs of equilibrium at 

every points, and also satisfied simple 

support boundary conditions. Their 

solutions agreed with previous solutions in 

literature. 

 Despite its amelioration by the shear 

correction factors, the violation of the 

transverse shear stress-free boundary 

conditions of the surfaces ( 0.5 )z h=   is the 

major defect of the MiPT. In addition, there 

is a lack of systematic procedure for 

calculating the transverse shear stress 

correction factors in FOSDPT. 

 Mindlin plate theoretical frameworks 

are basically simple to use for modeling the 

shear deformation behaviour of thick plates. 

Research efforts to further improve on the 

FOSDPTs by obviating the need for 

transverse shear stresses correction factors 

have led to the development of transverse 

shear deformable plate theories (SDPTs), 

Higher order shear deformation plate 

theories (HOSDPTs) and Refined shear 

deformation plate theories (RefSDPTs). 

 SDPTs were studied by Ghugal and 

Pawar (2011). Ghugal and Pawar (2011) 

used hyperbolic shear deformable plate 

theoretical framework for the flexural and 

buckling solutions of thick plates, 

respectively. Ghugal and Sayyad (2013) 

also presented TSDPT for the bending 

solutions of thick orthotropic plates. 

Sayyad (2013) used exponential shear 

deformable plate theories (ESDPT) for the 

bending solutions of thick non-isotropic 

plates.  

 HOSDPTs were investigated by Reddy 

(2004). Refined shear deformable plate 

theories (RefSDPTs) were derived and 

implemented by Do et al (2020) and 

Rouzegar and Abdoli Sharifpoor (2015). 

 Thick plates problems were 

formulated and solved using exact methods 

of the theory of elasticity by Pagano (1970). 

Finite difference method (FDM) has been 

utilized for approximate analysis of plate 

problems by Pisacic et al (2019). 

Onyeka et al (2023) explored a 

polynomial displacement function in a 

potential energy methodology to find 

bending solutions for thick plate with 

simply supported, free and clamped (SCFS) 

edges. They obtained solutions for center 

deflections that were 2.9% – 3.7% different 

from the exact solutions of three 

dimensional (3D) elasticity theory.  

Onyeka et al (2022) used an energy 

minimization methodology for bending 

solutions of thick rectangular clamped 
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plates. They used 3D kinematic and 

constitutive relations and shear correction 

factors were not needed in their equations. 

They used a trigonometric displacement 

function to obtain satisfactory results that 

differed from the Mindlin plate solution by 

3.02% and differed from the HSDPT (using 

polynomial displacement function) by 

0.33%. 

 Gajbhiye et al (2021) used a fifth order 

shear deformable theoretical framework for 

free vibration solutions of thick isotropic 

plate, but didn’t consider the use for 

flexural analysis. In another study, 

Gajbhiye et al (2022) explored a quasi-

three-dimensional theoretical formulation 

considering transverse shearing and normal 

deformations for obtaining flexural 

solutions of simply supported sandwich 

plates. Their work did not need transverse 

shearing stress modification factors and 

satisfied the transverse shear-stress free 

boundary conditions at the plate surfaces. 

They utilized virtual work principle for 

obtaining the domain equations of 

equilibrium and the boundary conditions, 

and Navier’s single series method to obtain 

accurate solutions for sinusoidal and 

uniformly distributed transverse loadings. 

 Zhong and Xu (2017) studied 

analytical flexural problems of rectangular 

thick plates with clamped edges. The thick 

plate was modelled using Mindlin plate 

theory. They introduced a new function that 

was used to decouple the three coupled 

equations of the plate into three 

independent uncoupled PDEs that could be 

solved separately. 

 Do et al (2020) developed a single 

displacement variable refinement of plate 

theory for the flexural solutions of 

functionally graded material (FGM) plates. 

They used a displacement method and 

equilibrium approach to find field 

equations that did not need shear correction 

factors. They applied Navier’s series 

methodology for obtaining accurate 

bending solutions for simply supported 

plates. 

 Rouzeger and Abdoli Sharifpoor (2015) 

implemented a finite element method using 

the two-displacement variables refinements 

of plate theory (RefPT) for the bending 

solutions of plates. The RefPT used is 

applicable to slender plates and to thick 

plates and yields quadratic variations of 

transverse shear stresses across the depth, 

thus satisfying the transverse shear-stress 

free boundary conditions at the plate 

surfaces ( 0.5 )z h=    

 Onah et al (2020) have formulated 

using rigorous first principles methods 

displacements and stress functions for three 

dimensional analysis of elastostatic flexural 

problems, and illustrated their applications 

for accurate bending solutions of thick 

circular plates under transverse uniformly 

distributed load. 

Recently, Ike (2023) presented third 

order shear deformable plate flexural 

formulations for moderately thick and thick 

plates. The formulation used a third order 

polynomial function of the transverse 

coordinate, made to satisfy the 3D strain-

displacement relations of elasticity theory 

and the transverse shear stress-free 

boundary conditions at 0.5 .= z h  The 

formulations used variational calculus 

methods for deriving system of domain 

equations which were coupled and 

contained three unknowns. The set of 

coupled equations was solved for various 

loading cases using Navier’s series method. 

Exact solutions were obtained in the study 

as all boundary conditions were satisfied 

together with the governing PDEs. 

 Haggblad and Bathe (1990) 

investigated plate bending finite elements 

derived via Ressner Mindlin plate theories 

(RMPTs). Their work provided insight and 

guidance on how to choose boundary 

conditions in the RMPT based finite 

elements. Belounar et al (2020) developed 

novel triangular finite elements for the 

natural dynamics analysis for plates. They 
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used the RMPT and strain-based 

formulation; and used three displacement 

degrees of freedom at each of the three 

corner nodes. The element was based on a 

linear variation of the three bending strains 

and constant transverse shear strains. The 

element was found to give accurate results 

for moderately thick plates.  

 Shahnavaz et al (2023) derived 

accurate solutions for the freely vibrating 

in-plane FGM plates using displacement-

based FEM by using accurate shape 

functions that interpolate the displacement 

field inside the element. Their work 

however did not consider static bending 

analysis. 

 Altekin (2018) studied RMPT in the 

analysis of thick elliptical shaped plates 

under transverse load by the use of four-

noded isoparametric quadrilateral plate 

bending elements having three degrees of 

freedom per node. Parameter based studies 

in their work showed that the results agreed 

with previous results. 

 Zhong and Xu (2017) studied flexural 

analysis of rectangular thick plate with 

various combinations of clamped and 

supported edges. They used Mindlin’s 

higher-order shear deformation plate theory. 

They used novel functions to uncouple the 

three coupled PDEs of the domain, thus 

rendering them solvable independently. 

They solved the uncoupled equations to 

obtain closed form solutions for clamped 

and supported edges. Shetty et al (2022) 

developed a third order one-displacement 

variable plate model for “bending analysis 

of thick plates with simply supported 

edges”. The merit of their formulation is 

that the domain equation and expressions 

for internal forces are analogous to those of 

thin plates bending theories equations. 

Other significant studies on plates include: 

Yekani and Fallah (2020); Belounar et al 

(2020) and Kianmofrad et al (2018). 

 Literature review shows that there are 

few studies on the flexural vibrations of 

thick plates modeled using Mindlin plate 

theoretical frameworks and focused on a 

first principles systematic derivation of the 

governing domain equations. Still very few 

studies have focused on providing solutions 

to the Mindlin plate equations for bending 

of thick plates under uniform and linear 

distributed transverse loadings. 

In this paper, thick plate flexure 

analysis problems are modeled via Mindlin 

plate theory derived rigorously using 

Newtonian equilibrium methods, and the 

fundamental principles of small 

displacement elasticity theory in three 

dimensions. The governing equations of 

equilibrium derived are solved using 

double Fourier series method for the case of 

simply supported plate boundaries and the 

two cases of transversely applied: 

- uniform loads, and 

- linear distribution of loadings. 

 

2. Theoretical Framework 

2.1 Assumptions 

The assumptions are as follows: 

(i) The plate material is linear in its elastic 

properties. It is also isotropic and 

homogeneous. 

(ii) The displacement variation across the 

thickness is linear, yielding constant 

transverse shear strains and transverse 

shear stresses across the depth. 

(iii) A small line segment initially 

orthogonal to the plate middle surface 

would remain rectilinear. However it 

will not remain normal to the plate 

middle surface after deformation. 

(iv) The plate is transversely inextensible. 

 

2.2 Thick plate bending problem 

This work considers a simply supported 

moderately thick plate bending problem 

depicted in Figure 1 defined by the three-

dimensional Cartesian coordinates x, y, z by: 
0 ,x a   0 ,y b   0.5 0.5 ;h z h−    

where a and b are in-plane dimensions of 

the plate and h is depth of the plate. 
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Figure 1: Isometric view of rectangular thick 

plate 

 

 

Figure 2: Cross-sectional view of simply 

supported thick rectangular plate under 

uniformly distributed load, 0q  

 

 

Figure 3: Cross-sectional view of simply 

supported thick rectangular plate under linear  

load distribution 0( , ) =z

q x
q x y

a
 

 

2.3 Displacement field 

The displacement expressed using 

transverse displacement of the middle 

surface w(x, y, z = 0) and the rotations  x  

and  y  of the middle surface. At a generic 

point (x, y, z) on the plate, displacement 

field components are: 

=  xu z         (1a) 

= yv         (1b) 

=w w         (1c) 

u, v, w are the displacement field 

components in the x, y, and z coordinates 

respectively. The in-plane displacement 

components u(x, y, 0) and v(x, y, 0) vary 

linearly with the thickness coordinate 

variable, z, rendering the resulting 

formulation FOSDPT. 

 

2.4 Strain fields 

The strain fields are found from unknown 

displacements field by substituting 

displacement fields in the kinematic 

relations of small displacement elasticity 

theory. Thus normal strains , ,xx yy zz    are 

found as: The formulation does not extend 

to large deflection analysis and 

geometrically nonlinear problems. 


 =


x
xx z

x
       (2a) 


 =



y

yy z
y

       (2b) 

0


 = =


zz

w
z

z
      (2c) 

The shear stains ,xy yz   and xz  are found 

as: 

 
 = + 

  

yx
xy z

y x
     (2d) 


 =  +


xz x

w

x
      (2e) 


 =  +


yz y

w

y
      (2f) 

 

2.5 Stress-strain law 

The stress-strain relations for homogeneous 

isotropic linear elastic thick plate material 

are used in this paper. The formulation does 

not apply to anisotropic, non-homogeneous 

plates. 

 

2.6 Stress-displacement equations 

The stress-displacement relations are found 

from stress-strain and strain-displacements 

equations as: 

21

yx
xx

Ez

x y

 
 = +  

 −   
   (3a) 

21

yx
yy

Ez

x y

 
 =  + 

 −   
   (3b) 
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yx
xy Gz

y x

 
 = + 

  
     (3c) 

xz x

w
G

x

 
 =  + 

 
     (3d) 

yz y

w
G

y

 
 =  + 

 
     (3e) 

G is the shear modulus, E is the Young’s 

modulus,   is the Poisson’s ratio. 

Equations (3d) and (3e) reveal that xz and 

yz are constant across the plate thickness 

and hence transverse shear stress-free 

boundary conditions at the plate surfaces 

are violated. However, shear stress 

correction factors are introduced to ensure 

that the correct shearing forces are obtained 

in this formulation. 

 

2.7 Internal force resultants 

The distribution of bending moments Mxx, 

Myy and twisting moments Mxy are given by 

integrals across the thickness: 
/2

/2

h

xx xx

h

M zdz

−

=        (4a) 

/2

/2

h

yy yy

h

M zdz

−

=        (4b) 

/2

/2

h

xy xy

h

M zdz

−

=        (4c) 

The shear force distributions Qx and Qy are 

given by: 
/2

/2

h

x s xz

h

Q k dz

−

=        (4d) 

/2

/2

h

y s yz

h

Q k dz

−

=        (4e) 

where ks is the transverse shearing stress 

correction factor. 

By substitution of the expressions for 

stresses and integration, the internal force 

resultants are obtained as: 

yx
xxM D

x y

 
= +  

  
    (5a) 

yx
yyM D

x y

 
=  + 

  
    (5b) 

(1 )

2

yx
xy

D
M

y x

 − 
= + 

  
   (5c) 

x s x

w
Q k Gh

x

 
=  + 

 
     (5d) 

y s y

w
Q k Gh

y

 
=  + 

 
     (5e) 

 

2.8 Partial Differential Equations of 

Static Equilibrium 

The PDEs of static equilibrium are 

expressed using force resultants as: 

xyxx
x

MM
Q

x y


= +

 
     (6a) 

xy yy

y

M M
Q

x y

 
= +

 
     (6b) 

( , ) 0
yx

z

QQ
q x y

x y


+ + =

 
    (6c) 

Substitution of Equations (6a) and (b) into 

Equation (6c) gives, after simplification: 
2 22

2 2

2
( , ) 0

xy yyxx
z

M MM
q x y

x yx y

 
+ + + =

  
  (7) 

 

2.9 Mindlin FSDPT Equations 

Substituting Equations (5a) – (5c) into 

Equation (7) gives, after simplification: 

2 ( , )
yx

zD q x y
x y

 
 + = − 

  
    (8) 

Similarly, substitution of Equations (5a), 

(5b) and (5d) into Equation (6a) gives: 

yx
s x

w D
k Gh

x x x y

   
 + = +  +  

      
  

  (1 )
yxD

y y x

 
− + 

   
  (9) 

Simplifying, 
22 2 2

2 2 2

yx x x
x

s

w D

x D x yx y y

       
  + = + + − 
      

 

        …(10) 

s sD k Gh=        (11) 

Similarly, 

(1 )
yx

s y

w
D D

y x y x

    
 + = − + +  

      
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yxD

y x y

 
 + 

   
  (12) 

Simplifying, 
2 2 22

2 2 2

y y ys x
y

D w

D y x yx y x

         
  + = + + −           

 

        …(13) 

 

3. Double Fourier Series Method 

(DFSM) 

For simple supports at boundaries (0, y), (a, 

y), (x, 0), (x, b), the boundary conditions are: 
(0, ) ( , ) 0

(0, ) ( , ) 0

(0, ) ( , ) 0

( , 0) ( , ) 0

( , 0) ( , ) 0

( , 0) ( , ) 0

= =

 =  =

= =

= =

 =  =

= = = =

xx xx

y y

yy yy

x x

M y M a y

y a y

w y w a y

M x M x b

x x b

w x y w x y b

      (14) 

The generalized displacements are 

constructed using double Fourier series 

terms satisfying all the boundary conditions 

as: 

( , ) sin( )sin( )

( , ) cos( )sin( )

( , ) sin( ) cos( )

 

 

 

=  

 =  

 =  







mn m n

m n

x mn m n

m n

y mn m n

m n

w x y W x y

x y A x y

x y B x y

   (15) 

where ;m n
m n

a b
  =  =    (16) 

1, 2, 3,... ; 1, 2, 3,...m n=  =    

Wmn are amplitudes of w(x, y) 

Amn are amplitudes of ( , )x x y   

Bmn are amplitudes of ( , )y x y   

The load qz(x, y) is represented by the 

double Fourier series 

( , ) sin( )sin( )
 

=  z mn m n

m n

q x y q x y  (17) 

qmn are Fourier coefficients of the load 

function qz(x, y) 

Equation (8) becomes: 

( ) 2 2 sin( )sin( )
 

  +    + m m n mn m n

m n

A x y   

 ( ) 2 2 sin( )sin( )  +   n m n mn m nB x y  

 
1

sin( )sin( )
 −

=   mn m n

m n

q x y
D

 (18) 

Hence, 

( ) ( )2 2 2 2 mn
m m n mn n m n mn

q
A B

D

−
  +  +   +  =  

        …(19) 

Similarly, Equation (10) becomes: 

( cos( )sin( )
 

  + mn m n

m n

A x y   

 )cos( )sin( )  m mn m nW x y

( ) 2 2 cos( )sin( )
 

= −  +   − m n mn m n

s m n

D
A x y

D

 cos( )sin( )    +m n mn m nB x y  

  2 cos( )sin( )  n mn m nA x y  (20) 

Hence, 

( 2 2( )mn m mn m n mn

s

D
A W A

D
+  = −  +  −   

  )2
m n mn n mnB A  +    (21) 

Simplifying, 

( )2 2 2( )mn m n nn mn

s

D
A A

D
−  +  +  − −    

  0m n mn m mn

s

D
B W

D
  − =   (22) 

Similarly, Equation (13) becomes: 

( sin( ) cos( )
 

  + mn m n

m n

A x y   

  )sin( )cos( )  n mn m nW x y  

( ) 2 2 sin( )cos( )
 

= −  +   m n mn m n

s m n

D
B x y

D

  sin( )cos( )−     +m n mn m nA x y  

  2 sin( ) cos( )  m mn m nB x y  (23) 

Thus, simplifying, 

( )sin( ) cos( )
 

+    mn n mn m n

m n

A W x y

( 2 2( )m n mn m n mn

s m n

D
B A

D

 

= −  +  −   +  

  )2 sin( ) cos( )  m mn m nB x y  (24) 

Hence, 
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( 2 2( )mn n mn m n mn

s

D
A W B

D
+  = −  +  −   

  )2
m n mn m mnA B  +    (25) 

Or, 

( 2( )mn m n mn mn m

s s

D D
A A B

D D
−  − +  −   

 )2 2( ) 0m n n mnW +  −  =   (26) 

Using matrix format, Equations (19), (22) 

and (26) are expressed as Equation (27): 

11 12 13

21 22 23

31 32 33

0

0

mnq

mn D

mn

mn

a a a A

a a a B

a a a W

 −  
   

=    
         

  (27) 

where: 
2 2

11 ( )m m na =   +    
2 2

12 ( )n m na =   +    

13 0a =   

( )2 2 2
21 ( ) 1n m n

s

D
a

D
=  −  +  −   

22 m n

s

D
a

D
= −         (28) 

23 ma = −   

31 1m n

s

D
a

D
= −   −   

( )2 2 2
32 ( )m m n

s

D
a

D
=  −  +    

33 na = −   

Using Cramer’s rule, the unknown 

amplitudes Amn, Bmn and Wmn are 

determined in terms of qmn. Hence the 

problem is solved for known values of qz(x, 

y) for which qmn are found using Fourier 

series theory. 

 

4.  Results and Discussion 

4.1 Uniformly distributed loads 

For uniformly distributed load of intensity 

q(x, y) = q0, the Fourier series coefficients 

qmn are expressed by: 

0

0 0

4
sin sin

a b

mn

q m x n y
q dx dy

ab a b

 
=     (29) 

Integrating, gives: 

0

2

1, 3, 5,...16
,

1, 3, 5,...

2, 4, 6,...
0,

2, 4, 6,...

mn

mn

mq
q

nmn

m
q

n

= 
=

= 

= 
=

= 

  (30) 

 

4.2 Linearly distributed loads 

The linear load distribution, 

0( , ) =z

q x
q x y

a
 over 0 , 0x a y b     

on the thick plate is as depicted in Figure 4. 

 

 

Figure 4: Isometric view of linear distribution 

of loading on thick rectangular plate 

 

By the Fourier series expansion, the 

coefficient (of the linearly distributed load) 

qmn is expressed by: 

0

0 0

4
sin sin

a b

mn

q x m x n y
q dxdy

ab a a b

 
=      (31) 

Evaluating the integrals gives: 

0

2

8 cos
mn

q m
q

mn


=


      (32) 

where 1, 3, 5, 7,... ;m =   1, 3, 5, 7,...n =   

The results are presented in terms of 

dimensionless displacements and stresses 

defined in Equations (33). The results for 

displacements and stresses are formulated 

in Table 1 for the present study and for 

previous works. The results for linearly 

distributed loads are presented in Table 2 

for present work and for previous studies in 

the literature. 

Hence, 3qh
u u s

E
=   

4

100

w
w qhs

E
=      (33) 

2
xx xxqs =    
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,xy xy zx zxqs qs =   =    

 

 

 

 

Table 1 

In-plane displacements (0, 0.5 , 0.5 ),u b h  transverse displacements (0.5 , 0.5 , 0),w a b  in-plane 

normal stress (0.5 , 0.5 , 0.5 ), xx a b h  in-plane shear stress xy  at (0, 0, 0.5 ), h  shear stress 

,CR EE
zx zx   at (0, 0.5 , 0)b  in isotropic, square plates subjected to uniform transverse load. 

a
s

h
=   Reference 

Plate 

Models 
u  w  xx  xy  CR

zx  EE
zx  

4 

Present FSDPT 
0.074 

(2.78%) 

5.633 

(-1.07%) 

0.287 

(-6.51%) 
0.195 

0.330 

(-31.54%) 
0.495 

Reddy (2004) HSDPT 
0.079 

(9.72%) 

5.869 

(3.07%) 

0.299 

(-2.61%) 
0.218 

0.482 

(4.78%) 
0.452 

Pagano (1970) 
Elasticity 

(Exact) 
0.072 5.694 0.307 – 0.460 – 

Ghugal and Sayyad 

(2013) 
TSDPT 

0.074 

(2.78%) 

5.680 

(-0.25%) 

0.318 

(3.58%) 
0.208 

0.483 

(5.0%) 
0.420 

Ghugal and Pawar 

(2011a) 
HPSDPT 

0.079 

(9.72%) 

5.858 

(2.88%) 

0.297 

(-3.26%) 
0.185 

0.477 

(3.70%) 
0.451 

Sayyad (2013) ESDPT 
0.079 

(9.72%) 

5.816 

(2.14%) 

0.300 

(-2.28%) 
0.223 

0.481 

(4.57%) 
0.472 

Rouzegar and 

Abdoli-Sharifpoor 

(2015) 

FE-RPT – – – – – – 

Kirchhoff (1850) 
CPT / 

KPT 

0.074 

(2.78%) 

4.436 

(-22.09%) 

0.287 

(-6.51%) 
0.195 – 0.495 

10 

Present FSDPT 
0.074 

(1.37%) 

4.670 

(0.65%) 

0.2873 

(0.59%) 
0.1946 

0.3928 

(-19.34%) 
0.495 

Reddy (2004) HSDPT 
0.075 

(2.74%) 

4.670 

(0.65%) 

0.2890 

(0%) 
0.1990 

0.4890 

(0.41%) 
0.486 

Pagano (1970) 
Elasticity 

(Exact) 
0.073 4.640 0.289 – 0.487 – 

Ghugal and Sayyad 

(2013) 
TSDPT 

0.073 

(0%) 

4.625 

(-0.32%) 

0.307 

(6.23%) 
0.195 

0.504 

(3.49%) 
0.481 

Ghugal and Pawar 

(2011a) 
HPSDPT 

0.074 

(1.37%) 

4.665 

(0.54%) 

0.289 

(0%) 

 

0.193 
0.489 

(0.41%) 
0.486 

Sayyad (2013) ESDPT 
0.075 

(2.74%) 

4.658 

(0.39%) 

0.289 

(0%) 
0.204 

0.494 

(1.44%) 
0.490 

Rouzeger and 

Abdoli-Sharifpoor 

(2015) 

FE-RPT – 
4.650 

(0.22%) 

0.2883 

(-0.24%) 
0.1971 

0.4718 

(-3.12%) 
– 

Kirchhoff (1850) 
CPT / 

KPT 

0.074 

(1.37%) 

4.44 

(-4.31%) 

0.2873 

(-0.59%) 
0.1946 – 0.495 

 

Table 2 

In-plane displacements (0, 0.5 , 0.5 ),u b h  transverse displacements (0.5 , 0.5 , 0.5 ),w a b h  in-

plane normal stress (0.5 , 0.5 , 0.5 ), xx a b h  in-plane shear stress xy  at (0, 0, 0.5 ), h  transverse 
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shear stresses (0, 0.5 , 0),CR
zx b  (0, 0.5 , 0)EE

zx b  in isotropic square plates under to linear 

distribution of transverse loading 0( , )
q x

q x y
a

=   

a
s

h
=   Reference 

Plate 

Models 
u   w   xx   xy   CR

zx   EE
zx   

4 

Present Results FSDPT 
0.0370 

(2.78%) 

2.817 

(-1.05%) 

0.144 

(-5.88%) 
0.097 

0.165 

(-28.26%) 
0.247 

Reddy (2004) HSDPT 
0.0395 

(9.72%) 

2.935 

(3.09%) 

0.150 

(-1.96%) 
0.109 

0.241 

(4.78%) 
0.226 

Pagano (1970) 
Elasticity 

(Exact) 
0.0360 2.847 0.153 – 0.230 – 

Ghugal and 

Sayyad (2013) 
TSDPT 

0.0370 

(2.78%) 

2.840 

(-0.25%) 

0.159 

(3.92%) 
0.104 

0.241 

(4.78%) 
0.210 

Ghugal and Pawar 

(2011a) 
HPSDPT 

0.0395 

(9.72%) 

2.929 

(2.88%) 

0.148 

(-3.27%) 
0.092 

0.239 

(3.91%) 
0.225 

Sayyad (2013) ESDPT 
0.0396 

(10%) 

2.908 

(2.14%) 

0.150 

(-1.96%) 
0.111 

0.240 

(4.35%) 
0.236 

Rouzegar and 

Abdoli-Sharifpoor 

(2015) 

FE-RPT – – – – – – 

Kirchhoff (1850) 
CPT / 

KPT 

0.0370 

(2.78%) 
2.218 

0.144 

(-5.88%) 
0.097 – 0.237 

10 

Present FSDPT 
0.0370 

(1.37%) 

2.335 

(0.65%) 

0.143 

(-0.69%) 
0.097 

0.165 

(-32.38%) 
0.248 

Reddy (2004) HSDPT 
0.0375 

(2.74%) 

2.333 

(0.56%) 

0.144 

(0%) 
0.101 

0.246 

(0.82%) 
0.243 

Pagano (1970) 
Elasticity 

(Exact) 
0.0365 2.320 0.144 – 0.244 – 

Ghugal and 

Sayyad (2013) 
TSDPT 

0.0365 

(0%) 

2.313 

(-0.30%) 

0.153 

(6.25%) 
0.097 

0.252 

(3.28%) 
0.241 

Ghugal and Pawar 

(2011a) 
HPSDPT 

0.0370 

(1.37%) 

2.332 

(0.52%) 

0.144 

(0%) 
0.096 

0.245 

(0.41%) 
0.243 

Sayyad (2013) ESDPT 
0.0375 

(2.74%) 

2.329 

(0.39%) 

0.144 

(0%) 
0.102 

0.247 

(1.23%) 
0.245 

Rouzeger and 

Abdoli-Sharifpoor 

(2015) 

FE-RPT – 
2.3301 

(0.44%) 

0.1442 

(0.14%) 
0.0781 – – 

Kirchhoff (1850) 
CPT / 

KPT 

0.0370 

(1.37%) 

2.218 

(-4.4%) 

0.143 

(-0.69%) 
0.097 – 0.248 

 

 

4.4 Discussion of Results 

This paper has presented a rigorous first 

principles derivation of PDEs for flexural 

analysis of Mindlin’s plate. The equations 

need shear correction factors but satisfy 

kinematic, constitutive and equilibrium 

equations. 

 The GDEE are a coupled system of 

three equations in three displacements 

parameters. The equations are solved using 

the DFSM which reduced the system to 

algebraic equations with unknown 

displacements amplitudes. Solutions were 

obtained for two cases of uniformly 

distributed loading and linearly distributed 

loading and illustrated in Tables 1 and 2 

respectively. 
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 Table 1 presents the in-plane 

displacements (0, 0.5 , 0.5 ),u b h  transverse 

displacement (0.5 , 0.5 , 0),w a b in-plane 

stress (0.5 , 0.5 , 0.5 ), xx a b h  in-plane shear 

stress xy  at (0, 0, 0.5 ), h  and transverse 

shear stress from constitutive relations (CR) 

,CR
zx  and zx computed from equilibrium 

equations (EE) denoted by EE
zx at 

(0, 0.5 , 0)b  respectively.  

 The results in Table 1 are presented for 

homogeneous, isotropic square plates  

under uniform loading. Table 1 also 

presents comparative results from previous 

related studies by Reddy (2004), Pagano 

(1970), Ghugal and Sayyad (2013), Ghugal 

and Pawar (2011), Sayyad (2013) and 

Kirchhoff (1850). 

 Table 1 shows that for a/h = 4, the 

present results are closely similar with 

previous results obtained by using HSDPT, 

HPSDPT. Present results differ from the 

exact results of Pagano by 2.78% for ,u  -

1.07% for w  and -6.51%for ,xx  for s =a/h 

= 4. This illustrates that for a/h = 4, the 

present results more accurately predict the 

values for u  and w  than Reddy’s results 

which differ from the exact results by 9.72% 

for ,u  and 3.07% for .w   

 Table 1 further shows that for a/h = 10, 

the present results differ from the exact 

results by 1.37% for ,u  0.65% for ,w  and -

0.59% for .xx  The present results for a/h 

= 10 are comparable to previous results that 

used HSDPT, TSDPT, HPSDPT, FSDPT, 

and FE-RPT. 

 Table 2 presents the in-plane 

displacements (0, 0.5 , 0.5 ),u b h  transverse 

displacements (0.5 , 0.5 , 0),w a b  in-plane 

stresses (0.5 , 0.5 , 0.5 ), xx a b h  in-plane 

shear stress at (0, 0, 0.5 ), xy h  and 

transverse shear stresses ,CR EE
zx zx   at

(0, 0.5 , 0)b  respectively. 

 The results in Table 2 are presented for 

homogeneous, isotropic square plate under 

to linear distribution of loading. It further 

presents comparative results from previous 

related studies by Reddy (2004), Pagano 

(1970), Ghugal and Sayyad (2013), Ghugal 

and Pawar (2011), Sayyad (2013) and 

Kirchhoff (1850). 

 Table 2 illustrates that for s = a/h = 4 

and s = a/h = 10, the present results are 

closely similar to previous results obtained 

using HSDPT, TSDPT, HPSDPT, ESDPT 

and elasticity methods. For a/h = 4 the 

present results differ from the exact 

elasticity results of Pagano (1970) by 2.78% 

for ,u  -1.05% for ,w  -5.88% for .xx  The 

differences of the present results are 

comparable to the differences obtained 

using HSDPT, TSDPT, HPSDPT, ESDPT 

For a/h = 10, the present results differ from 

the exact results by 1.37% for ,u  0.65% for 

,w  and -0.69% for .xx  The results are 

comparable to previous results by Reddy 

(2004), Ghugal and Sayyad (2013), Ghugal 

and Pawar (2011), Sayyad (2013) and 

Rouzeger and Abdoli-Sharifpoor (2015). 
 

5. Conclusion 

The study has presented a detailed rigorous 

first principles derivation of Mindlin plate 

bending formulation. It incorporates 

transverse shear stress correction factors, 

and violates shearing stress-free boundary 

conditions at top and bottom surfaces 

( 0.5 ).z h=   In conclusion: 

(i) Mindlin’s plate bending problem 

satisfies kinematic relations, 

constitutive laws and equilibrium 

equations; and is considered exact 

within the framing of the underlying 

hypotheses of small displacement 

elasticity theories for homogenous 

isotropic thick plates. 

(ii) the formulation was done using the 

equilibrium approach. 

(iii) the present results for inplane 

displacements and transverse 

displacement for uniformly distributed 

transverse loads are comparable to 

results previously obtained using 
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HSDPT, HPSDPT, ESDPT and 

TSDPT. 

(iv) the present results for inplane normal 

stresses and inplane shear stresses for 

linearly distributed loadings are also 

comparable with previous solutions 

that used HSDPT, HPSDPT, ESDPT 

and TSDPT. 

(v) The present results violate transverse 

shear stress free boundary conditions, 

do not accurately predict the transverse 

shear stress obtained by constitutive 

relations ( ).CR
zx  The CR

zx  for uniformly 

distributed load obtained by the 

present study is -31.54% different 

from the exact results for a/h = 4 and -

19.34% different for a/h = 10. This is 

because the FSDPT violates the 

transverse shear stress-free boundary 

conditions at the plate’s top and 

bottom surfaces ( , , 0.5 )x y h   

(vi) For the case of linear distribution of 

loading CR
zx  from this present study is 

-28.26% different from exact solutions 

for ah-1 = 4; and -32.38% different 

from the exact solution for ah-1 = 10. 

This is because the present FSDPT is 

in violation of the shear stress-free 

boundary conditions at both top and 

bottom surfaces 0.5z h=    
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