
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,878,683 |
تعداد دریافت فایل اصل مقاله | 107,237,417 |
Effects of Intravenous Injection of Glycyrrhizin on Serum Biochemical Parameters and Appetite in Inflamed Arian Broiler Chickens | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 15، دوره 19، شماره 4، دی 2025، صفحه 757-766 اصل مقاله (1.2 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.4.1005600 | ||
نویسندگان | ||
Mitra Nowrouzpour؛ Amin Rahdari؛ Farshid Hamidi* | ||
Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
چکیده | ||
Background: Broiler chicken populations are currently facing a pressing issue in the form of bacterial infections, which significantly impact their growth and developmental processes. Glycyrrhizin (GL), a compound discovered in licorice, is a unique and versatile compound with various psycho-chemical properties that contribute to its diverse biological activities. It also has immunomodulatory, anti-inflammatory, antiviral, hepatoprotective, anticancer and anti-inflammatory properties, contributing to overall poultry health. Objectives: This study aims to modulate the effect of GL on appetite and serum markers by mitigating inflammation in chickens. Methods: The effects of GL and lipopolysaccharide (LPS) on broiler chickens were investigated. Twenty-four one-day-old male Arian broiler chickens (Simorgh Co., Mashhad, Iran) were divided into four control groups and three treatment groups receiving LPS alone or with GL at two different dosages. Treatments were administered intravenously on day 20, and feed intake and blood samples were monitored. Results: LPS injection significantly reduced feed intake compared to the control group at 4.5, 5 and 6 h. after injection (P<0.05). Furthermore, the co-administration of LPS+GL resulted in a dose-dependent increase in cumulative feed consumption compared to that in the LPS group at 4.5, 5 and 6 h. following the injection. Additionally, the groups treated with LPS and GL showed reduced activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzymes relative to the group that received only LPS, suggesting that GL may exert a hepatoprotective effect. GL mitigated the negative effects of LPS and improved the albumin-to-globulin (A/G) ratio, highlighting its potential as an anti-inflammatory agent. Conclusion: GL positively influences appetite and liver function in inflamed Arian broilers. | ||
کلیدواژهها | ||
Arian broiler؛ Glycyrrhizin (GL)؛ Lipopolysaccharide (LPS)؛ Appetite؛ Biochemical parameters | ||
اصل مقاله | ||
Introduction
A total of 24 one-day-old male Arian broiler chickens (Simorgh Co., Iran) were randomly assigned to four treatment groups, each consisting of six birds, in a completely randomized design. Birds were reared under standard environmental conditions at 22±1 °C, 50% relative humidity, and continuous lighting (Olanrewaju et al., 2006). The birds were provided access to mash feed and water ad libitum during the 21 days of the study. Table 1 presents the chemical composition of the diets and additives. Broiler chicks were randomly allocated into four groups: Control (normal saline), 1 mg/kg LPS, 1 mg/kg LPS+40 mg/kg GL and 1 mg/kg LPS+80 mg/kg GL. When the chicks reached a weight of 700 g at 20 days of age, groups 2, 3 and 4 received an intravenous (IV) injection of LPS and GL, while the control group was administered a saline solution of equal volume (0.9%) as a placebo. The health of the animals was monitored daily throughout the study using standard diagnostic methods. This study determined the GL and LPS doses based on previous studies (Mano et al., 2023; Tan et al., 2014; Tsai et al., 1992).
A study on the effect of IV injection of LPS on rectal temperature revealed significant changes in body temperature, initially dropping below the normal range and then increasing above it. This suggests that LPS may induce a stress response in chickens, leading to changes in body temperature. Endotoxin-induced fever has been observed in various species, including chicken (Wang et al., 2022). Consistent with our research, chickens exhibit elevated body temperatures and loss of appetite after LPS injection (Johnson, 1998). De Boever et al. (2008) focused on the impact of LPS on body temperature in broiler chickens. After administering a potent LPS dose, the chicken’s body temperature initially decreased to below-normal levels before increasing. This phenomenon has been corroborated by other studies that examined the effects of IV and IP injections of LPS in chickens (Uyanga et al., 2022; Xie et al., 2000).
Abdullah, M. A. (2021). Acute phase proteins in veterinary medicine: A review. Journal of Animal Science and Veterinary Medicine, 6(6), 188-194. [DOI:10.31248/JASVM2020.216] Boroomand, Z., Hadi Haghbin Nazar Pak, H., Faryabi, S., & Hosseini, H. (2023). The role of newcastle disease virus in broiler chickens with high mortality of Kerman province. Archives of Razi Institute, 78(6), 1861–1867. [DOI:10.32592/ari.2023.78.6.1860][PMID] Chen, Y., Qu, L., Li, Y., Chen, C., He, W., & Shen, L., et al. (2022). Glycyrrhizic acid alleviates lipopolysaccharide (LPS)-Induced acute lung injury by regulating angiotensin-converting enzyme-2 (ACE2) and Caveolin-1 signaling pathway. Inflammation, 45(1), 253–266. [DOI:10.1007/s10753-021-01542-8] [PMID] Cook M. E. (2011). Triennial Growth Symposium: a review of science leading to host-targeted antibody strategies for preventing growth depression due to microbial colonization. Journal of Animal Science, 89(7), 1981–1990. [DOI:10.2527/jas.2010-3375] [PMID] De Boever, S., Beyaert, R., Vandemaele, F., Baert, K., Duchateau, L., & Goddeeris, B., et al. (2008). The influence of age and repeated lipopolysaccharide administration on body temperature and the concentration of interleukin-6 and IgM antibodies against lipopolysaccharide in broiler chickens. Avian Pathology, 37(1), 39–44. [DOI:10.1080/03079450701784875] [PMID] Ding, Q., Wang, Y., Zhang, A. L., Xu, T., Zhou, D. D., & Li, X. F., et al. (2018). ZEB2 attenuates LPS-Induced inflammation by the NF-κB pathway in HK-2 cells. Inflammation, 41(2), 722–731. [DOI:10.1007/s10753-017-0727-x] [PMID] Emadi, L., Jonaidi, H., Nazifi, S., Khasti, H., Rohani, E., & Kaiya, H. (2022). [The effects of central ghrelin on serum parameters related to energy metabolism in neonatal chicks (Persian)]. Iranian Journal of Veterinary Medicine, 16(2), 110-118. [DOI:122059/ijvm.2021.325585.1005182] Eshaghniya, A., Haghbin Nazarpak, H., Ghalyanchilangeroudi, A., & Hosseini, H. (2024). Evaluation of protective immunity in chickens vaccinated with combined IB H120/D274 and IB H120 against IS/1494/06 in Iran. Archives of Razi Institute, 79(3), 575–586. [DOI:10.32592/ARI.2024.79.3.575][PMID] Ghiasi, S., Zendehdel, M., Haghbinnazarpak, H., Asghari, A., & Sheikhi, N. (2023). Central and peripheral effects of lipopolysaccharide on food choice and macronutrient selection in meat-type chick. Archives of Razi Institute, 78(3), 843–851. [DOI:10.22092/ari.2022.359882.2495] [PMID] Gholipour-Shoshod, A., Rahimi, S., Zahraei Salehi, T., Karimi Torshizi, M. A., Behnamifar, A., & Ebrahimi, T., et al. (2023). [Evaluating the competitiveness of medicinal plants with antibiotics to control salmonella enterica serovar typhimurium in broiler chickens (Persian)]. Iranian Journal of Veterinary Medicine, 17(2), 155-166. [DOI:10.32598/IJVM.17.2.1005233] Hong, W., Fu, W., Zhao, Q., Xue, C., Cai,, & Dong, N., et al. (2023). Effects of oleanolic acid on acute liver injury triggered by lipopolysaccharide in broiler chickens. British Poultry Science, 64(6), 697–709. [DOI:10.1080/00071668.2023.2251119] [PMID] Johnson, R. W. (1998). Immune and endocrine regulation of food intake in sick animals. Domestic Animal Endocrinology, 15(5), 309-319. [DOI:10.1016/s0739-7240(98)00031-9] [PMID] Kaneko, J. J. (1997). Serum proteins and the dysproteinemias. In J. J. Kaneko., J. W. Harvey., M. L. Bruss (Eds.), Clinical biochemistry of domestic animals (pp. 117-138). Cambridge: Academic Press. [DOI:10.1016/B978-012396305-5/50006-3] Klasing, K. C., & Barnes, D. M. (1988). Decreased amino acid requirements of growing chicks due to immunologic stress. The Journal of Nutrition, 118(9), 1158–1164. [DOI:10.1093/jn/118.9.1158] [PMID] Langer, D., Czarczynska-Goslinska, B., & Goslinski, T. (2016). Glycyrrhetinic acid and its derivatives in infectious diseases. Current Issues in Pharmacy and Medical Sciences, 29(3), 118-123. [DOI:10.1515/cipms-2016-0024] Leshchinsky, T. V., & Klasing, K. C. (2001). Divergence of the inflammatory response in two types of chickens. Developmental and Comparative Immunology, 25(7), 629–638. [DOI:10.1016/s0145-305x(01)00023-4] [PMID] Li, J. Y., Cao, H. Y., Liu, P., Cheng, G. H., & Sun, M. Y. (2014). Glycyrrhizic acid in the treatment of liver diseases: Literature review. BioMed Research International, 2014(1), 872139. [DOI:10.1155%2F2014%2F872139] Mano, Y., Abe, K., Takahashi, M., Higurashi, T., Kawano, Y., & Miyazaki, S., et al. (2023). Optimal administration of glycyrrhizin avoids pharmacokinetic interactions with high-dose methotrexate and exerts a hepatoprotective effect. Anticancer Research, 43(4), 1493–1501. [DOI:10.21873/anticanres.16298] [PMID] Morovati, S., Bassami, M., Kalidari, G., Tavassoli, A., Razmyar, J., & Ghahramani Seno, M. (2022). Characterization of the full length p and m genes in a newcastle disease virus isolated from chicken farms in northeast of Iran. Iranian Journal of Veterinary Medicine, 16(2), 126-143. [Link] Nawaz, S., Asif, M., Bhutta, Z. A., Kulyar, M. F., Hussain, R., & Ramzan, A., et al. (2021). A comprehensive review on acute phase proteins in chicken. European Poultry Science, 85, 1-18. [DOI:10.1399/eps.2021.344] Nitalikar, M. M., Munde, K. C., Dhore, B. V, & Shikalgar, S. N. (2010). Studies of antibacterial activities of glycyrrhiza glabra root extract. International Journal of PharmTech Research, 2(1), 899-901. [Link] Ocampo, C. L., Gómez-Verduzco, G., Tapia-Perez, G., Gutierrez, O. L., & Sumano, L. H. (2016). Effects of glycyrrhizic acid on productive and immune parameters of broilers. Brazilian Journal of Poultry Science, 18(3), 435-442. [DOI:10.1590/1806-9061-2015-0135] Olanrewaju, H. A., Thaxton, J. P., Dozier, W. A., Purswell, J., Roush, W., & Branton, S. L. (2006). A review of lighting programs for broiler production. International Journal of Poultry Science, 5(4), 301-308. [DOI:10.3923/ijps.2006.301.308] Orazizadeh, M., Fakhredini, F., Mansouri, E., & Khorsandi, L. (2014). Effect of glycyrrhizic acid on titanium dioxide nanoparticles-induced hepatotoxicity in rats. Chemico-Biological Interactions, 220, 214-221. [DOI:10.1016/j.cbi.2014.07.001] [PMID] Pang, X., Miao, Z., Dong, Y., Cheng, H., Xin, X., & Wu, Y., et al. (2023). Dietary methionine restriction alleviates oxidative stress and inflammatory responses in lipopolysaccharide-challenged broilers at early age. Frontiers in Pharmacology, 14, 1120718. [DOI:10.3389/fphar.2023.1120718][PMID] Partovi, R., Seifi, S., Alian, S., & Nikpay, A. (2021). Appraisal of dietary prebiotic supplementation on meat properties and carcass characteristics of broiler chickens after experimental infection with eimeria species. Iranian Journal of Veterinary Medicine, 15(3), 346-357. [DOI:10.22059/IJVM.2020.301005095] Qui, N. H., Linh, N. T., Thu, N. Thi N. T. A., Nang, K., & Hoai, P., et al. (2024). Immunological response and nutritional effects of Lactobacillus spp.-fermented Garlic on Turkey broilers. Archives of Razi Institute, 79(2), 345-354. [DOI:132592/ARI.2024.79.2.345] Rafiq, K., Tofazzal Hossain, M., Ahmed, R., Hasan, M. M., Islam, R., & Hossen, M. I., et al. (2022). Role of different growth enhancers as alternative to in-feed antibiotics in poultry industry. Frontiers in Veterinary Science, 8, 794588. [DOI:10.3389/fvets.2021.794588][PMID] Sugiharto, S., Zulpa, Y., Agusetyaningsih, I., Widiastuti, E., Wahyuni, H. I., & Yudiarti, T., et al. (2024). Physiological responses and intestinal conditions of broiler chickens treated with encapsulated Acalypha australis L. leaf extract and chitosan. Veterinary World, 17(5), 994–1000. [DOI:10.14202/vetworld.2024.994-1000][PMID] Tan, J., Liu, S., Guo, Y., Applegate, T. J., & Eicher, S. D. (2014). Dietary L-arginine supplementation attenuates lipopolysaccharide-induced inflammatory response in broiler chickens. British Journal of Nutrition, 111(8), 1394-1404. [DOI:10.1017/s0007114513003863] [PMID] Toson, E., Abd El Latif, M., Mohamed, A., Gazwi, H. S. S., Saleh, M., & Kokoszynski, D., et al. (2023). Efficacy of licorice extract on the growth performance, carcass characteristics, blood indices and antioxidants capacity in broilers. Animal, 17(1), 100696. [DOI:10.1016/j.animal.2022.100696] [PMID] Tsai, T., Liao, J., Shum, A. Y., & Chen, C. (1992). Pharmacokinetics of glycyrrhizin after intravenous administration to rats. Journal of Pharmaceutical Sciences, 81(9), 961-963. [DOI:10.1002/jps.2600810925] [PMID] Uyanga, V. A., Zhao, J., Wang, X., Jiao, H., Onagbesan, O. M., & Lin, H. (2022). Dietary L-citrulline influences body temperature and inflammatory responses during nitric oxide synthase inhibition and endotoxin challenge in chickens. Stress, 25(1), 74-86. [DOI:10.1080/10253890.2021.2023495] [PMID] Wang, H., Yang, F., Song, Z., Shao, H., Bai, D., & Ma, Y., et al. (2022). The influence of immune stress induced by Escherichia coli lipopolysaccharide on the pharmacokinetics of danofloxacin in broilers. Poultry Science, 101(3), 101629. [DOI:10.1016/j.psj.2021.101629][PMID] Xie, H., Rath, N. C., Huff, G. R., Huff, W. E., & Balog, J. M. (2000). Effects of Salmonella typhimurium lipopolysaccharide on broiler chickens. Poultry Science, 79(1), 33-40. [DOI:10.1093/ps/79.1.33] [PMID] Yousefvand, S., Hamidi, F., Zendehdel, M., & Parham, A. (2018). Hypophagic effects of insulin are mediated via NPY1/NPY2 receptors in broiler cockerels. Canadian Journal of Physiology and Pharmacology, 96(12), 1301-1307. [DOI:10.1139/cjpp-2018-0470. PMID: 30326197] [PMID] Yousefvand, S., & Hamidi, F. (2020). Role of paraventricular nucleus in regulation of feeding behaviour and the design of intranuclear neuronal pathway communications. International Journal of Peptide Research and Therapeutics, 26, 1231-1242. [DOI:10.1007/s10989-019-09928-x] Yousefvand, S., & Hamidi, F. (2022). Role of lateral hypothalamus area in the central regulation of feeding. International Journal of Peptide Research and Therapeutics, 28(3), 83. [DOI:10.1007/s10989-022-10391-4] Yu, Z., Guo, F., Zhang, Z., Luo, X., Tian, J., & Li, H. (2017). Protective effects of glycyrrhizin on lps and amoxicillin/potassium clavulanate-induced liver injury in chicken. Pakistan Veterinary Journal, 37(1), 13-18. [Link] Zendehdel, M., Mokhtarpouriani, K., Babapour, V., Pourrahimi, M., & Hamidi, F. (2013). The role of 5-HT2A and 5-HT2C receptors on harmalineinduced eating behavior in 24-h food-deprived broiler cockerels. Iranian Journal of Veterinary Research, 14(2), 94-99. [DOI:10.22099/ijvr.2013.1581] Zendehdel, M., Taati, M., Amoozad, M., & Hamidi, F. (2012). Antinociceptive effect of the aqueous extract obtained from Foeniculum vulgare in mice: The role of histamine H1 and H2 receptors. Iranian Journal of Veterinary Research, 13(2), 100-106. [DOI:10.22099/ijvr.2012.98] Zhang, H., Chen, Y., Chen, Y., Li, Y., Jia, P., Ji, S., Zhou, Y., & Wang, T. (2020). Dietary pterostilbene supplementation attenuates intestinal damage and immunological stress of broiler chickens challenged with lipopolysaccharide. Journal of Animal Science, 98(1), skz373. [DOI:10.1093/jas/skz373][PMID] Zheng, X. C., Wu, Q. J., Song, Z. H., Zhang, H., Zhang, J. F., & Zhang, L. L., et al. (2016). Effects of Oridonin on growth performance and oxidative stress in broilers challenged with lipopolysaccharide. Poultry Science, 95(10), 2281-2289. [DOI:10.3382/ps/pew161] [PMID] | ||
آمار تعداد مشاهده مقاله: 361 تعداد دریافت فایل اصل مقاله: 315 |