
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,876,106 |
تعداد دریافت فایل اصل مقاله | 107,235,196 |
انبوهشزدایی واحدهای نقشه خاک با استفاده از مدل دسمارت: ترکیب مدلهای مبتنی بر سیستم درختی و دادههای جدید خاکرخی | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 6، شهریور 1404، صفحه 1609-1629 اصل مقاله (2.13 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.391334.669894 | ||
نویسندگان | ||
زهرا رسائی1؛ فریدون سرمدیان* 2؛ اعظم جعفری3 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
2عضو هیأت علمی گروه مهندسی علوم خاک، پردیس کشاورزی و منابع طبیعی دانشگاه تهران | ||
3بخش علوم و مهندسی خاک، دانشکده کشاورزی-دانشگاه شهیدباهنر کرمان | ||
چکیده | ||
نقشههای مرسوم خاک بصورت واحدهای چندضلعی میباشند که در آنها، واحدهای خاک با مرزهای مشخص از یکدیگر تفکیک شدهاند اما تغییرات کلاسهای خاک در واحدها مشخص نمیباشد. با توجه به نیاز به اطلاع از تغییرات کلاسهای خاک در واحدهای نقشه، هدف این مطالعه انبوهشزدایی واحدهای نقشه خاک با استفاده از روش دسمارت (DSMART) در منطقه آبیک میباشد. مدل دسمارت براساس مدلهای درخت C5.0، جنگل تصادفی و تقویت گرادیان افراطی در دو سناریو انجام شد: (1) استفاده از اطلاعات واحدهای نقشه خاک موروثی یک میلیونیم کشور و (2) با اطلاعات 230 خاکرخ جدید در سطح زیرگروههای خاک. عملکرد مدلها و عدم قطعیت آنها با شاخصهای کمی ارزیابی شدند. در سناریوی اول، میزان صحت کلی نقشهها بین 29/0 تا 37/0 و مقدار کاپا بین 17/0 تا 29/0 متغیر بود که بهترین نتایج از مدل تقویت گرادیان افراطی با شاخص درهمی 74/0 بدست آمد. در سناریوی دوم، در مدل جنگل تصادفی صحت کلی نقشهها از 51/0 تا 63/0 و کاپا از 44/0 تا 60/0 افزایش یافت و شاخص درهمی به 65/0 کاهش یافت. مقایسه این نقشهها با توزیع مکانی زیرگروههای خاک منطقه بیانگر تطبیق خوب نقشهها با هم بود، بهطوریکه در سناریوی دوم به میزان 43 درصد افزایش نشان داد. در سناریوی اول، متغیرهای توپوگرافی، و در سناریوی دوم، میانگین بارندگی و شاخص پوشش گیاهی عمودی بیشترین اهمیت را در مدلسازی داشتند. ترکیب دادههای جدید خاکرخی صحت مدلسازی را تا 26 درصد افزایش داد. این نتایج کارایی روش دسمارت با اطلاعات خاکرخی اضافی در انبوهشزدایی واحدهای نقشه خاک موروثی را تأیید میکنند. | ||
کلیدواژهها | ||
دسمارت؛ ریزمقیاسسازی؛ نقشهبرداری رقومی خاک؛ یادگیری ماشین | ||
مراجع | ||
Abdel-Kader, F.H., 2011. Digital soil mapping at pilot sites in the northwest coast of Egypt: a multinomial logistic regression approach. Egypt. J. Remote Sens. Space Sci. 14, 29–40. Allbed, A., & Kumar, L. (2013). Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. Advances in remote sensing, 2(4), 373-385. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794). ACM. Conrad, O., Bechtel, B., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., Böhner, J., 2015. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8, 1991–2007. Dolan, M. F., Ross, R. E., Albretsen, J., Skarðhamar, J., Gonzalez-Mirelis, G., Bellec, V. K., ... & Bjarnadóttir, L. R. (2021). Using spatial validity and uncertainty metrics to determine the relative suitability of alternative suites of oceanographic data for seabed biotope prediction. A case study from the Barents Sea, Norway. Geosciences, 11(2), 48. Easher, T.H., Saurette, D., Chappell, E., Lopez, F. de J.M., Gasser, M.O., Gillespie, A., Heck, R.J., Heung, B., & Biswas, A. (2023). Sampling and classifier modification to DSMART for disaggregating soil polygon maps. Geoderma, 431, 116360. Ellili-Bargaoui, Y., Malone, B.P., Michot, D., Minasny, B., Vincent, S., Walter, C., & Lemercier, B. (2020). Comparing three approaches of spatial disaggregation of legacy soil maps based on the Disaggregation and Harmonisation of Soil Map Units Through Resampled Classification Trees (DSMART) algorithm. SOIL, 6(2), 371–388. Ellili-Bargaoui, Y., Walter, C., Michot, D., Saby, N. P., Vincent, S., & Lemercier, B. (2019). Validation of digital maps derived from spatial disaggregation of legacy soil maps. Geoderma, 356, 113907. Flynn, T., & Kostecki, R. (2024). Spatial downscaling of global soil texture classes into 30 m images at the province scale. Geomatica, 76(2), 100028. Flynn, T., Van Zijl, G., Van Tol, J., Botha, C., Rozanov, A., Warr, B., & Clarke, C. (2019). Comparing algorithms to disaggregate complex soil polygons in contrasting environments. Geoderma, 352, 171–180. Gagkas, Z., & Lilly, A. (2024). Spatial disaggregation of a legacy soil map to support digital soil and land evaluation assessments in Scotland. Geoderma Regional, 38, e00833. Gallant, J.C., Dowling, T.I., 2003. A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resour. Res. 39, 1347–1359. Holmes, K., Griffin, E., & Odgers, N. (2015). Large-area spatial disaggregation of a mosaic of conventional soil maps: Evaluation over Western Australia. Soil Research, 53, 865–880. Jafari, A., Ayoubi, S., Khademi, H., Finke, P., Toomanian, N. (2013). Selection of a taxonomic level for soil mapping using diversity and map purity indices: a case study from an Iranian arid region. Geomorphology 201, 86–97. Jamshidi, M., Delavar, M.A., Taghizadehe-Mehrjardi, R., & Brungard, C. (2019). Disaggregation of conventional soil map by generating multi realizations of soil class distribution (case study: Saadat Shahr plain, Iran). Environmental Monitoring and Assessment, 191(12), 769. Khamoshi, S. E., Sarmadian, F., & Keshavarzi, A. (2019). Digital soil mapping Using Random Forests and Land Suitability Evaluation for Abyek Region, Qazvin Province. Journal of Range and Watershed Management, 71(4), 885-899. (In Persian with English abstract). Khamoshi, S. E., Sarmadian, F., & Omid, M. (2023). Predicting and Mapping of Soil Organic Carbon Stock Using Machine Learning Algorithm. Iranian Journal of Soil and Water Research, 53(11), 2671-2681. (In Persian with English abstract). Krivoruchko, K., & Gribov, A. (2019). Evaluation of empirical Bayesian kriging. Spatial Statistics, 32, 100368. Kursa, M. B., and Rudnicki, W. R. (2010). Feature Selection with the Boruta Package. Journal of Statistical Software, 36(1), 1–13. Lázaro-López, A., González-SanJosé, M.L., Gómez-Miguel, V., Malone, B., Lázaro-López, A., González-SanJosé, M.L., Gómez-Miguel, V., & Malone, B. (2021). Disaggregation of conventional soil maps: A review. Soil Research, 59(8), 747–766. Machado, I.R., Giasson, E., Campos, A. R., Costa, J.J.F., da Silva, E.B., & Bonfatti, B.R. (2018). Spatial Disaggregation of Multi-Component Soil Map Units Using Legacy Data and a Tree-Based Algorithm in Southern Brazil. Revista Brasileira de Ciência Do Solo, 42, e0170193. Malone, B. P., Styc, Q., Minasny, B., & McBratney, A. B. (2017). Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data. Geoderma, 290, 91-99. McBratney, A.B., Mendonça Santos, M.L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1), 3–52. Minai, J., Libohova, Z., & Schulze, D.G. (2020). Disaggregation of the 1:100,000 Reconnaissance soil map of the Busia Area, Kenya using a soil landscape rule-based approach. Catena, 195, 104806. Momtazi Burojeni, M., & Sarmadian, F. (2023). Spatial prediction of soil classes using C5.0 boosted decision tree model in Abyek Area. Iranian Journal of Soil and Water Research, 75(4), 553-572. (In Persian with English abstract). Mousavi, S. R. A., Sarmadian, F., & Rahmani, A. (2019). Modelling and Prediction of Soil Classes Using Boosting Regression Tree and Random Forests Machine Learning Algorithms in Some Part of Qazvin Plain. Journal of Water and Soil, 50(10), 2525-2538. (In Persian with English abstract). Mousavi, S. R. A., Sarmadian, F., Omid, M., & Bogaert, P. (2021a). Application of Machine Learning Models in Spatial Estimation of Soil Phosphorus and Potassium in Some Parts of Abyek Plain. Iranian Journal of Soil Science, 35(4), 397-411. (In Persian with English abstract). Mousavi, S. R. A., Sarmadian, F., Omid, M., & Bogaert, P. (2021b). Modeling the Vertical Soil Calcium Carbonate Equivalent Variation by Machine Learning Algorithms in Qazvin Plain. Journal of Water and Soil, 35(5), 719-734. (In Persian with English abstract). Mousavi, S. R. A., Sarmadian, F., Omid, M., & Bogaert, P. (2021c). Digital Modeling of Three-Dimensional Soil Salinity Variation Using Machine Learning Algorithms in Arid and Semi-Arid lands of Qazvin Plain. Iranian Journal of Soil and Water Research, 52(7), 1915-1929. (In Persian with English abstract). Mousavi, S. R., Sarmadian, F., Omid, M., & Bogaert, P. (2022). Three-dimensional mapping of soil organic carbon using soil and environmental covariates in an arid and semi-arid region of Iran. Measurement, 201, 111706. Neyestani, M., Sarmadian, F., Jafari, A., Keshavarzi, A., & Sharififar, A. (2021). Digital mapping of soil classes using spatial extrapolation with imbalanced data. Geoderma Regional, 26, e00422. Odgers, N., Mcbratney, A., Minasny, B., Sun, W., & Clifford, D. (2014). DSMART: An algorithm to spatially disaggregate soil map units. In GlobalSoilMap: Basis of the Global Spatial Soil Information System—Proceedings of the 1st GlobalSoilMap Conference (pp. 261–266). Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers. Rahmani, A., Sarmadian, F., & Arefi, H. (2023). Digital modeling and prediction of soil subgroup classes using deep learning approach in a part of arid and semi-arid lands of Qazvin Plain. Iranian Journal of Soil and Water Research, 53(11), 2477-2499. (In Persian with English abstract). Rasaei, Z., Rossiter, D.G., & Farshad, A. (2020). Rescue and renewal of legacy soil resource inventories in Iran as an input to digital soil mapping. Geoderma Regional, 21, e00262. Rasaei, Z., Sarmadian, F., & Jafari, A. (2024) Investigating soil grouping using conventional and modern clustering models in some parts of Qazvin plain, Iranian Journal of Soil and Water Research, 55 (8), 1273-1295. Rezaie, G., Sarmadian, F., Mohammadi Torkashvand, A., Seyedmohammadi, J., & Marashi Aliabadi, M. (2023). Digital mapping of surface and subsurface soil organic carbon and soil salinity variation in a part of Qazvin plain (Case study: Abyek and Nazarabad regions). Journal of Water and Soil, 37(2), 315-331. (In Persian with English abstract). Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric engineering and remote sensing, 43(12), 1541-1552. Roozitalab, M. H., Siadat, H., & Farshad, A. (Eds.). (2018). The Soils of Iran. Springer International Publishing. Rossiter, D.G. (2001). Assessing the Thematic Accuracy of Area-Class Soil Maps. Soil Science Division, ITC. Enschede Netherlands. 43p. Soil Survey Staff. 2022. Keys to Soil Taxonomy, 13th ed. USDA-Natural Resources Conservation Service. Stoorvogel, J., Mulder, V.L., & Hendriks, C. (2019). The effect of disaggregating soil data for estimating soil hydrological parameters at different scales. Geoderma, 347, 185–193. Thompson, J., Prescott, T., Moore, A.C., Bell, J. S., Kautz, D., Hempel, F., Waltman, S., & Perry, C. H. (2010). Regional approach to soil property mapping using legacy data and spatial disaggregation techniques. Proceedings of 19th World Congress Soil Science, Soil Solutions for a Changing World, 1-6 August, 17–20. Vincent, S., Lemercier, B., Berthier, L., & Walter, C. (2018). Spatial disaggregation of complex Soil Map Units at the regional scale based on soil-landscape relationships. Geoderma, 311, 130–142. Yang, L., Jiao, Y., Fahmy, S., Zhu, A. X., Hann, S., Burt, J. E., & Qi, F. (2011). Updating conventional soil maps through digital soil mapping. Soil Science Society of America Journal, 75(3), 1044-1053. Zeraatpisheh, M., Ayoubi, S., Brungard, C.W., & Finke, P. (2019). Disaggregating and updating a legacy soil map using DSMART, fuzzy c-means and k-means clustering algorithms in Central Iran. Geoderma, 340, 249–258.
| ||
آمار تعداد مشاهده مقاله: 35 تعداد دریافت فایل اصل مقاله: 35 |