
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,876,118 |
تعداد دریافت فایل اصل مقاله | 107,235,219 |
روشی نوین در پیشبینی تغییرات آتی سطح آبزیرزمینی با الگوریتمهای k-means و جنگل تصادفی با دادههای اقلیمی CMIP6 در دشت اسلامآباد غرب | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 6، شهریور 1404، صفحه 1495-1518 اصل مقاله (2.12 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.392467.669910 | ||
نویسندگان | ||
کبری سلطانی1؛ سید احسان فاطمی* 2؛ جعفر معصومپور سماکوش1؛ مریم حافظ پرست مودت3 | ||
1گروه جغرافیا، دانشکدة ادبیات و علوم انسانی، دانشگاه رازی، کرمانشاه، ایران | ||
2گروه مهندسی آب، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران | ||
3گروه مهندسی آب، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران | ||
چکیده | ||
این پژوهش تغییرات سطح آب زیرزمینی (GWL) دشت اسلامآباد را با استفاده از الگوریتم جنگل تصادفی (RF) و دادههای اقلیمی CMIP6 پیشبینی کرده است. دادههای GWL از 20 چاه (2014-1997) جمعآوری و پس از پردازش و خوشهبندی با روش K-Means، مدلسازی برای سناریوهای اقلیمی SSP1-2.6، SSP2-4.5 و SSP5-8.5 در سه منطقه جنگه، برفآباد و بورگ انجام شد. نتایج نشان داد که در دوره مشاهداتی، منطقه برفآباد با تغییرات 7/8 تا 2/10 متر مطلوبترین و منطقه بورگ با 5/15 تا 3/17 متر نامطلوبترین مقدار GWL را داشته است. بیشترین سطح دسترسی در بهار و کمترین عمق در پاییز مشاهده شد. پیشبینیها نشان میدهد که در آینده دور (2076-2100) تحت سناریوی SSP5-8.5، بیشترین افزایش GWL (3 تا 5/3 متر) در جنگه در پاییز رخ خواهد داد. درSSP1-2.6، بیشترین کاهش در بورگ با افت 5/3 تا 4 متر در بهار و تابستان پیشبینی شده است. تحت سناریوهای SSP1-2.6 و SSP2-4.5 در آینده دور شرایط پایدارتر خواهد بود. در دوره مشاهداتی، GWL در تمام مناطق روند نزولی داشته و بیشترین افت سالانه (1متر) در برفآباد ثبت شد. در SSP1-2.6، کاهش GWL در آینده نزدیک در بورگ (21/0- m/year) و در آینده میانی در جنگه (14/0- m/year) ادامه خواهد داشت. در SSP2-4.5، این کاهش در آینده دور در تمامی مناطق معنادار بوده و در بورگ بیشترین مقدار (16/0- m/year) را خواهد داشت. مدل RF عملکرد بسیار خوبی داشته (97/0R= و NSE بین 89/0 تا 98/0) و مدل NorESM2-MM دقت پیشبینی را تا 5/99 افزایش داده است. | ||
کلیدواژهها | ||
CMIP6؛ اسلامآباد غرب؛ جنگل تصادفی؛ سطح آب زیرزمینی؛ K-means | ||
مراجع | ||
Adib, M. N. M., & Harun, S. (2022). Metalearning approach coupled with CMIP6 multi-GCM for future monthly streamflow forecasting. Journal of Hydrologic Engineering, 27(6), 05022004. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002176 Akurugu, C. A. (2024). Identifying Drivers of Groundwater Level Fluctuations in the Casper Aquifer Near Cheyenne, WY, Using Random Forest Model (Master's thesis, University of Wyoming). Alamsyah, N., Budiman, B., Yoga, T. P., & Alamsyah, R. Y. R. (2024). Comparison linear regression and random forest models for prediction of underground drought levels in forest fires. Jurnal Techno Nusa Mandiri, 21(2), 81-86. https://doi.org/10.33480/techno.v21i2.5237 Almasi, A., Fatemi, S. E., & Eghbalzadeh, A. (2024). The prediction of monthly rainfall in Kermanshah Synoptic Station under the social-economic scenarios of the sixth climate change report. Advanced Technologies in Water Efficiency, 4(1), 40-64. https://doi.org/10.22126/atwe.2024.10245.1097 (In Persian) Amnuaylojaroen, T. (2023). Advancements in downscaling global climate model temperature data in southeast asia: a machine learning approach. Forecasting, 6(1), 1-17. Araghi, A., Martinez, C. J., Adamowski, J., & Olesen, J.E. (2018). Spatiotemporal variations of aridity in Iran using high‐resolution gridded data. International Journal of Climatology, 38 (6), 2701-2717. https://doi.org/10.1002/joc.5454 Atabati, A. & Adab, H. (2022). Evaluation of machine learning methods in spatial downscaling of average annual land surface temperature and air temperature. Journal of Natural Environment, 75(4), 551-569. https://doi.org/.22059/jne.2022.340875.2416 (In Persian). Bagherabadi, Rasoul. (2022). Investigation of meteorological drought Eslamabad-e Gharb using of draught indices. Water Engineering, 10 (2), 136_148 (In Persian). Bagheri-Khanghahi, M., Jaribi, A. H., Kamali, M. I., & Zamani, F. (2025). Forecasting Rainfall in Different Climatic Regions of Iran Using the LARS WG7 Climate Model. Water Resources and Climate Change, 10.22091/wrcc.2025.11744.1008 (In Persian) Bochenek, B., & Ustrnul, Z. (2022). Machine learning in weather prediction and climate analyses—applications and perspectives. Atmosphere, 13(2), 180. https://doi.org/10.3390/atmos13020180 Bogireddy, S. R., & Murari, H. (2024, September). Enhancing crop yield prediction through random forest classifier: A comprehensive approach. In 2024 5th International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1663-1668). IEEE. http://dx.doi.org/10.1109/ICOSEC61587.2024.10722249 Boo, K. B. W., El-Shafie, A., Othman, F., Khan, M. M. H., Birima, A. H., & Ahmed, A. N. (2024). Groundwater level forecasting with machine learning models: A review. Water Research, 252, 121249. https://doi.org/10.1016/j.watres.2024.121249 Darabi Cheghabaleki, S., Fatemi, S. E., & Hafezparast Mavadat, M. (2024). Enhancing spatial streamflow prediction through machine learning algorithms and advanced strategies. Applied Water Science, 14(6), 110. https://doi.org/10.1007/s13201-024-02154-x Das, S., Datta, P., Sharma, D., & Goswami, K. (2022). Trends in temperature, precipitation, potential evapotranspiration, and water availability across the teesta river basin under 1.5 and 2 C temperature rise scenarios of CMIP6. Atmosphere, 13(6), 941. https://doi.org/10.3390/atmos13060941. Eghrari, Z., Delavar, M. R., Zare, M., Mousavi, M., Nazari, B., & Ghaffarian, S. (2023). Groundwater level prediction using deep recurrent neural networks and uncertainty assessment. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10, 493-500. https://doi.org/10.5194/isprs-annals-X-1-W1-2023-493-2023 Esmaeili, S. & Mojarrad, F. (2025). Investigating the stability of the groundwater level in the Eslamabad-e Gharb plain (Kermanshah province) and evaluating the future situation with atmospheric general circulation models. Hydrogeomorphology, 11(41), 134-115. https://doi.org/10.22034/hyd.2024.62351.1747 (In Persian) Fang, W., Ren, K., Liu, T., Shang, J., Jia, S., Jiang, X., & Zhang, J. (2024). An evaluation of random forest based input variable selection methods for one month ahead streamflow forecasting. Scientific Reports, 14(1), 29766. https://doi.org/10.1038/s41598-024-81502-y Fatemi, S. , Ghobadian, R. and Pakbin, M. (2018). Forecasting Groundwater Depth Using Time series Spectral Analysis. Water and Soil Science, 28(1), 145-158. https://water-soil.tabrizu.ac.ir/article_7600.html (In Persian) Fatemi, S. E., & Parvini, H. (2022). The impact assessments of the ACF shape on time series forecasting by the ANFIS model. Neural Computing and Applications, 34(15), 12723-12736. https://doi.org/10.1007/s00521-022-07140-5 Gaber, K. Sh., & Singla, M. K. (2025). Predictive analysis of groundwater resources using Random Forest regression. Journal of Artificial Intelligence and Metaheuristics, 9(1), 11–19. https://doi.org/10.54216/JAIM.090102 Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., & Takahashi, K. (2019). Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific model development, 12(4), 1443-1475. https://doi.org/10.5194/gmd-12-1443-2019 Gorgani, S., Bafkar, A., & Fatemi, S. E. (2017). Prediction of groundwater pollution potential using the DRASTIC index and annual time series analysis (case study: plain Mahidasht Kermanshah). Journal of Health and Environment, 10 (3), 317-328. http://ijhe.tums.ac.ir/article-1-5962-en.pdf (In Persian) Gupta, S. K., Sahoo, S., Sahoo, B. B., Srivastava, P. K., Pateriya, B., & Santosh, D. T. (2024). Prediction of groundwater level changes based on machine learning technique in highly groundwater irrigated alluvial aquifers of south-central Punjab, India. Physics and Chemistry of the Earth, 135, 103603. https://doi.org/10.1016/j.pce.2024.103603 Irmanda, H. N., Ermatita, E., bin Awang, M. K., & Adrezo, M. (2024). Enhancing Weather Prediction Models through the Application of Random Forest Method and Chi-Square Feature Selection. International Journal on Informatics Visualization, 8(3-2), 1506-1514. http://dx.doi.org/10.62527/joiv.8.3.2356 Islam, M. S. (2023). Groundwater: Sources, functions, and quality. In Hydrogeochemical evaluation and groundwater quality (pp. 17-36). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-44304-6-2. Jin, H., Jiang, W., Chen, M., Li, M., Bakar, K. S., & Shao, Q. (2023). Downscaling long lead-time daily rainfall ensemble forecasts through deep learning. Stochastic Environmental Research and Risk Assessment, 37(8), 3185-3203. https://doi.org/10.1007/s00477-023-02444-x Kardan Moghaddam, H., Ghordoyee Milan, S., Kayhomayoon, Z., Rahimzadeh kivi, Z., & Arya Azar, N. (2021). The prediction of aquifer groundwater level based on spatial clustering approach using machine learning. Environmental Monitoring and Assessment, 193(4), 173. https://doi.org/10.1007/s10661-021-08961-y Kariminezhad, H., Fatemi, S. E., & Hafezparast Mavadat, M. (2023). Reservoir inflow Classification of Jamishan reservoir by K-means method and its effect on stochastic dynamic programming. Advanced Technologies in Water Efficiency, 3(2), 15-32. https://doi.org/10.22126/atwe.2023.9111.1052 (In Persian) Kayhomayoon, Z., Ghordoyee Milan, S., Arya Azar, N., & Kardan Moghaddam, H. (2021). A new approach for regional groundwater level simulation: clustering, simulation, and optimization. Natural Resources Research, 30, 4165-4185. https://doi.org/10.1007/s11053-021-09913-6 Kayhomayoon, Z., Ghordoyee-Milan, S., Jaafari, A., Arya-Azar, N., Melesse, A. M., & Moghaddam, H. K. (2022). How does a combination of numerical modeling, clustering, artificial intelligence, and evolutionary algorithms perform to predict regional groundwater levels? Computers and Electronics in Agriculture, 203, 107482. https://doi.org/10.1016/j.compag.2022.107482 Komasi, M. & Dalvand, R. (2025). Evaluation of nonparametric decision tree models for predicting scour depth of bridges. Water Resources and Climate Change, 1(1), 40-50. 10.22091/wrcc.2025.11363.1005 (In Persian) Liu, B., Sun, Y., & Gao, L. (2024). Enhancing Groundwater Recharge Prediction: A Feature Selection‐Based Deep Forest Model With Bayesian Optimisation. Hydrological Processes, 38(10), e15309. https://doi.org/10.1002/hyp.15309 Mannik, M., Bikse, J., & Karro, E. (2024, April). Groundwater vulnerability and pollution risk assessment in the Estonian-Latvian transboundary area. In EGU General Assembly Conference Abstracts (p. 16280). https://doi.org/10.5194/egusphere-egu24-16280 Mendoza Paz, S., Villazón Gómez, M. F., & Willems, P. (2024). Adapting to Climate Change with Machine Learning: The Robustness of Downscaled Precipitation in Local Impact Analysis. Water, 16(21), 3070. https://doi.org/10.3390/w16213070 Miao, Y., & Xu, Y. (2024, June). Random Forest-Based Analysis of Variability in Feature Impacts. In 2024 IEEE 2nd International Conference on Image Processing and Computer Applications (ICIPCA) (pp. 1130-1135). IEEE. https://doi.org/10.1109/ICIPCA61593.2024.10708791 Moeeni, H., Bonakdari, H., & Fatemi, S. E. (2017). Stochastic model stationarization by eliminating the periodic term and its effect on time series prediction. Journal of hydrology, 547, 348-364. https://doi.org/10.1016/j.jhydrol.2017.02.012 Mohammed, K. S., Shabanlou, S., Rajabi, A., Yosefvand, F., & Izadbakhsh, M. A. (2023). Prediction of groundwater level fluctuations using artificial intelligence-based models and GMS. Applied Water Science, 13(2), 54. https://doi.org/10.1007/s13201-022-01861-7 Norouzi, H. & Nadiri, A. (2018). Groundwater Level Prediction of Boukan Plain using Fuzzy Logic, Random Forest and Neural Network Models. Journal of Range and Watershed Managment, 71(3), 829-845. doi: https://doi.org/10.22059/jrwm.2018.68924 (In Persian) O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M, (2016), The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016 Panahi, M., Misaqi, F. and Ghanbari, F. (2017). Determining of trend variation in quality parameters of Shabestar plain underground water. Environmental Sciences, 15(3), 19-38. https://envs.sbu.ac.ir/article_97862.html (In Persian) Pang, B., Yue, J., Zhao, G., & Xu, Z. (2017). Statistical downscaling of temperature with the random forest model. Advances in Meteorology, 2017(1), 7265178. https://doi.org/10.1155/2017/7265178 Pourmorad, S., Kabolizade, M., & Dimuccio, L. A. (2024). Artificial Intelligence Advancements for Accurate Groundwater Level Modelling: An Updated Synthesis and Review. Applied Sciences, 14(16), 7358. https://doi.org/10.3390/app14167358 Poursalehi, F. KhasheiSiuki, A. & Hashemi, S. R. (2021). Investigating the performance of random forest algorithm in predicting water table fluctuations Compared with two models of decision tree and artificial neural network (Case study: unconfined aquifer of Birjand plain). Journal of Ecohydrology, 8(4), 961-974. http://dx.doi.org/10.22059/ije.2022.327263.1526 (In Persian) Rampal, N., Hobeichi, S., Gibson, P. B., Baño-Medina, J., Abramowitz, G., Beucler, T., González-Abad, J., Chapman, W., Harder, P., & Gutierrez, J. M. (2024). Enhancing regional climate downscaling through advances in machine learning. Artificial Intelligence for the Earth Systems, 3(2), 230066. https://doi.org/10.1175/AIES-D-23-0066.1 Sakizadeh, M., Mohamed, M. M., & Klammler, H. (2019). Trend analysis and spatial prediction of groundwater levels using time series forecasting and a novel spatio-temporal method. Water Resources Management, 33, 1425-1437. https://doi.org/10.1007/s11269-019-02208-9 Salman, H. A., Kalakech, A., & Steiti, A. (2024). Random forest algorithm overview. Babylonian Journal of Machine Learning, 2024, 69-79. https://doi.org/10.58496/BJML/2024/007 Soltani, K., masoompour samakosh, J., Mojarrad, F., Hadi Pour, S. and Jalilian, A. (2023). Analysis of the Trend and Spatial Variation of Aridity in the Future Climate of Iran. Physical Geography Research, 55(2), 25-50. https://doi.org/10.22059/jphgr.2023.361339.1007777 (In Persian) Tang, K., Zhu, H., & Ni, P. (2021). Spatial downscaling of land surface temperature over heterogeneous regions using random forest regression considering spatial features. Remote Sensing, 13(18), 3645. https://doi.org/10.3390/rs13183645 Tang, T., Liu, T., & Gui, G. (2024). Forecasting precipitation and temperature evolution patterns under Climate Change using a Random Forest Approach with Seasonal Bias correction. Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 17, 12609-12621. https://doi.org/10.1109/JSTARS.2024.3425639 Teimoori, S., Olya, M. H., & Miller, C. J. (2023). Groundwater level monitoring network design with machine learning methods. Journal of Hydrology, 625, 130145. https://doi.org/10.1016/j.jhydrol.2023.130145 Uc-Castillo, J. L., Marín-Celestino, A. E., Martínez-Cruz, D. A., Tuxpan-Vargas, J., & Ramos-Leal, J. A. (2023). A systematic review and meta-analysis of groundwater level forecasting with machine learning techniques: Current status and future directions. Environmental Modelling & Software, 168, 105788. https://doi.org/10.1016/j.envsoft.2023.105788 Wang, P. (2024, December). Prediction of the Groundwater Levels Based on Random Forest Regression Algorithm. In 2024 IEEE 4th International Conference on Information Technology, Big Data and Artificial Intelligence, 4, 214-217. https://doi.org/10.1109/ICIBA62489.2024.10869277 Williams, S. A., Megdal, S. B., Zuniga-Teran, A. A., Quanrud, D. M., & Christopherson, G. (2024). Equity Assessment of Groundwater Vulnerability and Risk in Drinking Water Supplies in Arid Regions. Water (20734441), 16(23). https://doi.org/10.3390/w16233520 Yang, R., Zhong, Y., Zhang, X., Maimaitituersun, A., & Ju, X. (2025). A Comparative Study of Downscaling Methods for Groundwater Based on GRACE Data Using RFR and GWR Models in Jiangsu Province, China. Remote Sensing, 17(3), 493. https://doi.org/10.3390/rs17030493. | ||
آمار تعداد مشاهده مقاله: 64 تعداد دریافت فایل اصل مقاله: 28 |