
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,876,107 |
تعداد دریافت فایل اصل مقاله | 107,235,203 |
پایداری خاکدانهها و توزیع کربن آلی در دو کاربری مرتع و باغ زیتون: مطالعه موردی، رستمآباد، ایران | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 6، شهریور 1404، صفحه 1663-1683 اصل مقاله (1.9 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.393060.669921 | ||
نویسندگان | ||
عباس شعبانی روفچائی1؛ محمود شعبانپور شهرستانی* 2؛ سپیده ابریشم کش3 | ||
1گروه علوم خاک، دانشکده کشاورزی، دانشگاه گیلان،رشت، ایران. | ||
2دانشیار گروه خاکشناسى، دانشکده کشاورزى، دانشگاه گیلان، رشت، ایران | ||
3گروه علوم خاک، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
پایداری خاکدانه یکی از شاخصهای کلیدی در ارزیابی وضعیت ساختمان خاک بهشمار میرود و به طور قابل توجه تحت تأثیر نوع کاربری اراضی، پوشش گیاهی و سایر ویژگیهای فیزیکی و محیطی خاک قرار میگیرد. این مطالعه به بررسی شاخصهای پایداری خاکدانه و کربن آلی مرتبط با خاکدانه در خاک سطحی و همچنین میانگین وزنی قطر خاکدانه در خاک زیرسطحی در سه موقعیت شیب پرداخته است. نمونهبرداری از خاک در دو کاربری شامل باغ زیتون (شامل نیمسایه انداز و فاصله بین درختان) و مرتع طبیعی مجاور آن از دو عمق صفر تا 10 و 30 تا 40 سانتیمتر انجام شد. نتایج تحلیل واریانس نشان داد که تغییر کاربری اراضی و موقعیت شیب، تأثیر معناداری بر میانگین وزنی و هندسی قطر خاکدانهها و همچنین بعد فرکتال آنها در خاک سطحی دارد. در نقاط نمونهبرداری مرتبط با نیمسایه انداز درخت زیتون، بیشترین افزایش در میانگین وزنی و هندسی قطر خاکدانهها مشاهده شد. همچنین، بعد فرکتال خاکدانهها در نیمسایه انداز درخت زیتون کاهش معناداری را نشان داد. در مقابل در نقاط مختلف مرتع و فاصله بین درختان، میانگین وزنی و هندسی قطر خاکدانه با کاهش مواجه شد و در پی آن بعد فرکتال افزایش یافت. علاوه بر این نتایج بررسی وضعیت کربن آلی خاک سطحی در خاکدانهها نشان داد که نسبت خاکدانههای بزرگ در خاک مسئول تثبیت و حفاظت از کربن آلی در هر سه محل مورد بررسی را دارد. همچنین نتایج این موضوع را تایید کرد که با افزایش عمق خاک پایداری خاکدانهها کاهش مییابد که این کاهش در قسمت مرتع محسوستر بود. | ||
کلیدواژهها | ||
باغ زیتون؛ پایداری خاکدانه؛ خاک عمیق؛ کربن خاکدانهها؛ کاربری اراضی | ||
مراجع | ||
Addesso, R., Araniti, F., Bloise, A., Mininni, A. N., Dichio, B., López-González, D., Elshafie, H. S., Ellerbrock, R. H., Schnee, L. S., & Filser, J. (2025). Soil organic matter quality in an olive orchard differently managed for 21 years: Insights into its distribution through soil aggregates and depth. Agriculture, Ecosystems & Environment, 380, 109388. Afuye, G. A., Nduku, L., Kalumba, A. M., Santos, C. A. G., Orimoloye, I. R., Ojeh, V. N., Thamaga, K. H., & Sibandze, P. (2024). Global trend assessment of land use and land cover changes: A systematic approach to future research development and planning. Journal of King Saud University-Science, 103262. Agnelli, A., Bol, R., Trumbore, S. E., Dixon, L., Cocco, S., & Corti, G. (2014). Carbon and nitrogen in soil and vine roots in harrowed and grass-covered vineyards. Agriculture, Ecosystems & Environment, 193, 70-82. Angst, Š., Mueller, C. W., Cajthaml, T., Angst, G., Lhotáková, Z., Bartuška, M., Špaldoňová, A., & Frouz, J. (2017). Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. Geoderma, 289, 29-35. Asmare, T. K., Abayneh, B., Yigzaw, M., & Birhan, T. A. (2023). The effect of land use type on selected soil physicochemical properties in Shihatig watershed, Dabat district, Northwest Ethiopia. Heliyon, 9(5). Ayoubi, S., Karchegani, P. M., Mosaddeghi, M. R., & Honarjoo, N. (2012). Soil aggregation and organic carbon as affected by topography and land use change in western Iran. Soil and Tillage Research, 121, 18-26. Bai, Y., Zhou, Y., Du, J., & Zhang, X. (2024). Tree species identity affects nutrient accumulation and stoichiometric in soil aggregates in mixed plantations of subtropical China. Catena, 236, 107752. Bore, G., & Bedadi, B. (2015). Impacts of land use types on selected soil physico-chemical properties of Loma Woreda, Dawuro Zone, Southern Ethiopia. Science, Technology and Arts Research Journal, 4(4), 40-48. Cambardella, C., & Elliott, E. (1993). Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Science Society of America Journal, 57(4), 1071-1076. Cao, S., Zhou, Y., Zhou, Y., Zhou, X., & Zhou, W. (2021). Soil organic carbon and soil aggregate stability associated with aggregate fractions in a chronosequence of citrus orchards plantations. Journal of Environmental Management, 293, 112847. Chemeda, M., Kibret, K., & Fite, T. (2017). Influence of different land use types and soil depths on selected soil properties related to soil fertility in Warandhab Area, Horo Guduru Wallaga Zone, Oromiya, Ethiopia. International Journal of Environmental Sciences and Natural Resources, 4(2), 555634. Chen, M., Feng, S., Wang, J., Gao, M., Liu, M., Wang, K., Shangguan, Z.-p., & Zhang, Y. (2025). The stability of soil aggregates in sweet cherry (Prunus avium L.) orchards of different ages and varieties. Heliyon. Cheng, Y., Xu, G., Wang, X., Li, P., Dang, X., Jiang, W., Ma, T., Wang, B., Gu, F., & Li, Z. (2023). Contribution of soil aggregate particle size to organic carbon and the effect of land use on its distribution in a typical small watershed on Loess Plateau, China. Ecological Indicators, 155, 110988. Chimdi, A., Gebrekidan, H., Kibret, K., & Tadesse, A. (2012). Status of selected physicochemical properties of soils under different land use systems of Western Oromia, Ethiopia. Journal of Biodiversity and Environmental Sciences, 2(3), 57-71. De Ploey, J., & Poesen, J. (2020). Aggregate stability, runoff generation and interrill erosion. In Geomorphology and soils (pp. 99-120). Routledge. De Rosa, D., Rowlings, D. W., Fulkerson, B., Scheer, C., Friedl, J., Labadz, M., & Grace, P. R. (2020). Field-scale management and environmental drivers of N 2 O emissions from pasture-based dairy systems. Nutrient Cycling in Agroecosystems, 117, 299-315. Dong, X., Hao, Q., Li, G., Lin, Q., & Zhao, X. (2017). Contrast effect of long-term fertilization on SOC and SIC stocks and distribution in different soil particle-size fractions. Journal of soils and sediments, 17, 1054-1063. Dorji, T., Field, D. J., & Odeh, I. O. (2020). Soil aggregate stability and aggregate‐associated organic carbon under different land use or land cover types. Soil use and Management, 36(2), 308-319. Erktan, A., Balmot, J., Merino-Martín, L., Monnier, Y., Pailler, F., Coq, S., Abiven, S., Stokes, A., & Le Bissonnais, Y. (2017). Immediate and long-term effect of tannins on the stabilization of soil aggregates. Soil Biology and Biochemistry, 105, 197-205. Feng JiaYi, F. J., Chu ShuangShuang, C. S., Wang Jing, W. J., Wu DaoMing, W. D., Mo QiFeng, M. Q., Gao Jie, G. J., Lin JiaHui, L. J., & Zeng ShuCai, Z. S. (2018). Soil organic carbon density and its relationship with soil physical properties of typical plantations in South China. Feng, M., Li, T., Zeng, C., He, B., & Zhang, D. (2024). Changes in soil water repellency and soil erosion resistance as affected by land uses in karst environments. Journal of Environmental Management, 368, 122102. Gee, G. W., & Or, D. (2002). 2.4 Particle‐size analysis. Methods of soil analysis: Part 4 physical methods, 5, 255-293. Geissen, V., Sánchez-Hernández, R., Kampichler, C., Ramos-Reyes, R., Sepulveda-Lozada, A., Ochoa-Goana, S., De Jong, B., Huerta-Lwanga, E., & Hernández-Daumas, S. (2009). Effects of land-use change on some properties of tropical soils—an example from Southeast Mexico. Geoderma, 151(3-4), 87-97. Gross, C. D., & Harrison, R. B. (2019). The case for digging deeper: soil organic carbon storage, dynamics, and controls in our changing world. Soil Systems, 3(2), 28. Gülser, C. (2006). Effect of forage cropping treatments on soil structure and relationships with fractal dimensions. Geoderma, 131(1-2), 33-44. Guo, L. B., Wang, M., & Gifford, R. M. (2007). The change of soil carbon stocks and fine root dynamics after land use change from a native pasture to a pine plantation. Plant and Soil, 299, 251-262. Hamel, Z., Ababou, A., Saidi, D., & Kemassi, A. (2021). Evaluation of soil aggregate stability in Algerian northwestern soils using pedotransfer functions and artificial neural networks. Acta Ecologica Sinica, 41(3), 235-242. Hamza, M., & Anderson, W. K. (2005). Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil and Tillage Research, 82(2), 121-145. Hartmann, C., Poss, R., Noble, A. D., Jongskul, A., Bourdon, E., Brunet, D., & Lesturgez, G. (2008). Subsoil improvement in a tropical coarse textured soil: Effect of deep-ripping and slotting. Soil and Tillage Research, 99(2), 245-253. Haydu-Houdeshell, C.-A., Graham, R. C., Hendrix, P. F., & Peterson, A. C. (2018). Soil aggregate stability under chaparral species in southern California. Geoderma, 310, 201-208. Hu, Z., LÜ, Y.-z., YANG, Z.-c., & LI, B.-g. (2007). Influence of conservation tillage on soil aggregates features in North China Plain. Agricultural Sciences in China, 6(9), 1099-1106. Joseph, P. O., Ojochegbe, O. F., Okonfor, A. S., & Faith, U. C. (2019). Impacts of Different Land Use on Some Selected Soil Physicochemical Properties in Federal Polytechnic Idah, Kogi State, Nigeria. Kravchenko, A., Otten, W., Garnier, P., Pot, V., & Baveye, P. C. (2019). Soil aggregates as biogeochemical reactors: Not a way forward in the research on soil–atmosphere exchange of greenhouse gases. Global Change Biology, 25(7), 2205-2208. Lan, J., Long, Q., Huang, M., Jiang, Y., & Hu, N. (2022). Afforestation-induced large macroaggregate formation promotes soil organic carbon accumulation in degraded karst area. Forest Ecology and Management, 505, 119884. Lemaire, G., Hodgson, J., & Chabbi, A. (2011). Grassland productivity and ecosystem services. Cabi. Lindell, L., Åström, M., & Öberg, T. (2010). Land-use versus natural controls on soil fertility in the Subandean Amazon, Peru. Science of the Total Environment, 408(4), 965-975. MandelbrotB, B., & Mandelbrot, B. (1982). The fractal geometry of nature, 1 WH freeman. New York. Manpoong, C., Tripathi, S. K., Aravindakshan, S., & Krupnik, T. J. (2025). Digging in: Impact of land use changes on soil aggregation patterns and carbon stocks in the moist tropics of the Mizoram in the Indomalayan realm. Total Environment Advances, 13, 200119. Mikha, M. M., Jin, V. L., Johnson, J. M., Lehman, R. M., Karlen, D. L., & Jabro, J. D. (2021). Land management effects on wet aggregate stability and carbon content. Soil Science Society of America Journal, 85(6), 2149-2168. Modak, K., Ghosh, A., Bhattacharyya, R., Biswas, D. R., Das, T. K., Das, S., & Singh, G. (2019). Response of oxidative stability of aggregate-associated soil organic carbon and deep soil carbon sequestration to zero-tillage in subtropical India. Soil and Tillage Research, 195, 104370. Montanaro, G., Celano, G., Dichio, B., & Xiloyannis, C. (2010). Effects of soil‐protecting agricultural practices on soil organic carbon and productivity in fruit tree orchards. Land Degradation & Development, 21(2), 132-138. Mustafa, A., Minggang, X., Shah, S. A. A., Abrar, M. M., Nan, S., Baoren, W., Zejiang, C., Saeed, Q., Naveed, M., & Mehmood, K. (2020). Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. Journal of Environmental Management, 270, 110894. Negasa, T., Ketema, H., Legesse, A., Sisay, M., & Temesgen, H. (2017). Variation in soil properties under different land use types managed by smallholder farmers along the toposequence in southern Ethiopia. Geoderma, 290, 40-50. Nie, M., Pendall, E., Bell, C., & Wallenstein, M. D. (2014). Soil aggregate size distribution mediates microbial climate change feedbacks. Soil Biology and Biochemistry, 68, 357-365. Nie, X., Li, Z., Huang, J., Liu, L., Xiao, H., Liu, C., & Zeng, G. (2018). Thermal stability of organic carbon in soil aggregates as affected by soil erosion and deposition. Soil and Tillage Research, 175, 82-90. Nimmo, J. R., & Perkins, K. S. (2002). 2.6 Aggregate stability and size distribution. Methods of soil analysis: Part 4 physical methods, 5, 317-328. Okolo, C. C., Gebresamuel, G., Zenebe, A., Haile, M., & Eze, P. N. (2020). Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment. Agriculture, Ecosystems & Environment, 297, 106924. Peng, J., Wang, J., Yang, Q., Long, L., Li, H., Guo, Z., & Cai, C. (2024). Spatial variation in soil aggregate stability and erodibility at different slope positions in four hilly regions of northeast China. Catena, 235, 107660. Peng, X., Huang, Y., Duan, X., Yang, H., & Liu, J. (2023). Particulate and mineral-associated organic carbon fractions reveal the roles of soil aggregates under different land-use types in a karst faulted basin of China. Catena, 220, 106721. Pihlap, E., Steffens, M., & Kögel-Knabner, I. (2021). Initial soil aggregate formation and stabilisation in soils developed from calcareous loess. Geoderma, 385, 114854. Qiu, L., Wei, X., Gao, J., & Zhang, X. (2015). Dynamics of soil aggregate-associated organic carbon along an afforestation chronosequence. Plant and Soil, 391, 237-251. Rong, G., Li, W., Zhu, H., Zhou, J., Qiu, L., Ge, N., Wei, X., & Shao, M. (2020). Dynamics of new-and old-organic carbon and nitrogen in bulk soils and aggregates following afforestation on farmland. Catena, 195, 104838. Singh, M. K., Singh, S., & Ghoshal, N. (2017). Impact of land use change on soil aggregate dynamics in the dry tropics. Restoration Ecology, 25(6), 962-971. Sokol, N. W., Sanderman, J., & Bradford, M. A. (2019). Pathways of mineral‐associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biology, 25(1), 12-24. Song, R., Liu, L., Ma, Y., & Wu, C. (2009). Effects of crop root exudates on the size and stability of soil aggregates. Journal of Nanjing Agricultural University, 32(3), 93-97. Sullivan, L. (1990). Soil organic matter, air encapsulation and water‐stable aggregation. Journal of soil science, 41(3), 529-534. Tagar, A., Adamowski, J., Memon, M., Do, M. C., Mashori, A., Soomro, A., & Bhayo, W. (2020). Soil fragmentation and aggregate stability as affected by conventional tillage implements and relations with fractal dimensions. Soil and Tillage Research, 197, 104494. Tang, X., Qiu, J., Xu, Y., Li, J., Chen, J., Li, B., & Lu, Y. (2022). Responses of soil aggregate stability to organic C and total N as controlled by land-use type in a region of south China affected by sheet erosion. Catena, 218, 106543. Tang, Y., Li, J., Zhang, X., Yang, P., Wang, J., & Zhou, N. (2013). Fractal characteristics and stability of soil aggregates in karst rocky desertification areas. Natural Hazards, 65, 563-579. Tisdall, J. M., & OADES, J. M. (1982). Organic matter and water‐stable aggregates in soils. Journal of soil science, 33(2), 141-163. Tyler, S. W., & Wheatcraft, S. W. (1992). Fractal scaling of soil particle‐size distributions: Analysis and limitations. Soil Science Society of America Journal, 56(2), 362-369. Ufot, U., Iren, O., & Chikere Njoku, C. (2016). Effects of land use on soil physical and chemical properties in Akokwa area of Imo State, Nigeria. International Journal of Life Sciences Scientific Research, 2(3), 273-278. van Reeuwijk, L. P. (1995). Procedures for soil analysis. (No Title). Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38. Wang, F., Zhang, X., Neal, A. L., Crawford, J. W., Mooney, S. J., & Bacq-Labreuil, A. (2022). Evolution of the transport properties of soil aggregates and their relationship with soil organic carbon following land use changes. Soil and Tillage Research, 215, 105226. Wang, J. J., Tharayil, N., Chow, A. T., Suseela, V., & Zeng, H. (2015). Phenolic profile within the fine‐root branching orders of an evergreen species highlights a disconnect in root tissue quality predicted by elemental‐and molecular‐level carbon composition. New Phytologist, 206(4), 1261-1273. Wang, L., Guo, M., Chen, Z., Zhang, X., Zhou, P., Liu, X., Qi, J., Wan, Z., Xu, J., & Zhang, S. (2024). Quantifying the contributions of factors influencing the spatial heterogeneity of soil aggregate stability and erodibility in a Mollisol watershed. Catena, 239, 107941. Wang, S., Li, T., & Zheng, Z. (2016). Effect of tea plantation age on the distribution of soil organic carbon and nutrient within micro-aggregates in the hilly region of western Sichuan, China. Ecological Engineering, 90, 113-119. Waters, A., & Oades, J. (1991). Organic matter in water-stable aggregates. Weidhuner, A., Hanauer, A., Krausz, R., Crittenden, S. J., Gage, K., & Sadeghpour, A. (2021). Tillage impacts on soil aggregation and aggregate-associated carbon and nitrogen after 49 years. Soil and Tillage Research, 208, 104878. Wiesmeier, M., Steffens, M., Mueller, C., Kölbl, A., Reszkowska, A., Peth, S., Horn, R., & Kögel‐Knabner, I. (2012). Aggregate stability and physical protection of soil organic carbon in semi‐arid steppe soils. European journal of soil science, 63(1), 22-31. Wu, T., Zhang, Y., Wang, Y., Wang, S., & Lei, L. (2023). Factors affecting the stability of soil aggregates of plinthosols in the middle reaches of the Yangtze River. Catena, 228, 107159. Xiao, L., Zhang, W., Hu, P., Xiao, D., Yang, R., Ye, Y., & Wang, K. (2021). The formation of large macroaggregates induces soil organic carbon sequestration in short-term cropland restoration in a typical karst area. Science of the Total Environment, 801, 149588. Xu, H., & Zhang, C. (2021). Investigating spatially varying relationships between total organic carbon contents and pH values in European agricultural soil using geographically weighted regression. Science of the Total Environment, 752, 141977. Yang, F., Tian, J., Meersmans, J., Fang, H., Yang, H., Lou, Y., Li, Z., Liu, K., Zhou, Y., & Blagodatskaya, E. (2018). Functional soil organic matter fractions in response to long-term fertilization in upland and paddy systems in South China. Catena, 162, 270-277. Yu, P., Liu, J., Tang, H., Ci, E., Tang, X., Liu, S., Ding, Z., & Ma, M. (2023). The increased soil aggregate stability and aggregate-associated carbon by farmland use change in a karst region of Southwest China. Catena, 231, 107284. Zhang, H., Huang, Y., Lan, Y., He, Y., Wang, S., Jiang, C., Cui, Y., Fan, R., & Ye, S. (2024). Mixed Chinese fir plantations alter the C, N, and P resource limitations influencing microbial metabolism in soil aggregates. Forests, 15(4), 724. Zhang, P., Wang, Y., Xu, L., Li, R., Sun, H., & Zhou, J. (2021). Factors controlling spatial variation in soil aggregate stability in a semi-humid watershed. Soil and Tillage Research, 214, 105187. Zhang, X., Gregory, A. S., Whalley, W. R., Coleman, K., Neal, A. L., Bacq-Labreuil, A., Mooney, S. J., Crawford, J. W., Soga, K., & Illangasekare, T. H. (2021). Relationship between soil carbon sequestration and the ability of soil aggregates to transport dissolved oxygen. Geoderma, 403, 115370. Zhao, F., Han, X., Yang, G., Feng, Y., & Ren, G. (2014). Soil structure and carbon distribution in subsoil affected by vegetation restoration. Plant, Soil and Environment, 60(1), 21-26. Zhong, Z., Wu, S., Lu, X., Ren, Z., Wu, Q., Xu, M., Ren, C., Yang, G., & Han, X. (2021). Organic carbon, nitrogen accumulation, and soil aggregate dynamics as affected by vegetation restoration patterns in the Loess Plateau of China. Catena, 196, 104867. Zhu, G., Deng, L., & Shangguan, Z. (2018). Effects of soil aggregate stability on soil N following land use changes under erodible environment. Agriculture, Ecosystems & Environment, 262, 18-28. Zhu, Y., Wang, D., Wang, X., Li, W., & Shi, P. (2021). Aggregate-associated soil organic carbon dynamics as affected by erosion and deposition along contrasting hillslopes in the Chinese Corn Belt. Catena, 199, 105106. Mokhtari Karchegani, P., Ayoubi, Sh., Mosaddeghi, M. R., & Malekian, M. (2011). Effects of land use and slope gradient on soil organic carbon pools in particle-size fractions and some soil physico-chemical properties in hilly regions, western iran. Journal of Soil Management and Sustainable Production, Vol. 1(1) (in persian). Nahidan, S., Nourbakhsh, N., Mosaddeghi, M.R. (2015). Aggregate distribution of organic C, L-glutaminase activity and aggregate stability as affected by slope position. Journal of Soil Management and Sustainable Production, Vol. 5(1) (in persian).
| ||
آمار تعداد مشاهده مقاله: 46 تعداد دریافت فایل اصل مقاله: 27 |