
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,881,373 |
تعداد دریافت فایل اصل مقاله | 107,242,604 |
پایش نوری محیطهای ساحلی- دریایی از طریق ماده آلی محلول رنگی (CDOM) (مطالعه موردی: منطقه پارس جنوبی) | ||
محیط شناسی | ||
دوره 51، شماره 2، شهریور 1404، صفحه 189-210 اصل مقاله (1.32 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jes.2025.389062.1008574 | ||
نویسندگان | ||
مهدی غلامعلی فرد* 1؛ بنیاد احمدی1؛ مریم نقدی2؛ سید محمود قاسمپوری1؛ علی صابر3؛ سهراب مظلومی3 | ||
1گروه محیط زیست، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، شهرستان نور، مازندران، ایران | ||
2علوم و مهندسی آبخیز، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، مازندران، ایران | ||
3معاونت محیط زیست دریایی و تالابها، سازمان حفاظت محیط زیست | ||
چکیده | ||
هدف: مواد آلی رنگی محلول (CDOM) با منشأ زمینی نقش حیاتی در چرخههای بیوژئوشیمیایی کربن، نیتروژن و فسفر در مناطق ساحلی ایفا میکند. این مؤلفه تأثیر قابل توجهی بر کیفیت آب و خدمات اکوسیستمی دارد، زیرا بر نفوذ نور تأثیر میگذارد. علیرغم اهمیت CDOM در اکوسیستمهای ساحلی، بیشتر مطالعات جهانی عمدتاً به تکنیکهای سنجش از دور تکیه کردهاند. با این حال، سنجش از دور به تنهایی نمیتواند تغییرات مکانی و زمانی CDOM را به طور کامل بازتاب نماید، بنابراین اندازهگیریهای میدانی در محل برای ارزیابیهای دقیق ضروری هستند. در ایران تاکنون پایش مداوم و پیوسته بر CDOM در آبهای ساحلی به طور عمده نادیده گرفته شده است. روششناسی: در این مطالعه با استفاده از دستگاه سنجش رسانایی، دما، عمق (CTD) با انجام نمونهبرداری میدانی از محدوده صنعتی پارس جنوبی و پارک ملی دریایی نایبند به بررسی مواد آلی محلول رنگی پرداخته شد. برای سهولت در تحلیل نتایج، منطقه به چهار بخش نایبند، منطقه صنعتی، بنود و جنگلهای مانگرو تقسیمبندی شد. هر بخش بر اساس اهمیت اکولوژیکی و احتمال قرار گرفتن در معرض منابع مختلف CDOM انتخاب گردید. یافتهها: از تعداد 144ایستگاه مورد بررسی در فصول زمستان ۱۴۰۱ و بهار ۱۴۰۲ از نظر میانگین مواد آلی محلول رنگی، به ترتیب مناطق جنگلهای مانگرو، نایبند دارای بیشترین غلظت CDOM بود. میانگین حداکثری مقدار CDOM در جنگلهای مانگرو در فصل بهار ppb 6.27 و در زمستان ppb 3.84 برآورد شد. در نایبند نیز به ترتیب در فصل بهار ppb 1.35 و در زمستان ppb 7.55 تعیین گردید. به طورکلی نتایج بیانگر غلظت بیشتر مواد آلی محلول رنگی در سواحل و در لایه سطحی آب است. نتیجهگیری: نتایج نشان میدهند که فعالیتهای انسانی، بهویژه تخلیه فاضلابهای صنعتی و شهری، نقش عمدهای در تغییر سطوح CDOM در آبهای ساحلی ایفا میکنند. همچنین، تخلیه آبهای زیرزمینی زیر دریایی(SGD) بهعنوان یک عامل قابل توجه در نظر گرفته شد، بهویژه در مناطقی با غلظت بالای CDOM مانند نایبند و جنگلهای مانگرو تعامل میان عوامل طبیعی، انسانساخت و پیچیدگیهای دینامیک CDOM در محیطهای ساحلی را بهخوبی نمایان میسازد. | ||
کلیدواژهها | ||
دستگاه سنجش رسانایی؛ دما؛ عمق (CTD) منطقه ویژه اقتصادی انرژی پارس جنوبی (PSEEZ)؛ مواد آلی محلول رنگی (CDOM) | ||
مراجع | ||
Ahmadi, B., Gholamalifard, M., Ghasempouri, S. M., & Kutser, T. (2025a). Comparative analysis of k-nearest neighbors distance metrics for retrieving coastal water quality based on concurrent in situ and satellite observations. Marine Pollution Bulletin, 214, 117816. https://doi.org/10.1016/j.marpolbul.2025.117816
Ahmadi, B., Gholamalifard, M., Ghasempouri, S. M., & Kutser, T. (2025b). Comparative assessment of machine learning algorithms for retrieving colored dissolved organic matter (CDOM) from Sentinel-2/MSI images in the coastal waters of the Persian Gulf. Ecological Informatics, 103171. https://doi.org/10.1016/j.ecoinf.2025.103171
Ahmadi, B., Gholamalifard, M., Kutser, T., Vignudelli, S., & Kostianoy, A. (2020). Spatio-temporal variability in bio-optical properties of the southern caspian sea: A historic analysis of ocean color data. Remote Sensing, 12(23), 3975. https://doi.org/10.3390/rs12233975
Ahmadi, B., Gholamalifard, M., Naghdi, M., & Kostianoy, A. G. (2024). Improvement of bio-optical characteristics of seawater in the Southern Caspian Sea Basin triggered by COVID-19 lockdowns: Insights from remote sensing data. Ecologica Montenegrina, 76, 133-153. https://doi.org/10.37828/em.2024.76.8
Archibald, J. P., Santos, I. R., & Davis, K. L. (2019). Diel versus tidal cycles of chromophoric dissolved organic matter (CDOM) and radon in a coral reef in the Great Barrier Reef. Regional studies in marine science, 29, 100659. https://doi.org/10.1016/j.rsma.2019.100659
Bai, L., Liu, X., Hua, K., Deng, J., Wang, C., Jiang, H., & Wang, A. (2022). Seasonal variations of fluorescent dissolved organic matter control estrone biodegradation potential in eutrophic waters affected by allochthonous and autochthonous sources. Journal of Hydrology, 612, 128227 https://doi.org/10.1016/j.jhydrol.2022.128227.
Belkin, N., Rahav, E., Elifantz, H., Kress, N., & Berman‐Frank, I. (2015). Enhanced salinities, as a proxy of seawater desalination discharges, impact coastal microbial communities of the eastern M editerranean S Ea. Environmental microbiology, 17(10), 4105-4120. https://doi.org/10.1111/1462-2920.12979.
Bhattacharya, R., & Osburn, C. L. (2020). Spatial patterns in dissolved organic matter composition controlled by watershed characteristics in a coastal river network: The Neuse River Basin, USA. Water research, 169, 115248. https://doi.org/10.1016/j.watres.2019.115248
Bigharaz, M., Almasi, Z., & Nasrabdi, M.(2015). Exploring and evaluating health, safety and environment conditions of oil industry staff in southern pars special economic energy zone as a result of oil, gas, and petrochemical industry development. Journal of Biodiversity and Environmental Sciences, 7, 202-213. https://innspub.net/exploring-and-evaluating-health-safety-and-environment-conditions-of-oil-industry-staff-in-southern-pars-special-economic-energy-zone-as-a-result-of-oil-gas-and-petrochemical-industry-development/
Blanco, A. C., Watanabe, A., Nadaoka, K., Motooka, S., Herrera, E. C., & Yamamoto, T. (2011). Estimation of nearshore groundwater discharge and its potential effects on a fringing coral reef. Marine Pollution Bulletin, 62(4), 770-785. https://doi.org/10.1016/j.marpolbul.2011.01.005
Blazevic, A., Orlowska, E., Kandioller, W., Jirsa, F., Keppler, B. K., Tafili‐Kryeziu, M., Linert, W., Krachler, R. F., Krachler, R., & Rompel, A. (2016). Photoreduction of terrigenous Fe‐humic substances leads to bioavailable iron in oceans. Angewandte Chemie, 128(22), 6527-6532. https://doi.org/10.1002/ange.201600852
Boehm, P. D., & Quinn, J. G. (1973). Solubilization of hydrocarbons by the dissolved organic matter in sea water. Geochimica et Cosmochimica Acta, 37(11), 2459-2477. https://doi.org/10.1016/0016-7037(73)90292-5
Bouillon, S., Frankignoulle, M., Dehairs, F., Velimirov, B., Eiler, A., Abril, G., Etcheber, H., & Borges, A. V. (2003). Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India) during pre‐monsoon: The local impact of extensive mangrove forests. Global biogeochemical cycles, 17(4). https://doi.org/10.1029/2002GB002026
Bushaw, K. L., Zepp, R. G., Tarr, M. A., Schulz-Jander, D., Bourbonniere, R. A., Hodson, R. E., Miller, W. L., Bronk, D. A., & Moran, M. A. (1996). Photochemical release of biologically available nitrogen from aquatic dissolved organic matter. Nature, 381(6581), 404-407. https://doi.org/10.1038/381404a0
Butturini, A., Herzsprung, P., Lechtenfeld, O., Alcorlo, P., Benaiges-Fernandez, R., Berlanga, M., Boadella, J., Campillo, Z. F., Gomez, R., & Sanchez-Montoya, M. d. M. (2022). Origin, accumulation and fate of dissolved organic matter in an extreme hypersaline shallow lake. Water research, 221, 118727. https://doi.org/10.1016/j.watres.2022.118727
Cao, W., Guan, Q., Li, Y., Wang, M., & Liu, B. (2017). The contribution of denitrification and anaerobic ammonium oxidation to N 2 production in mangrove sediments in Southeast China. Journal of Soils and Sediments, 17, 1767-1776. https://doi.org/10.1007/s11368-017-1653-0
Cawley, K. M., Ding, Y., Fourqurean, J., & Jaffé, R. (2012). Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: a preliminary study using optical properties and stable carbon isotopes. Marine and Freshwater Research, 63(11), 1098-1107. https://doi.org/10.1071/MF12028
Charette, M. A., Sholkovitz, E. R., & Hansel, C. M. (2005). Trace element cycling in a subterranean estuary: Part 1. Geochemistry of the permeable sediments. Geochimica et Cosmochimica Acta, 69(8), 2095-2109. https://doi.org/10.1016/j.gca.2005.10.019
Charpy, L., Dufour, P., & Garcia, N. (1997). Particulate organic matter in sixteen Tuamotu atoll lagoons (French Polynesia). Marine Ecology Progress Series, 151, 55-65. https://doi.org/10.3354/meps151055
Chen, J., & Zhu, W. (2022). Consistency evaluation of landsat-7 and landsat-8 for improved monitoring of colored dissolved organic matter in complex water. Geocarto International, 37(1), 91-102. https://doi.org/10.1080/10106049.2020.1734872
Coble, P. G., Del Castillo, C. E., & Avril, B. (1998). Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Research Part II: Topical Studies in Oceanography, 45(10-11), 2195-2223. https://doi.org/10.1016/S0967-0645(98)00068-X
Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E (2009). Controlling eutrophication: nitrogen and phosphorus. In (Vol. 323, pp. 1014-1015): American Association for the Advancement of Science. DOI: 10.1126/science.1167755
D’Sa, E. J., Kim, H.-C., Ha, S.-Y., & Joshi, I. (2021). Ross Sea dissolved organic matter optical properties during an Austral summer: Biophysical influences. Frontiers in Marine Science, 8, 749096. https://doi.org/10.3389/ fmars.2021.749096
Das, S., Hazra, S., Lotlikar, A. A., Das, I., Giri, S., Chanda, A., Akhand, A., Maity, S., & Kumar, T. S. (2016). Delineating the relationship between chromophoric dissolved organic matter (CDOM) variability and biogeochemical parameters in a shallow continental shelf. Egyptian Journal of Aquatic Research, 42(3), 241-248. https://doi.org/10.1016/j.ejar.2016.08.001
Dittmar, T., Hertkorn, N., Kattner, G., & Lara, R. J. (2006). Mangroves, a major source of dissolved organic carbon to the oceans. Global biogeochemical cycles, 20 (1). https://doi.org/10.1029/2005GB002570
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., & Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature climate change, 3(11), 961-968. https://doi.org/10.1038/nclimate1970
Dupouy, C., Röttgers, R., Tedetti, M., Frouin, R., Lantoine, F., Rodier, M., Martias, C., & Goutx, M. (2020). Impact of contrasted weather conditions on CDOM absorption/fluorescence and biogeochemistry in the eastern lagoon of New Caledonia. Frontiers in Earth Science, 8, 54. https://doi.org/10.3389/feart.2020.00054
Farjalla, V. F., Marinho, C. C., Faria, B. M., Amado, A. M., Esteves, F. d. A., Bozelli, R. L., & Giroldo, D. (2009). Synergy of fresh and accumulated organic matter to bacterial growth. Microbial Ecology, 57, 657-666. https://doi.org/10.1007/s00248-008-9466-8
Fichot, C. G., & Benner, R. (2012). The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river‐influenced ocean margins. Limnology and Oceanography, 57(5), 1453-1466. https://doi.org/10.4319/lo.2012.57.5.1453
Fonte, E. S., Amado, A. M., Meirelles-Pereira, F., Esteves, F. A., Rosado, A. S., & Farjalla, V. F. (2013). The combination of different carbon sources enhances bacterial growth efficiency in aquatic ecosystems. Microbial Ecology, 66, 871-878. https://doi.org/10.1007/s00248-013-0277-1
Froelich, P. N., Klinkhammer, G., Bender, M. L., Luedtke, N., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., & Maynard, V. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43(7), 1075-1090. https://doi.org/10.1016/0016-7037(79)90095-4
García–Nieto, P. J., García–Gonzalo, E., Fernández, J. R. A., & Muñiz, C. D. (2024). Forecast of chlorophyll-a concentration as an indicator of phytoplankton biomass in El Val reservoir by utilizing various machine learning techniques: a case study in Ebro river basin, Spain. Journal of Hydrology, 639, 131639. https://doi.org/10.1016/j.jhydrol.2024.131639
Haas, A. F., Nelson, C. E., Rohwer, F., Wegley-Kelly, L., Quistad, S. D., Carlson, C. A., Leichter, J. J., Hatay, M., & Smith, J. E. (2013). Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ, 1, e108. https://doi.org/10.7717/peerj.108
Haas, A. F., Nelson, C. E., Wegley Kelly, L., Carlson, C. A., Rohwer, F., Leichter, J. J., Wyatt, A., & Smith, J. E. (2011). Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PloS one, 6(11), e27973. https://doi.org/10.1371/journal.pone.0027973
Helms, J. R., Mao, J., Stubbins, A., Schmidt-Rohr, K., Spencer, R. G., Hernes, P. J., & Mopper, K. (2014). Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching. Aquatic sciences, 76, 353-373. https://doi.org/10.1007/s00027-014-0340-0
Holloway, C. J., Santos, I. R., Tait, D. R., Sanders, C. J., Rose, A. L., Schnetger, B., Brumsack, H.-J., Macklin, P. A., Sippo, J. Z., & Maher, D. T. (2016). Manganese and iron release from mangrove porewaters: a significant component of oceanic budgets? Marine Chemistry, 184, 43-52. https://doi.org/10.1016/j.marchem.2016.05.013
Hwang, D.-W., Lee, I.-S., Choi, M., & Kim, T.-H. (2016). Estimating the input of submarine groundwater discharge (SGD) and SGD-derived nutrients in Geoje Bay, Korea using 222Rn-Si mass balance model. Marine Pollution Bulletin, 110(1), 119-126. https://doi.org/10.1016/j.marpolbul.2016.06.073
Jokinen, S. A., Jilbert, T., Tiihonen-Filppula, R., & Koho, K. (2020). Terrestrial organic matter input drives sedimentary trace metal sequestration in a human-impacted boreal estuary. Science of the total environment, 717, 137047. https://doi.org/10.1016/j.scitotenv.2020.137047
Khozeymehnezhad, H., & Nazeri Tahroudi, M. (2019). Annual and seasonal distribution pattern of rainfall in Iran and neighboring regions. Arabian Journal of Geosciences, 12, 1-11. https://doi.org/10.1007/s12517-019-4442-9
Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: a review. Aquatic botany, 89(2), 201-219. https://doi.org/10.1016/j.aquabot.2007.12.005
Larkum, A., Kennedy, I., & Muller, W. (1988). Nitrogen fixation on a coral reef. Marine Biology, 98, 143-155. https://doi.org/10.1007/BF00392669
Letscher, R. T., Knapp, A. N., James, A. K., Carlson, C. A., Santoro, A. E., & Hansell, D. A. (2015). Microbial community composition and nitrogen availability influence DOC remineralization in the South Pacific Gyre. Marine Chemistry, 177, 325-334. https://doi.org/10.1016/j.marchem.2015.06.024
Liu, D., Du, Y., Yu, S., Luo, J., & Duan, H. (2020). Human activities determine quantity and composition of dissolved organic matter in lakes along the Yangtze River. Water research, 168, 115132. https://doi.org/10.1016/ j.watres.2019.115132
Manuel, A., Blanco, A., & Cabrera, O. (2021). Mapping Coloured Dissolved Organic Matter in Manila Bay Using SENTINEL-3 and Wasi. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 46, 207-212. https://doi.org/10.5194/isprs-archives-XLVI-4-W6-2021-207-2021
Marcelli, M., Piermattei, V., Madonia, A., & Mainardi, U. (2014). Design and application of new low-cost instruments for marine environmental research. Sensors, 14(12), 23348-23364. https://doi.org/10.3390/s141223348
Martias, C., Tedetti, M., Lantoine, F., Jamet, L., & Dupouy, C. (2018). Characterization and sources of colored dissolved organic matter in a coral reef ecosystem subject to ultramafic erosion pressure (New Caledonia, Southwest Pacific). Science of the total environment, 616, 438-452. https://doi.org/10.1016/j.scitotenv. 2017.10.261
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46(1), 38-48. https://doi.org/10.4319/lo.2001.46.1.0038
Minu, P., Lotliker, A. A., Shaju, S., SanthoshKumar, B., Ashraf, P. M., & Meenakumari, B. (2014). Effect of optically active substances and atmospheric correction schemes on remote-sensing reflectance at a coastal site off Kochi. International journal of remote sensing, 35(14), 5434-5447. https://doi.org/10.1080/01431161.2014.926420
Mohammadpour, G., & Pirasteh, S. (2021). Interference of CDOM in remote sensing of suspended particulate matter (SPM) based on MODIS in the Persian Gulf and Oman Sea. Marine Pollution Bulletin, 173, 113104. https://doi.org/10.1016/j.marpolbul.2021.113104
Moore, W. S. (2010). The effect of submarine groundwater discharge on the ocean. Annual review of marine science, 2, 59-88. https://doi.org/10.1146/annurev-marine-120308-081019
Mori, C., Santos, I. R., Brumsack, H.-J., Schnetger, B., Dittmar, T., & Seidel, M. (2019). Non-conservative behavior of dissolved organic matter and trace metals (Mn, Fe, Ba) driven by porewater exchange in a subtropical mangrove-estuary. Frontiers in Marine Science, 6, 481. https://doi.org/10.3389/fmars.2019.00481
Nelson, C. E., Donahue, M. J., Dulaiova, H., Goldberg, S. J., La Valle, F. F., Lubarsky, K., Miyano, J., Richardson, C., Silbiger, N. J., & Thomas, F. I. (2015). Fluorescent dissolved organic matter as a multivariate biogeochemical tracer of submarine groundwater discharge in coral reef ecosystems. Marine Chemistry, 177, 232-243. https://doi.org/10.1016/j.marchem.2015.06.026
Nieto-Cid, M., Álvarez-Salgado, X. A., & Pérez, F. F. (2006). Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnology and Oceanography, 51(3), 1391-1400. https://doi.org/10.4319/lo.2006.51.3.1391
NO, G., MANUALS, I., & NO, G. (2004). Submarine groundwater discharge.
Osburn, C. L., Retamal, L., & Vincent, W. F. (2009). Photoreactivity of chromophoric dissolved organic matter transported by the Mackenzie River to the Beaufort Sea. Marine Chemistry, 115 (1-2), 10-20. https://doi.org/10.1016/j.marchem.2009.05.003
Reading, M. J., Santos, I. R., Maher, D. T., Jeffrey, L. C., & Tait, D. R. (2017). Shifting nitrous oxide source/sink behaviour in a subtropical estuary revealed by automated time series observations. Estuarine, Coastal and Shelf Science, 194, 66-76. https://doi.org/10.1016/j.ecss.2017.05.017
Russell, B. J., Dierssen, H. M., & Hochberg, E. J. (2019). Water column optical properties of Pacific coral reefs across geomorphic zones and in comparison to offshore waters. Remote Sensing, 11(15), 1757. https://doi.org/10.3390/ rs11151757
Russoniello, C. J., Konikow, L. F., Kroeger, K. D., Fernandez, C., Andres, A. S., & Michael, H. A. (2016). Hydrogeologic controls on groundwater discharge and nitrogen loads in a coastal watershed. Journal of Hydrology, 538, 783-793. https://doi.org/10.1016/j.jhydrol.2016.05.013
Samani, A. N., Farzin, M., Rahmati, O., Feiznia, S., Kazemi, G. A., Foody, G., & Melesse, A. M. (2021). Scrutinizing relationships between submarine groundwater discharge and upstream areas using thermal remote sensing: A case study in the northern Persian gulf. Remote Sensing, 13(3), 358. https://doi.org/10.3390/rs13030358
Sandrin, T. R., & Maier, R. M. (2003). Impact of metals on the biodegradation of organic pollutants. Environmental Health Perspectives, 111(8), 1093-1101. https://doi.org/10.1289/ehp.5840
Shao, T., Liang, X., Zhuang, D., Zheng, K., & Wang, T. (2023). Seasonal variations in CDOM characteristics and effects of environmental factors in coastal rivers, Northeast China. Environmental Science and Pollution Research, 30(11), 29052-29064. https://doi.org/10.1007/s11356-022-24165-4
Shao, T., Song, K., Du, J., Zhao, Y., Ding, Z., Guan, Y., Liu, L., & Zhang, B. (2016). Seasonal variations of CDOM optical properties in rivers across the Liaohe Delta. Wetlands, 36, 181-192. https://doi.org/10.1007/s13157-014-0622-2
Sippo, J. Z., Maher, D. T., Tait, D. R., Holloway, C., & Santos, I. R. (2016). Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect. Global biogeochemical cycles, 30(5), 753-766. https://doi.org/10.1002/2015GB005324
Song, K., Shang, Y., Wen, Z., Jacinthe, P.-A., Liu, G., Lyu, L., & Fang, C. (2019). Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis. Water research, 150, 403-417. https://doi.org/10.1016/j.watres.2018.12.004
Staehr, P. A., Testa, J., & Carstensen, J. (2017). Decadal changes in water quality and net productivity of a shallow Danish estuary following significant nutrient reductions. Estuaries and Coasts, 40, 63-79. https://doi.org/10.1007/s12237-016-0117-x
Statham, P. J. (2012). Nutrients in estuaries—An overview and the potential impacts of climate change. Science of the total environment, 434, 213-227. https://doi.org/10.1016/j.scitotenv.2011.09.088
Stedmon, C. A., Markager, S., Søndergaard, M., Vang, T., Laubel, A., Borch, N. H., & Windelin, A. (2006). Dissolved organic matter (DOM) export to a temperate estuary: seasonal variations and implications of land use. Estuaries and Coasts, 29, 388-400. https://doi.org/10.1007/BF02784988
Stedmon, C. A., & Nelson, N. B. (2015). The optical properties of DOM in the ocean. In Biogeochemistry of marine dissolved organic matter (pp. 481-508). Elsevier. https://doi.org/10.1016/B978-0-12-405940-5.00010-8
Stoddart, D. R. (1969). Ecology and morphology of recent coral reefs. Biological Reviews, 44(4), 433-498. https://doi.org/10.1111/j.1469-185X.1969.tb00609.x
Suryaputra, I. G., Santos, I. R., Huettel, M., Burnett, W., & Dittmar, T. (2015). Non-conservative behavior of fluorescent dissolved organic matter (FDOM) within a subterranean estuary. Continental Shelf Research, 110, 183-190. https://doi.org/10.1016/j.csr.2015.10.011
Tedetti, M., Cuet, P., Guigue, C., & Goutx, M. (2011). Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean) using multi-dimensional fluorescence spectroscopy. Science of the total environment, 409(11), 2198-2210. https://doi.org/10.1016/ j.scitotenv.2011.01.058
Tzortziou, M., Neale, P. J., Megonigal, J. P., Pow, C. L., & Butterworth, M. (2011). Spatial gradients in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary. Marine Ecology Progress Series, 426, 41-56. https://doi.org/10.3354/meps09017
Tzortziou, M., Zeri, C., Dimitriou, E., Ding, Y., Jaffé, R., Anagnostou, E., Pitta, E., & Mentzafou, A. (2015). Colored dissolved organic matter dynamics and anthropogenic influences in a major transboundary river and its coastal wetland. Limnology and Oceanography, 60 (4), 1222-1240. https://doi.org/10.1002/lno.10092
Wang, H., Zhang, J., Li, Z., Shi, B., Li, S., & Huang, H. (2024). The new fate of MCLR revealed by dialysis equilibrium and theoretical calculations: Influence from DOM and Fe (II)/Mn (II). Journal of Environmental Chemical Engineering, 12 (6), 114671. https://doi.org/10.1016/j.jece.2024.114671
Wen, Z., Song, K., Zhao, Y., Du, J., & Ma, J. (2016). Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China. Hydrology and Earth System Sciences, 20 (2),787-801. https://doi.org/10.5194/hess-20-787-2016
Weng, L., Temminghoff, E. J., Lofts, S., Tipping, E., & Van Riemsdijk, W. H. (2002). Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environmental science & technology, 36(22), 4804-4810. https://doi.org/10.1021/es0200084
Wiebe, W., Johannes, R., & Webb, K. (1975). Nitrogen fixation in a coral reef community. Science, 188(4185), 257-259. DOI: 10.1126/science.188.4185.257
Yamashita, Y., Tsukasaki, A., Nishida, T., & Tanoue, E. (2007). Vertical and horizontal distribution of fluorescent dissolved organic matter in the Southern Ocean. Marine Chemistry, 106(3-4), 498-509. https://doi.org/10.1016/ j.marchem.2007.05.004
Yan, L., Xie, X., Peng, K., Wang, N., Zhang, Y., Deng, Y., Gan, Y., Li, Q., & Zhang, Y. (2021). Sources and compositional characterization of chromophoric dissolved organic matter in a Hainan tropical mangrove-estuary. Journal of Hydrology, 600, 126572. https://doi.org/10.1016/j.jhydrol.2021.126572
Zepp, R. G., Shank, G. C., Stabenau, E., Patterson, K. W., Cyterski, M., Fisher, W., Bartels, E., & Anderson, S. L. (2008). Spatial and temporal variability of solar ultraviolet exposure of coral assemblages in the Florida Keys: Importance of colored dissolved organic matter. Limnology and Oceanography, 53(5), 1909-1922. https://doi.org/10.4319/lo.2008.53.5.1909
Zhao, Y., Song, K., Wen, Z., Fang, C., Shang, Y., & Lv, L. (2017). Evaluation of CDOM sources and their links with water quality in the lakes of Northeast China using fluorescence spectroscopy. Journal of Hydrology, 550, 80-91. https://doi.org/10.1016/j.jhydrol.2017.04.027
Zhou, Y., Jeppesen, E., Zhang, Y., Niu, C., Shi, K., Liu, X., Zhu, G., & Qin, B. (2015). Chromophoric dissolved organic matter of black waters in a highly eutrophic Chinese lake: freshly produced from algal scums? Journal of Hazardous Materials, 299, 222-230. https://doi.org/10.1016/j.jhazmat.2015.06.024 | ||
آمار تعداد مشاهده مقاله: 284 تعداد دریافت فایل اصل مقاله: 357 |