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Abstract 

The integration of nanoparticles into base fluids markedly improves their 

thermal conductivity, thereby enhancing heat transfer performance. This 

enhancement has been extensively studied within engineering and industrial 

contexts. Likewise, the behavior of micropolar fluids under boundary layer 

convection has been well-characterized. However, research on micropolar 

nanofluids, particularly in the context of flow around circular cylinders, 

remains limited. This study investigates the free convection boundary layer 

flow of micropolar nanofluids around a circular cylinder. The governing 

equations are non-dimensionalized and converted into partial differential 

equations using similarity transformations. These equations are subsequently 

solved numerically via the Keller-Box method implemented in MATLAB. The 

effects of nanoparticle volume fraction and micropolar fluid parameters on 

flow behavior are systematically examined. Results demonstrate that 

increases in parameters such as magnetic field strength and porous medium 

permeability generally lead to elevated local wall temperatures and enhanced 

temperature profiles, although some reductions can occur under specific 

conditions. These findings highlight the critical influence of nanoparticle 

concentration and micropolar fluid characteristics on thermal performance, 

offering valuable insights for advancing research in fluid mechanics and heat 

transfer applications. 

Keywords: Electric MHD; Nanofluid; Micropolar; Free Convection; Circular Cylinder; Porous Medium; 

Keller Box Method (KBM). 

1. Introduction  

Micropolar nanofluids are a specialized class of fluids that exhibit unique microstructural behaviours due to the 

presence of nanoparticles and micro-rotational effects. These fluids have garnered significant attention due to their 

enhanced rheological properties and potential applications across various fields (Muhammad et al [1]). The Natural 

convection of nanofluids or micropolar fluids on general bodies has been the subject of numerous investigations. Gorla 

and Takhar [2] looked into earlier thin bodies. However, Pop et al. [3] and Chiu and Chou [4] have also written on 

wavy surfaces. Furthermore, the natural convection flow from the curved surface with a micropolar fluid has been 

taken into consideration by Char and Chang [5]. It should be mentioned that Merkin [6] developed the viscous, free 
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convective boundary layer flow issue with cylinder cross-section. Consequently, the problem of micropolar fluid (a 

non-Newtonian fluid) has been extended by Bhattacharyya and Pop [7] and Nazar et al.[8]. Many studies on free 

convection on a circular cylinder have been given based on that, including those [9-16] 

Nanofluids are a new type of working fluids containing uniformly dispersed and suspended metallic or non-

metallic nanoparticles. Due to its intriguing thermal properties and possible uses, this study issue has drawn the interest 

of numerous researchers since Choi's groundbreaking work Choi & Eastman [17]. The properties of nanofluids have 

been studied using two mathematical models: Buongiorno [18] and Tiwari-Das model. The Buongiorno method 

concentrates on thermophoresis and Brownian diffusion. Numerous writers, including Noreen et al.[19], Boulahia et 

al.[20], Qasim et al.[21] and Afridi and Qasim [22] have utilized this model in their investigation of nanofluid flow due 

to its significant significance. However, the Tiwari-Das model considered the volume fraction of nanoparticles rather 

than the effects of thermophoresis and Brownian motion. Many academics have used this approach to produce some 

intriguing results in recent years. Rahman et al.[23] examined the flow of water-based nanofluids past a wedge with a 

partial slide. 

Thermal stratification on free convection in a square porous cavity filled with nanofluid was examined by Sheremet 

et al. [24]. Hussanan et al.[25] looked at the unsteady MHD flow of certain nanofluids via porous media over an 

accelerated vertical plate. The investigation of nanofluid flow in a porous channel with suction and chemical reaction 

was shown by Chen et al. [26]. A magnetic field on a water-based nanofluid containing Fe3O4 nanoparticles was 

examined by Sheikholeslami [27]. Using the same concept, Sheikholeslami [28]. examined the impact of coulomb 

forces on a suspended water-based nanofluid of Fe3O4 in a hollow with a moving wall. The natural convection flow 

of a micropolar nanofluid over a vertical plate was examined by Hussanan et al.[29]. They examined how oxide 

nanoparticles affected engine oil, kerosene, and water-based nanofluids. Using a micropolar fluid model, Hussanan et 

al. [30] also investigated the microstructure and inertial properties of a magnetite ferrofluid. The effects of natural 

convection on the boundary layer flow of Silver(Ag) and Graphene Oxide (GO) micropolar nanofluid around a solid 

sphere were emphasized by Swalmeh et al. [31]. 

The study of electric MHD (EHMD) nanofluids reveals significant potential for enhancing thermal management 

and heat transfer in industrial and technological applications. Continued research and development in this field are 

essential for optimizing their properties and expanding their practical applications. Daniel et al [32] presented the 

model electric MHD flow over stretching sheets or through channels, incorporating effects like thermal radiation, 

variable heat flux, Joule heating, viscous dissipation, and chemical reactions. These comprehensive approaches 

provide insights into how electric fields enhance velocity profiles while magnetic fields tend to reduce velocity but 

increase fluid temperature. Buongiorno’s model and similar frameworks are used to describe nanofluid behaviour in 

EMHD. The interactions include effects of slip velocity, activation energy, and hybrid nanoparticles, improving fluid 

flow and heat transfer, this study by Shanmugapriya et al [33]. Abid et al [34] focused on practical applications 

highlighted include metallurgical engineering, machine building, and biomedical devices, emphasizing the relevance 

of EMHD nanofluids in industry. Mushahary and Ontela [35] studied the thermodynamic irreversibility, or entropy 

generation, associated with this complex flow system, focusing on the impacts of quadratic mixed convection under 

the influence of electromagnetic forces and porous media resistance. This study considers variable properties such as 

electrical conductivity and incorporates the couple-stress effects in the hybrid nanofluid to realistically model the fluid 

behaviour within the porous vertical channel environment. In a recent presentation, Alkasasbeh [36] discussed the 

modeling of Casson nanofluid flow on a stretching sheet with heat transfer: A study of Darcy-Forchheimer effects and 

electric MHD. 

To the best of the author’s knowledge, the flow of a Sodium Alginate (SA)-based micropolar nanofluid suspended 

with Silver (Ag) and Graphene Oxide (GO) nanoparticles over a heated horizontal circular cylinder has not yet been 

studied. To address this gap, the heat transfer flow of a micropolar nanofluid mixture containing copper and silver 

nanoparticles is analysed over a heated horizontal circular cylinder embedded in a porous medium under the influence 

of magnetic and electric fields. A similarity transformation is applied to convert the governing equations into a system 

of nonlinear ordinary differential equations, which are then solved using the implicit finite difference scheme known 

as the Keller-box method. The use of a micropolar nanofluid combining Silver and Graphene Oxide nanoparticles 

within the Sodium Alginate base fluid aims to enhance the thermal conductivity and improve overall heat transfer 

performance. This research provides insight into the complex interactions between magnetic fields, micropolar fluid 

dynamics, and nanoparticle dispersion, contributing to more efficient thermal management solutions in engineering 

applications. 

2. Nomenclature 

b body force 

𝐵0 Magnetic Field Strength, Wb 

𝐶𝑓 Local Skin Friction Coefficient,    
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𝑐𝑝 Specific Heat Capacity, Jkg-1K-1 

𝐶𝑠  Coefficients of Space  

Λ  Variable Permeability of Porous Medium,  

ℓ Gradient of velocity 

M Magnetic Parameter 

m Stretching Parameter 

n Carreau fluid index 

𝑁𝑢 Nusselt Number  

Pr Prandtl Number 

 Q Heat Flux, Wm-2 

Re Local Reynolds Number. 

𝑆𝑝 Heat Source/Sinks  

T  Temperature, 

𝑢𝑤 Variable Shrinking Velocity, Ms-1 

𝑉𝑤 Variable Velocity of Suction/Injection, Ms-1 

𝑢 Velocity Component Along x-axis, Ms-1  

𝑣 Velocity Component along Y-axis, Ms-1   

𝑤𝑒 Williamson Parameter 

𝜇 Dynamic Viscosity, Kgm-1s-1  

𝑘 Kinematic Viscosity, M2s-1 

𝜌 Density, Kgm-3  

𝜎 Electrical Conductivity, A2s3kg-1m-3 

𝜛 Stream Function, Kgm-1s-1  

𝜏 Shear Rate, Kgm-1s-2  

ϵ  Ratio Parameter 

𝜙 Nanoparticle Volume Fraction 

Subscripts  

𝑓 base fluid 

ℎ𝑛𝑓 Hybrid Nanofluid 

𝑤 Wall/Surface 

∞ Ambient Environment 
 

3. The problem description and governing equations 

The cylinder is submerged in a steady, laminar, two-dimensional, incompressible, and viscous micropolar 

nanofluid. The nanofluid consists of Silver (Ag) and Graphene Oxide (GO) nanoparticles dispersed in a base fluid 

made of Sodium Alginate (SA). As illustrated in Figure 1, the surface temperature of the cylinder is maintained at a 

constant value at 𝑇𝑤 > 𝑇∞, while the ambient temperature of the surrounding fluid remains uniform. The gravity 

vector, denoted by g, acts downward, opposite to the direction of the coordinate axis defined normal to the surface of 

the cylinder. Additionally, the system is subjected to a magnetic field 𝐵0 of specified strength, which influences the 

fluid flow and heat transfer characteristics. The coordinate system employed in this analysis consists of two directions: 

the normal coordinate, measured perpendicular to the surface of the circular cylinder, and the angular coordinate, 

measured along the circumference of the horizontal cylinder starting from its lower stagnation point. This setup allows 

a detailed examination of the velocity and temperature fields around the cylinder. 

 
Fig 1: Physical model and coordinate system. 
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Here, the gravity acceleration vector, 𝑔̅ , can be written as follows in the 𝑥 and 𝑦-directions: 

𝑔̅𝑥 = −𝑔̅ 𝑠𝑖𝑛 (
𝑥 

𝑎
) , 𝑔̅𝑦 = 𝑔̅ 𝑐𝑜𝑠 (

𝑥 

𝑎
),                               (1) 

The problem's governing PDEs, as determined by the aforementioned assumption and the Tiwari and Das 

nanofluid model are:    
𝜕𝑢

𝜕𝑥 
+

𝜕𝑣̅

𝜕𝑦̅
= 0,                                                                                                 (2)     

𝑢̅
𝜕𝑢

𝜕𝑥 
+ 𝑣 

𝜕𝑢

𝜕𝑦̅
= −

1

𝜌𝑛𝑓

𝜕𝑝 

𝜕𝑥 
+

(𝜇𝑛𝑓+𝑘)

𝜌𝑛𝑓
(
𝜕2𝑢

𝜕𝑥 2
+

𝜕2𝑢

𝜕𝑦̅2
) + (

𝜒𝜌𝑠𝛽𝑠+(1−𝜒)𝜌𝑓𝛽𝑓

𝜌𝑛𝑓
)𝑔̅(𝑇 −       𝑇∞)𝑠𝑖𝑛 (

𝑥 

𝑎
) +

𝑘

𝜌𝑛𝑓
(
𝜕𝐻̅

𝜕𝑦̅
) +

𝜌𝑓𝜎𝑛𝑓

𝜌𝑛𝑓𝜎𝑓
(𝐸0𝐵0 − 𝐵0

2𝑢̅) −
𝑣𝑛𝑓

𝑘∗
𝑢̅,                                                                                                  (3)  

𝑢̅
𝜕𝑇

𝜕𝑥 
+ 𝑣 

𝜕𝑇

𝜕𝑦̅
=

1

𝑃𝑟
(

𝑘𝑛𝑓 𝑘𝑓⁄

(1−𝜒)+𝜒(𝜌𝑐𝑝)𝑠
(𝜌𝑐𝑝)𝑓
⁄

) (
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
),                                                                                            (4) 

𝑢̅
𝜕𝐻̅

𝜕𝑥 
+ 𝑣 

𝜕𝐻̅

𝜕𝑦̅
= −

𝜌𝑓

𝜌𝑛𝑓
𝐾 (2𝐻 +

𝜕𝑢

𝜕𝑦̅
−

𝜕𝑣̅

𝜕𝑥 
) +

𝜌𝑓

𝜌𝑛𝑓
(∅(𝜒) +

𝐾

2
) (

𝜕2𝐻̅

𝜕𝑥 2
+

𝜕2𝐻̅

𝜕𝑦̅2
),                                                (5)      

corresponding to the following boundary conditions see (Nazar et al. [8]): 

𝑢̅ = 𝑣 = 0, 𝑇 = 𝑇𝑤 , 𝐻 = −𝑛
𝜕𝑢̅

𝜕𝑦̅
 𝑎𝑡 𝑦̅ = 0, 

𝑢̅ → 0, 𝑇 → 𝑇∞, 𝐻 → 0 𝑎𝑠 𝑦̅ → ∞,                                                            (6)   

where 𝑗 = 𝑎2 √𝐺𝑟⁄  is the micro-inertia density, 𝑢 ̅ and 𝑣   are the velocity components along with the  𝑥  and 𝑦̅ 

axes. Additionally, the following definitions apply to the physical characteristics of nanofluid (nanofluid effects), 

which are 𝛽𝑛𝑓 , 𝛼𝑛𝑓 , 𝜇𝑛𝑓 𝜌𝑛𝑓 , 𝜙𝑛𝑓 , and 𝑘𝑛𝑓 (Sheremet et al. [24]): 

(𝛽𝜌)𝑛𝑓 = (𝜒(𝛽𝜌)𝑠 + (1 − 𝜒)(𝛽𝜌)𝑓 ) 

(𝛽)𝑛𝑓 =
(𝜒𝛽𝑠𝜌𝑠 + (1 − 𝜒) 𝛽𝑓 𝜌𝑓)

𝜌 𝑛𝑓
 

(𝜇)𝑛𝑓 =
𝜇𝑓

(1 − 𝑥)2.5 
, 

(𝜌𝑐𝑝)𝑛𝑓 = (𝜒(𝜌)𝑠 + (1 − 𝜒) (𝜌𝑐𝑝 )𝑓 ), 

ф𝑛𝑓 = (𝜇𝑛𝑓 + 𝑘 ⁄ 2)𝐽, 

(𝛼)𝑛𝑓 =
𝑘𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓

 , 

(𝜌)𝑛𝑓 = (𝜒(𝜌)𝑠 + (1 − 𝜒)(𝜌)𝑓 ), 
 𝑘𝑛𝑓

𝑘𝑓
=

(𝑘𝑠+2𝑘𝑓)−2𝑥(𝑘𝑓−𝑘𝑠)

(𝑘𝑠+2𝑘𝑓)+𝑥(𝑘𝑓−𝑘𝑠)
,                                                      (7) 

where 𝑘𝑠, 𝑘𝑓 and 𝑘𝑛𝑓 represent the solid, base fluid, and nanofluid's respective effective thermal conductivity; 𝜒 

represents the nanoparticle volume fraction (or solid volume fraction) parameter; and (𝜌𝑐𝑝)𝑛𝑓 , (𝜌𝑐𝑝)𝑓 , (𝜌𝑐𝑝)𝑠 

represents the nanofluid, based fluid, and solid, respectively, in terms of heat capacity  

The dimensionless variables are used to streamline computations where handling complex units of each variable 

and where parameters are required is no longer necessary. According to Nazar et al [8], the dimensionless variables in 

this problem are as follows: 

𝑥 =
𝑥 

𝑎
, 𝑦 = (𝐺𝑟)(1 4⁄ ) (

𝑦̅

𝑎
) , 𝜃 =

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

, 

𝑢 = (𝐺𝑟)(−1 2⁄ ) (
𝑎𝑢̅

𝑣𝑓
) , 𝑣 = (𝐺𝑟)(−1 4⁄ ) (

𝑎𝑣 

𝑣𝑓
), 

  𝐻 = (𝐺𝑟)(−3 4⁄ ) (
𝑎2𝐻̅

𝑣𝑓
) , 𝑝 = (𝐺𝑟)−1 (

𝑝 −𝑝∞

𝜌𝑓(𝑣𝑓
2 𝑎2⁄ )

),                            (8) 

such that the Grashof number is 𝐺𝑟 = 𝑔̅ (𝛽)𝑓 (𝑇𝑤 − 𝑇∞_ )  𝑎
3 ⁄ 𝑣𝑓

2  and the micro-inertia density for this 

boundary condition is  𝐽 =  𝑎2  /(𝐺𝑟)(1⁄2). 
The following dimensionless form equations can be obtained by substituting the dimensionless variables (8) into 

equations (2)–(5): 

    
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0  ,                                                                               (9) 

𝑢 
𝜕𝑢

𝜕𝑥
+ 𝑣 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+

𝜌𝑓

𝜌𝑛𝑓
  (∅(𝜒) + 𝐾)

 𝜕2 𝑢

𝜕𝑦2
+

1

𝜌𝑛𝑓 
(𝜒𝜌𝑠 (

𝛽𝑠

𝛽𝑓
) + (1 − 𝜒)𝜌𝑓 ) 𝜃𝑠𝑖𝑛𝑥 +

𝜌𝑓

𝜌𝑛𝑓
  𝐾 

𝜕𝐻

𝜕𝑦
+

𝜎𝑛𝑓

𝜌𝑛𝑓
  𝑀(𝐸 −
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𝑢) − 𝑃𝑚 𝑢,                    (10) 

𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟
[

𝑘𝑛𝑓 𝑘⁄ 𝑓

(1−𝜒)+𝜒(𝜌𝑐𝑝)𝑠
(𝜌𝑐𝑝)𝑓
⁄

]
𝜕2𝜃

𝜕𝑦2
                                 (11) 

𝑢
𝜕𝐻

𝜕𝑥
+ 𝑣

𝜕𝐻

𝜕𝑦
= −

𝜌𝑓

𝜌𝑛𝑓
𝐾 (2𝐻 +

𝜕𝑢

𝜕𝑦
) +

𝜌𝑓

𝜌𝑛𝑓
(∅(𝜒) +

𝐾

2
)
𝜕2𝐻

𝜕𝑦2
,        (12) 

where, 𝐾 = 𝑘 𝜌𝑛𝑓⁄  is micro-rotation parameter, 𝑃𝑟 = 𝑣𝑓 𝛼𝑓⁄  is the Prandtl number, ∅(𝜒) = (1 − 𝜒)−2.5 ,  

magnetic parameter 𝑀 =
𝜌𝑓𝐵0

2

𝜎𝑓
, Electric parameter 𝐸 =

𝐸0

𝐵0𝑥
  . and Porous Medium parameter 𝑃𝑚 =

𝑉𝑛𝑓

𝑘∗
 

The boundary condition (6) becomes   

𝑢 = 𝑣 = 0, 𝜃 = 1, 𝐻 = −
1

2

𝜕𝑢

𝜕𝑦
 𝑎𝑡 𝑦 = 0 

     𝑢 → 0, 𝜃 → 0,𝐻 → 0, 𝑎𝑠 𝑦 → ∞                                      (13)  

The non-dimensional stream function 𝜓 was defined as follows in order to reduce the non-dimensional system (9) 

to (12), which is related to the boundary conditions (13) 

𝜓 = 𝑥𝑓(𝑥, 𝑦), 𝜃 = 𝜃(𝑥, 𝑦), 𝐻 = 𝑥ℎ(𝑥, 𝑦),                           (14) 

 where  𝜓 is the stream function defined as     

𝑢 =
𝜕𝜓

𝜕𝑦
 𝑎𝑛𝑑 𝑣 = −

𝜕𝜓

𝜕𝑥
,                                                 (15) 

The continuity equation (9) is satisfied by this. Thus, equations (10) through (12) become into 
𝜌𝑓

𝜌𝑛𝑓
(∅(𝜒) + 𝐾)

𝜕3𝑓

𝜕𝑦3
+ 𝑓

𝜕2𝑓

𝜕𝑦2
− (

𝜕𝑓

𝜕𝑦
)
2 

+
1

𝜌𝑛𝑓
(𝜒𝜌𝑠 (

𝛽𝑠

𝛽𝑓
) + (1 − 𝜒)𝜌𝑓)

sin𝑥

𝑥
𝜃 +

𝜌𝑓

𝜌𝑛𝑓
𝐾

𝜕ℎ

𝜕𝑦
+

𝜎𝑛𝑓

𝜌𝑛𝑓
𝑀(𝐸 −

𝜕𝑓

𝜕𝑦
) −

𝑃𝑚
𝜕𝑓

𝜕𝑦
= 𝑥 (

𝜕𝑓

𝜕𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑦
−

𝜕𝑓

𝜕𝑥

𝜕2𝑓

𝜕𝑦2
) ,                                                                          (16) 

1

𝑃𝑟
(

𝑘𝑛𝑓 𝑘𝑓⁄

(1−𝜒)+𝜒(𝜌𝑐𝑝)𝑠 (𝜌𝑐𝑝)𝑓
⁄

)
𝜕2𝜃

𝜕𝑦2
+ 𝑓

𝜕𝜃

𝜕𝑦
= 𝑥 (

𝜕𝑓

𝜕𝑦

𝜕𝜃

𝜕𝑥
−

𝜕𝑓

𝜕𝑥

𝜕𝜃

𝜕𝑦
),                                                          (17) 

𝜌𝑓

𝜌𝑛𝑓
(∅(𝜒) +

𝐾

2
)
𝜕2ℎ

𝜕𝑦2
+ 𝑓

𝜕ℎ

𝜕𝑦
−

𝜕𝑓

𝜕𝑦
ℎ −

𝜌𝑓

𝜌𝑛𝑓
𝐾 (2ℎ +

𝜕2𝑓

𝜕𝑦2
) = 𝑥 (

𝜕𝑓

𝜕𝑦

𝜕ℎ

𝜕𝑥
−

𝜕𝑓

𝜕𝑥

𝜕ℎ

𝜕𝑦
),                             (18) 

and boundary conditions become 

𝑓 =
𝜕𝑓

𝜕𝑦
= 0, 𝜃 = 1, ℎ = −

1

2

𝜕2𝑓

𝜕𝑦2
 𝑎𝑡 𝑦 = 0, 

        
 𝜕𝑓

𝜕𝑦
→ 0, 𝜃 → 0, ℎ → 0 𝑎𝑠 𝑦 → ∞.                                    (19) 

These equations can be observed to decrease to the following ordinary differential equations near the lower 

stagnation point of the cylinder  (𝑥 ≈ 0). 
𝜌𝑓

𝜌𝑛𝑓
(∅(𝜒) + 𝐾)𝑓′′′ + 𝑓𝑓′′ − (𝑓′)2 +

1

𝜌𝑛𝑓
(𝜒𝜌𝑠 (

𝛽𝑠

𝛽𝑓
) + (1 − 𝜒)𝜌𝑓) 𝜃 +

𝜌𝑓

𝜌𝑛𝑓
𝐾ℎ′ +

𝜎𝑛𝑓

𝜌𝑛𝑓
𝑀(𝐸 − 𝑓′) − 𝑃𝑚𝑓′ = 0  ,    

               (20)  

1

𝑃𝑟
(

𝑘𝑛𝑓 𝑘𝑓⁄

(1−𝜒)+𝜒(𝜌𝑐𝑝)𝑠
(𝜌𝑐𝑝)𝑓
⁄

)𝜃′′ + 𝑓𝜃′ = 0 ,                                        (21) 

𝜌𝑓

𝜌𝑛𝑓
(∅(𝜒) +

𝐾

2
) ℎ′′ + 𝑓ℎ′ −

𝜕𝑓

𝜕𝑦
ℎ −

𝜌𝑓

𝜌𝑛𝑓
𝐾(2ℎ + 𝑓′′) = 0,             (22)  

The boundary conditions become 

𝑓(0) = 𝑓′(0) = 0, 𝜃(0) = 1, ℎ(0) = −
1

2
𝑓′′(0) 𝑎𝑠 𝑦 = 0,               (23) 

The physical quantities of importance are the Nusselt number 𝑁𝑢  and the local skin friction coefficient 𝐶𝑓  which 

can be expressed as follows: 

𝐶𝑓 =
𝐺𝑟−3 4⁄ 𝑎2

𝜇𝑓𝑣𝑓
𝜏𝑤 ,    𝑁𝑢 =

𝑎𝐺𝑟1 4⁄

𝑘𝑓(𝑇𝑤−𝑇∞)
𝑞𝑤 ,                                    (24) 

Where 

  𝜏𝑤 = (𝜇𝑛𝑓 +
𝑘

2
) (

𝜕𝑢

𝜕𝑦̅
)
𝑦̅=0

, 𝑞𝑤 = −𝑘𝑛𝑓 (
𝜕𝑇

𝜕𝑦̅
)
𝑦̅=0

.                (25) 

Applying the boundary conditions (13) and non-dimensional variables (8), the local skin friction coefficient 𝐶𝑓 

and Nusselt number 𝑁𝑢 become 

𝐶𝑓 = (∅(𝜒) +
𝐾

2
) 𝑥

𝜕2𝑓

𝜕𝑦2
(𝑥, 0),   𝑁𝑢 = −

𝑘𝑛𝑓

𝑘𝑓
(
𝜕𝜃

𝜕𝑦
) (𝑥, 0).   (26) 
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4. The numerical method and validation 

This section outlines the Keller-Box method, a numerical technique originally developed by Keller and Bramble 

[37], which is highly efficient and well-suited for solving convective boundary layer flow problems. In this study, the 

method was implemented following the approaches described by Na [38], Cebeci and Bradshaw [39], and Cousteix 

[40]. The Keller-Box method offers several notable advantages: it is unconditionally stable, provides second-order 

accuracy, and has demonstrated effectiveness in solving boundary layer problems for over three decades. 

i. The computational procedure of the Keller-Box method, as applied in this work, consists of the following 

five key steps: 

ii. Reduction of Order: The system of higher-order governing partial differential equations is transformed into 

a larger system of first-order equations. 

iii. Discretization: The first-order equations are discretized using central difference approximations on a 

staggered (box) grid, which is a hallmark of this method and contributes to its second-order accuracy. 

iv. Linearization: The resulting nonlinear algebraic system is linearized using Newton's method (or a modified 

Newtonian iteration). 

v. Block-Matrix Formulation: The linearized equations are organized into a structured block-tridiagonal matrix 

system. 

vi. Solution: The block-tridiagonal system is efficiently solved using the algorithm of LU decomposition. 

The flow chart of the methodology is displayed in Figure 2. The ordinary differential equations (ODE) plus the 

boundary conditions are to be solved with this method, which is not a straightforward approach.   

 
Fig 2: Flow chart of KBM method. 
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5. Results and Analysis 

In order to generate graphical and numerical results about the behavior of a micropolar nanofluid based on Sodium 

Alginate and the effects of meaningfully related parameters on temperature, skin friction coefficient, velocity, and 

local Nusselt number, this section uses MATLAB to perform numerical computations. After that, the findings are 

carefully reviewed and talked about. The following range of parameters has been considered for the computational 

simulations: nanoparticles volume fraction (0.1 ≤ 𝜒 ≤ 0.2), and magnetic parameter (𝑀 > 0).  
Table 1 shows the thermophysical characteristics of the base fluid, Sodium Alginate (SA), and the nanoparticles 

Silver (Ag) and Graphene Oxide (GO) employed in this investigation. SA  attributes include density (𝜌), specific heat 

capacity (𝐶𝑝), thermal conductivity (𝐾), thermal expansion coefficient (𝛽), electrical conductivity (𝜎), and (𝑃𝑟) 

Prandtl number. These factors are crucial in defining the heat transfer and flow properties of the micropolar nanofluid. 

Notably, the high thermal conductivity of GO and Ag suggests their ability to improve the thermal performance of the 

base fluid. 

Table 1: Thermo-physical properties of Silver (Ag), Graphene Oxide (GO) and Sodium Alginate (SA) as 

nanoparticle 

Thermo-physical property SA Ag GO 

𝜌(𝑘𝑔̅ 𝑚3⁄ ) 989 10,500 1800 

𝐶𝑝(𝐽 𝑘𝑔̅𝐾⁄ ) 4175 235 717 

𝐾(𝑤 𝑚𝐾⁄ ) 0.6376 429 5000 

𝛽 × 10−5(𝐾−1) 99 1.89 28.4 

𝜎(𝑠 𝑚⁄ ) 2.6× 10−4 6.3× 107 1.1× 10−5 

𝑃𝑟 6.5 _ _ 

 

Table 2: Comparison of local Nusselt number 𝑵𝒖 with viscous Newtonian fluid, when 𝑷𝒓 =𝟏 and 𝑲 =
 𝑴 = 𝑷𝒎 = 𝑬 = 𝝌 = 𝟎. 

𝑥 Merkin [6] Nazar et al. [8] Swalmeh et al [16] Present 

0 o 0.4214 0.4214 0.4214 0.421410 

30o 0.4161 0.4161 0.4163 0.416161 

60o 0.4007 0.4005 0.4006 0.400625 

90o 0.3745 0.3741 0.3744 0.374314 

120o 0.3364 0.3355 0.3356 0.335991 

150o 0.2825 0.2811 0.2811 0.281091 

1800 0.1945 0.1916 0.1913 0.191615 

  

Table 3: Comparison of local skin friction coefficient 𝑪𝒇 with viscous Newtonian fluid, when 𝑷𝒓 =𝟏 and 

𝑲 =  𝑴 = 𝑷𝒎 = 𝑬 = 𝝌 = 𝟎. 

𝑥 Merkin [6] Nazar et al. [8] Swalmeh et al [16] Present 

0 o 0.0000 0.0000 0.0000 0.0000 

30o 0.4151 0.4148 0.4159 0.415214 

60o 0.7558 0.7542 0.7538 0.755210 

90o 0.9579 0.9545 0.9574 0.957725 

120o 0.9756 0.9698 0.9743 0.975011 

150o 0.7822 0.7740 0.7813 0.782014 

1800 0.3391 0.3265 0.3311 0.339014 

 

Tables 2 and 3 show a high degree of agreement between the findings from this study and those from other 

published studies by Merkin [6], Nazar et al. [8] and Swalmeh et al [16], according to a thorough comparison. This 

robust association shows the consistency and dependability of the results in addition to validating the quality of the 

current mathematical modeling methodology and numerical procedure. Such consensus upholds the validity of the 

results reported in this study and increases trust in the approach used. 
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Figures 3 and 4 illustrate the variations of the local skin friction coefficient 𝐶𝑓 and the Nusselt number 𝑁𝑢  for 

different values of the magnetic parameter (𝑀). It is clearly observed that both the skin friction coefficient and the 

Nusselt number decrease as the magnetic parameter increases. This reduction is primarily due to the restraining effect 

of the intensified magnetic field on the fluid flow. The stronger magnetic force acts as a damping mechanism, 

suppressing the velocity of the micropolar nanofluid and thereby inhibiting the natural convection process. As a result, 

both the momentum transfer near the cylinder surface (reflected in the skin friction coefficient) and the heat transfer 

rate (indicated by the Nusselt number) are diminished. These findings emphasize the significant influence of magnetic 

forces in controlling the fluid dynamics and thermal behavior around the heated cylinder, which has important 

implications for optimizing heat transfer in engineering systems involving magnetic fields.. 

 
Fig3. Changes in 𝑴 along with 𝑪𝒇 

 

 
Fig4. Changes in 𝑴 along with 𝑵𝒖 
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Fig 5. Changes in 𝑷𝒎 along with 𝑪𝒇 

 

Figures 5 and 6 present the graphical variations of the local skin friction coefficient 𝐶𝑓 and the Nusselt number 

𝑁𝑢 for different values of the porous medium parameter. It is evident that both the skin friction coefficient and the 

Nusselt number decrease as the porous medium parameter 𝑃𝑚  increases. This decline can be attributed to the 

increased resistance to fluid flow caused by the porous medium, which restricts the movement of the fluid. 

Consequently, the convection process is hindered, leading to reductions in both the skin friction coefficient and the 

heat transfer rate, as reflected by the lower Nusselt number. These results highlight the significant impact of the porous 

medium on diminishing fluid momentum and thermal transport near the surface of the cylinder. 

Figures 7, 8, and 9 illustrate the impact of the magnetic parameter (𝑀) on the velocity, angular velocity, and 

temperature profiles, respectively. It is observed that as the magnetic parameter increases, both the velocity and 

angular velocity profiles exhibit a noticeable rise. This behavior can be attributed to the influence of the magnetic 

field, which affects the momentum characteristics of the micropolar nanofluid flow. Conversely, the temperature 

profiles show a decreasing trend with increasing values of the magnetic parameter. This reduction in temperature is 

primarily due to the enhanced thermal conductivity resulting from a higher nanoparticle volume fraction in the 

nanofluid. The improved thermal conductivity facilitates more efficient heat dissipation, thereby lowering the overall 

temperature of the nanofluid. 

These results highlight the significant role played by the magnetic field and nanoparticle concentration in 

controlling the flow dynamics and thermal behavior of the micropolar nanofluid around the heated horizontal cylinder. 

 

 

 
Fig 6: Changes in 𝑷𝒎 along with 𝑵𝒖 
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Fig7: Changes in 𝑴 along with temperature 

 
Fig 8: Changes in M along with velocity 

 

 
Fig 9: Changes in M along with angular velocity 

Figures 10, 11, and 12 depict the influence of the porous medium parameter 𝑃𝑚 on the velocity, angular velocity, 
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and temperature profiles, respectively. It is clearly observed that as the porous medium parameter 𝑃𝑚 increases, both 

the velocity and angular velocity profiles show a corresponding increase. This can be explained by the enhanced 

permeability effects within 𝑃𝑚, which facilitate fluid motion and rotational behavior. In contrast, the temperature 

profiles exhibit a decreasing trend with an increase in the 𝑃𝑚. This reduction in temperature is primarily attributed to 

the increased nanoparticle volume fraction, which enhances the thermal conductivity of the nanofluid. As a result, the 

nanofluid is able to transfer heat more efficiently, leading to lower temperature levels within the fluid. These findings 

underscore the significant role that the characteristics of the porous medium and nanoparticle concentration play in 

modulating the flow and thermal performance of the micropolar nanofluid system. 

 
Fig 10: Changes in 𝑷𝒎 along with temperature. 

 

 
Fig 11: Changes in 𝑷𝒎 along with velocity. 

 

6. Conclusion: 

The study focuses on fluids with broad applications in engineering and the physical world, along with the use of 

nanoparticles that have unique thermal properties to enhance heat transfer rates and flow characteristics of these fluids. 

Additionally, the pharmaceutical and food industries were considered in this study, which adds further value and 

significance to the research in engineering applications. This study also holds potential for future academic 

contributions. The results indicated the following: 
➢ The skin friction coefficient (𝐶𝑓 ) and Nusselt number (𝑁𝑢 ) decrease as the magnetic parameter (𝑀 ) 

increases. 
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➢ Both the skin friction coefficient (𝐶𝑓) and Nusselt number (𝑁𝑢) decline with an increase in the porous 

medium parameter (𝑃𝑚). 

➢ The porous medium restricts fluid movement similar to the magnetic field, thereby suppressing convection 

and lowering 𝐶𝑓 and 𝑁𝑢 values. 

➢ Velocity and angular velocity profiles increase as the magnetic parameter (𝑀) increases. 

➢ The decrease is attributed to the enhanced thermal conductivity of the nanofluid with higher nanoparticle 

volume fraction, which improves heat dissipation and lowers temperature. 

➢ Velocity and angular velocity profiles increase with increasing 𝑃𝑚. 

➢ Similar to the magnetic parameter effect, this is due to increased thermal conductivity from higher 

nanoparticle volume fraction, reducing the nanofluid temperature. 

 
Fig 12: Changes in Pm along with angular velocity 
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