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Abstract 

Sugarcane bagasse ash (SBA) is a waste product that is left over after the sugar and alcohol 

industries. Rice husk ash (RHA) is a byproduct of rice husk burning. A helpful soil stabilizer 

for road building is terrazyme, a liquid enzyme that enhances the engineering properties of soil. 

In this study, natural soil, SBA and rice husk were combined in different proportions along 

with different concentration of terrazyme. This study uses measures like root mean square error 

(RMSE), mean absolute error (MAE), R2, and standard deviation to examine the performance 

of six predictive models across training and testing datasets: artificial neural network (ANN), 

XGBoost, random forest, M5P, linear regression, and non-linear regression. The ANN model 

exhibits overfitting as it performs poorly on unseen data (R2 = 0.589) but well on training data 

(R2 = 0.971). Nearly flawless training results (R2 = 0.999, RMSE = 0.005) are obtained using 

XGBoost, while modest generalization (testing R2 = 0.798) indicates diminished but still 

respectable performance on fresh data. Although Random Forest performs well during training 

(R2 = 0.977), there is a discernible decline in generalization (R2 = 0.853 during testing). The 

M5P model exhibits extreme overfitting; its testing R2 drops to 0.229 from its training R2 of 

0.983. Although linear regression consistently produces RMSE and MAE between training and 

testing, its explanatory ability is limited by a significant reduction in R2 (0.872 to 0.233).  

 Keywords: Sugarcane bagasse ash, Unconfined compressive strength, Artificial neural 

network, XGBoost and Random Forest. 

1. Introduction 

There is minimal application of SBA and RHA for rural roads. From a sugarcane production 

perspective, India ranks second globally. In 2010, India produced 292.3 MMT of 

sugarcane(Kishor et al., 2022). Following the extraction of sugarcane juice, sugarcane bagasse 

with high calorific values is produced. Cogeneration uses it as a fuel to generate electricity and 

steam because of its high calorific value. 750–1000 °C was the temperature at which the sugar 

cane bagasse burned. SBA is the end product of this process and the last waste product in the 

sugar manufacturing cycle(Kumar Yadav et al., 2017). It contains a significant amount of 

quartz (SiO2)(Anupam et al., 2017). There have been reports of SBA's effectiveness as a 



 

 

stabilizer for pavement subgrade dirt. There have also been attempts to extract sodium silicate 

from sugarcane bagasse ash in an attempt to create silica particles (Boonmee and Jarukumjorn, 

2020). These silica particles can be used as a replacement for binder materials like cement 

which contain high concentration of silica in their composition. This residue of sugarcane, 

when burnt, leaves behind about 8-10% ash known as SBA(Aigbodion et al., 2010). Osinubi 

and Thomas (2007) conducted various tests such as Atterberg limit test, moisture-density 

relation, UCS and CBR on samples of black cotton soil treated with SBA and found an increase 

in the unconfined compressive strength of soil with proportional increase of the SBA content 

and concluded that SBA can be used as an admixture with binders like lime and 

cement(Osinube and Thomas, 2008).  

The combustion of rice husk, a readily accessible by-product of industrial waste, produces 

RHA. 20-25% of the rice's weight is made up of rice husks(Camargo-Pérez et al., 2023). When 

rice husk is burned, silica ash is left behind after cellulose and lignin are eliminated. Numerous 

investigators have examined the molecular and physical characteristics of RHA. When burned 

at a regulated temperature of 600–800 °C, RHA is chemically composed of 82–95% 

silica(Emdadi et al., 2017). It is a pozzolanic substance(Detphan and Chindaprasirt, 2009; 

Getahun et al., 2018; Kim et al., 2014). The effects of rice husk ash on geotechnical properties 

of lateritic soil and found that rice husk ash helps in raising the optimum moisture content of 

the soil but at the same time reduced maximum dry density and plasticity of the soil. It also 

improved the strength property and volume stability of lateritic soil(Tiwari et al., 2025). In a 

similar study conducted by Ewa et al., (2018) on the variability of RHA on geotechnical 

properties of soil subgrade, they concluded that addition of RHA as soil stabilizer increased 

the optimum moisture content of the soil and decreased the maximum dry density (Ewa et al., 

2018). Further an all-around improvement in the UCS values of the samples was also noticed. 

Complex pattern oriented problems can be dealt with the help of Artificial Neural Networks 

(ANN). De et al., (2007) used ANN to develop models to accurately forecast performance of a 

power plant’s steam process(DE et al., 2007). Reddy et al., (2003) used ANN models to 

estimate monthly mean daily and hourly values of solar global radiation from 13 different 

stations across India(Reddy and Ranjan, 2003). The results were compared with other 

regression models and were found to be in good agreement with them. Li et al., (2024) in their 

study on Performance-oriented road structure and material design method used a long term 

pavement performance database to train a prediction model using XGBoost algorithm(Li et al., 

2024). This helped them to create an automated design model that included the required 



 

 

properties i.e. subgrade material, pavement thickness and pavement material. This study 

confirmed the satisfactory performance of XGboost algorithm by the results of high coefficient 

of determination (R2) and mean absolute percentage error achieved from ML regression. 

Behnood et al., (2017) used M5P model tree to predict the compressive strength of high 

performance concrete(Behnood et al., 2017). Data collected from literature was used to develop 

the model. Their study showed that the model had an accuracy of over 80%. Lei et al., (2016) 

proposed a combined M5P tree and M5P model to predict accident durations(Lin et al., 2016). 

The model demonstrated superior prediction accuracy and had lowest overall mean absolute 

percentage error. 

1.1 Research gap and objectives  

There has no any research which developed the subgrade materials using sugarcane bagasse 

and rice husk along with terrazyme. Ultimate objective is to construct a subgrade that satisfies 

specifications related tounconfined compressive strength, and meets the requirements related 

to the pavement subgrade. It can be fabricated using sugarcane bagasse ash and rice husk ash 

along with terrazyme and soil to study the UCS using ANN, XGBoost, random forest, M5P, 

linear regression, and non-linear regression.  

2.  Materials 

2.1 Sugarcane bagasse ash 

SBA is a waste product that is left over after the sugar and alcohol industries. After the sugar 

cane is harvested, the pulp that remains is recycled and utilized to generate heat in boilers, 

leaving approximately 8%–10% ash as waste. Due to residual carbon and other unwanted 

substances, the ash usually referred to as sugarcane bagasse ash (SBA) is typically black in 

color. 

2.2 Natural soil  

Natural soil collected from the Dehrahun, India. Its initial properties were thoroughly 

characterized before stabilization to ensure accurate assessment of the stabilization effects. 

Grain size analysis of the natural soil has been depicted in Fig. 1. Natural soil contained 60.78% 

of silt, 10.46% of sand and 28.76% of clay; it is a fine grained soil. Liquid limit, plastic limit 

and plasticity index of the soil were 50.13, 28.63 and 21.50, respectively.  



 

 

 

Fig. 1 Gradation curve of natural soil 

2.3 Rice husk ash 

RHA is a byproduct of rice husk burning. Silicates are the main leftovers left over after burning 

rice husk, since the majority of its evaporable components gradually disappear. During the 

milling process, the hard protective coverings known as rice husks are removed from the grains. 

The husks are removed from the raw grain during a standard milling procedure, revealing 

complete brown rice.  

2.4 Terrazyme 

A helpful soil stabilizer for road building is Terrazyme, a liquid enzyme that enhances the 

engineering properties of soil: A natural, non-toxic liquid called terrazyme modifies the 

chemical and physical characteristics of soil. It enhances the soil's structural qualities by 

catalyzing organic chemical processes in the soil.  

2.5 Test methodology  

The natural soil, rice husk terrazyme and sugarcane bagasse ash have been collected from the 

Uttarakhand. The materials were dry and sieved before used. The chemical composition of the 

raw materials have tabulated in Table 1. The material proportions for SBA, RHA, and 

terrazyme were selected based on a combination of preliminary experimental trials. Initially, a 

series of trial mixes were prepared to evaluate the influence of varying proportions on the soil's 

properties. In this study, natural soil, SBA and rice husk were combined in different proportions 

along with different concentration of terrazyme and presented in Table 2.  
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The test for unconfined compressive strength (UCS) was conducted using IS 2720 (Part X)-

1991 as a guide(IS: 2720 (Part 10):1991, 1991). The specimens were cured for a period of 28 

days under controlled laboratory conditions. During the curing process, the temperature was 

maintained at approximately 27 ± 2°C with relative humidity around 90%, ensuring consistent 

hydration and strength development. These conditions were carefully monitored to maintain 

uniformity across all test samples. 

Table 1 XRF results of raw materials 

Chemical 

composition 

Percentage content (%) 

SBA RHA Soil  

CaO 12.16 18.14 10.36 

SiO2 64.65 51.43 55.28 

Al2O3 4.74 5.17 18.65 

Fe2O3 4.62 3.67 6.56 

MgO 0.15 1.61 3.14 

K2O 0.76 11.75 0.52 

TiO2 0.80 0.16 0.04 

LOI 12.12 8.07 5.45 

 

Table 2 Mix design 

SN Soil  SBA (%) RHA (%) Terrazyme 

(ml/m3) 

UCS (KPa) 

1 40 60 0 10 1510.88 

2 40 50 10 10 1524.57 

3 40 40 20 10 1535.38 

4 40 30 30 10 1542.56 

5 40 20 40 10 1546.53 

6 40 10 50 10 1544.21 

7 40 60 0 20 1512.46 

8 40 50 10 20 1528.55 

9 40 40 20 20 1539.35 

10 40 30 30 20 1545.36 



 

 

11 40 20 40 20 1550.27 

12 40 10 50 20 1547.44 

13 40 60 0 30 1520.82 

14 40 50 10 30 1535.52 

15 40 40 20 30 1546.18 

16 40 30 30 30 1552.37 

17 40 20 40 30 1557.39 

18 40 10 50 30 1554.38 

19 40 60 0 40 1530.82 

20 40 50 10 40 1544.58 

21 40 40 20 40 1555.22 

22 40 30 30 40 1561.74 

23 40 20 40 40 1566.59 

24 40 10 50 40 1564.63 

25 40 60 0 50 1537.53 

26 40 50 10 50 1551.72 

27 40 40 20 50 1562.28 

28 40 30 30 50 1567.47 

29 40 20 40 50 1573.38 

30 40 10 50 50 1570.28 

31 40 60 0 60 1566.58 

32 40 50 10 60 1578.71 

33 40 40 20 60 1589.83 

34 40 30 30 60 1595.25 

35 40 20 40 60 1624.52 

36 40 10 50 60 1610.34 

 

2.6 Artificial Neural Networks 

ANNs are the networks that use machine learning to replicate decision making of a human 

brain. The neural network is made up of units which replicate neurons in a human brain(Unis 

et al., 2022). These units can be of any number depending upon the complexity of the problem. 

These are arranged in two layers called the input layer and an output layer. Mimicking a human 



 

 

brain, these input units gathers data from the surrounding world and uses it to learn and analyse 

according to the requirements of the neural network(Choudhary et al., 2024). When a problem 

of a similar nature is then presented to this ANN, it uses this gathered data to analyse it and 

transfers this data form one unit to another and gives an output through the output layer in the 

form of a response. This interconnected network helps it learn more and more with the variety 

of situations presented to it(Bebana et al., 2019). 

2.7 XGBoost 

A scalable distributed gradient-boosted decision tree machine learning toolbox is called 

Extreme Gradient Boosting, or XGBoost(Mustapha et al., 2024). It provides parallel tree 

boosting and is useful machine learning tool for works such as regression, classification, and 

ranking. In such an algorithm, a model is created and trained in such a way that it identifies 

certain patterns in a dataset containing features and labels. This model is then used to predict 

labels on features in any further given dataset. Further, decision trees help in forecasting a 

continuous numerical value or classification to predict a category. By analysing a decision tree 

and calculating the bare minimum of questions required to determine the likelihood of selecting 

the right choice, decision trees provide a model that predicts the label(Zhang et al., 2024). 

Gradient boosting helps in formalizing the additive development of weaker models using a 

gradient descent method. It outlines the required outcomes for next models in order to minimize 

errors. The phrase "gradient boosting" refers to the fact that the intended results for each case 

are determined by the gradient of the error with respect to the forecast(Li et al., 2024).  

2.8 Random Forest 

Random forest is a machine learning technique which combines the outputs of multiple 

decision trees to generate a single result. Its adaptability and simplicity of usage have promoted 

its use because it can handle both regression and classification problems(Mohamed et al., 

2017). The algorithm of random forest is an extension of the bagging approach, it combines 

feature randomness and bagging to create decision trees(Chun et al., 2020). Primary difference 

between decision trees and random forests is that decision trees consider every conceivable 

feature split whereas random forests only select a subset of the features(Chun et al., 2020; Li 

et al., 2022; Sahour et al., 2021; Sun et al., 2023).  

2.9 M5P model 



 

 

Quinlan first found the M5 algorithm, which has now been developed into the M5P 

algorithm(Ali, 2024). The ability of model trees to effectively handle numerous data sets with 

a high number of features and high dimensions is one of its primary benefits. They also have a 

reputation for being resilient in the face of missing data(Ali, 2024). The input space is first 

divided into many sub-spaces using the M5 method, so that each sub-space has data records 

with common characteristics. To reduce the variance inside a certain sub-space, linear 

regression models are employed in this procedure(Ali, 2024). The data gathered from the 

preceding stage is then utilized to generate several nodes where the splitting procedure is 

carried out based on a specified property. This stage enables the construction of a tree-like 

structure with the leaves at the bottom and the root at the top. A fresh data record begins at the 

tree's root and travels through the nodes until it reaches a leaf. Each node has a mathematical 

logic that lets the data record navigate down to a leaf by comparing a certain value of the 

provided data record with that of the split value(Mahmood et al., 2024). The input area is 

initially divided into a number of smaller regions in order to construct a tree. Utilizing the 

splitting criterion, the intra-subspace variability is reduced from the root to the node. 

2.10 Linear regression 

Investigating the connections between two or more variables is a common task in scientific and 

engineering challenges is linear regression(Maabreh and Almasabha, 2024). The optimal link 

between a dependent variable and many independent variables may be predicted with the help 

of linear regression. Sometimes, the independent variables are referred to as predictors, and the 

dependent variable as the predicted(Habib and Okayli, 2024).  

2.11 Non-linear regression  

Non-linear regression sought to investigate, using statistical models, the possible link between 

strength and input factors(Mouli et al., 2024). In addition to the traditional linear regression 

model, this study suggested non-linear models to enhance the determination coefficient when 

forecasting UCS using factors relevant to mixture design(Zhou et al., 2024).  

 3. Results 

Effects of SBA and RHA on soil 

Table 2 reveals that the UCS of the soil increases with higher proportions of RHA and 

Terrazyme, while SBA has a comparatively lesser effect. With soil content fixed at 40%, 



 

 

substituting SBA with RHA leads to a consistent rise in UCS, indicating that RHA’s higher 

silica content promotes more effective pozzolanic reactions, forming stronger cementitious 

bonds(Kumar Yadav et al., 2017). terrazyme, a biochemical stabilizer, further enhances UCS 

by improving soil particle bonding and reducing moisture sensitivity. As terrazyme dosage 

increases from 10 to 60 ml/m³, UCS also rises steadily across all mix combinations, showcasing 

its strong role in boosting soil strength. The maximum strength of 1624.52 KPa is attained at 

20% SBA, 40% RHA, and 60 ml/m³ of terrazyme. The highest UCS values are obtained when 

20–30% SBA, 40–50% RHA, and 60 ml/m³ of terrazyme are combined. Rich in amorphous 

silica, which is essential for pozzolanic reactions, are SBA and RHA(Kumar Yadav et al., 

2017). Cementitious chemicals such calcium silicate hydrates (C-S-H) are created when these 

ashes are combined with soil and water and react with calcium (Ewa et al., 2023). By 

strengthening the bonds between soil particles, these substances promote cohesion, decrease 

flexibility, and eventually raise UCS. The physical characteristics of SBA and RHA, such as 

their tiny particle size and high surface area, help improve soil gradation and densification in 

addition to the chemical processes, which further increases strength and stability(Camargo-

Pérez et al., 2023; Hidalgo et al., 2020). RHA and terrazyme are especially useful in enhancing 

soil stabilization for engineering applications, highlighting the synergistic effect of pozzolanic 

materials and enzymatic treatment. 

3.1 Artificial neural networks(ANN) 

RHA and terrazyme demonstrate the synergistic effect of pozzolanic materials and enzymatic 

treatment, and are particularly helpful in improving soil stabilization for engineering 

applications. Which shown in shown in Figs. 2 and 3 respectively. For the training dataset, the 

ANN achieves an impressive R² score of 0.971, signifying that the model captures 97.1% of 

the variance in the training data. This high value reflects the ANN's ability to learn complex 

patterns and relationships in the data during training, showcasing its suitability for capturing 

non-linear and intricate dependencies(Pratap, 2024). Such a strong performance on the training 

set suggests that the model architecture, including the choice of layers, activation functions, 

and training parameters, is well-tuned for fitting the training data(Alsulaili and Refaie, 2021). 

still, the testing R² score of 0.589 is considerably lower, indicating that the model explains only 

58.9% of the variance in unseen data. This drop in interpretation points to a significant 

generalization gap, recommends that the ANN may be overfitting the training data(Tiryaki and 

Aydin, 2014). Overfitting happen when the model comes to be too specialized to the training 

dataset, learning noise or unrelated patterns that don't transfer well to new information. The 

https://www.collinsdictionary.com/dictionary/english-thesaurus/interpretation


 

 

difference between the training and testing R² scores highlights this issue, as the model 

struggles to follow  its training success when faced with unseen scenarios(Kazemi and 

Gholampour, 2023). 

 

Fig. 2 Training of ANN model 

 

Fig. 3 Testing of ANN model 

On unseen data, the ANN still has considerable predictive power and captures a sizable amount 

of variance, even with the lower testing R2 value. (Kaveh and Khavaninzadeh, 2023). 

However, the relatively low score suggests that improvements are needed to enhance its 

applicability in real-world settings where unseen data is more prevalent. Strategies to address 
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this could include simplifying the model architecture, increasing the diversity and size of the 

dataset, or employing techniques like early stopping during training to prevent 

overfitting(Kaveh, A Bakhshpoori, 2018). 

3.2 XGBoost 

Table 3 represent the performance metrics of an XGBoost model evaluated on training and 

testing datasets. Each metric provides insight into the model's accuracy, error, and consistency. 

Table 3 XGBoost results for training and testing 

Parameters   Training results Testing results 

RMSE 0.005 10.208 

MAE 0.002 8.275 

Standard deviation 35.496 34.810 

R2 score 0.999 0.798 
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Fig. 4 (a) Training and (b) testing of XGBoost 

Fig. 4 presents the training and testing of the XGBoost model. The extremely low value of 

training of RMSE is 0.005 suggests that the model fits the training data almost perfectly, with 

negligible error. The much higher value of testing RMSE is 10.208 indicates that the model's 

performance on unseen data is significantly worse than on the training data. This discrepancy 

suggests potential overfitting, where the model captures the training data too well but struggles 

to generalize to new data(Sun et al., 2024). Training value of MAE is 0.002, a very low value 

indicates excellent predictive accuracy on the training set. Testing value of MAE is 8.275 

presents the higher testing MAE compared to training reflects a reduction in accuracy when 

the model is applied to new data, reinforcing the likelihood of overfitting(Chen et al., 2024). 

The low error metrics of training of standard deviation is 35.496; the high standard deviation 

suggests variability in the model’s training predictions. This could be due to the dataset’s 

inherent characteristics. The slightly lower value in testing of standard deviation indicates 

similar variability in predictions on unseen data. However, the difference is small, implying 

that prediction inconsistencies persist across both datasets(Abdullah et al., 2024). Training 

value of R² of 0.999 nearly perfect score suggests the model explains almost all the variability 

in the training data. Testing value of R² of 0.798 indicates the model still performs reasonably 

well on unseen data, it is significantly lower than the training R², again pointing to 

overfitting(Thapa and Ghani, 2024). 

3.3 Random forest 
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The results include RMSE, MAE, Standard Deviation, and R² Score plotted in Table 4 for 

random forest.  

Table 4 Random forest results for training and testing 

Parameters Training results  Testing results 

RMSE 2.995 11.075 

MAE 2.026 6.338 

Standard deviation 17.379 20.664 

R2 score 0.977 0.853 

 

The RMSE, a measure of the average magnitude of prediction errors, the training RMSE of 

2.995 indicates that the model performs very well on the training dataset, with low 

error(Choudhary et al., 2024). However, the testing RMSE of 11.075 suggests a noticeable 

increase in error when the model is applied to unseen data. This disparity hints at potential 

overfitting, where the model might be too tailored to the training data, leading to reduced 

generalizability(Chen et al., 2024). The MAE, which represents the average absolute error 

without squaring, complements the RMSE by showing the typical magnitude of prediction 

errors.   
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Fig. 5 (a) Training and (b) testing of RF 

The graph of the Random Forest model has been plotted in Fig. 5 for training and testing 

datasets. The training MAE of 2.026 confirms low errors during training, while the testing 

MAE of 6.338, though higher, is still within a reasonable range relative to the testing RMSE. 

The difference between training and testing MAE supports the observation of potential 

overfitting. The standard deviation of the prediction errors reflects the variability in the model’s 

errors. A training standard deviation of 17.379 compared to a higher testing value of 20.664 

indicates that error variability is greater in the testing phase(Mohamed et al., 2017). This 

increased variability in unseen data further reinforces concerns about the model’s consistency 

and robustness when faced with new scenarios. Finally, the R² score, or coefficient of 

determination, highlights how well the model explains the variance in the target variable. A 

training R² score of 0.977 signifies that the model captures nearly all the variance in the training 

data, demonstrating excellent fit. But , the testing R² score of 0.853, while still well, reveals a 

drop in performance when generalizing. This gap between the training and testing R² scores 

again points to overfitting, as the model excels on the training data but loses some predictive 

power on unseen data. The Random Forest model establish strong performance on the training 

dataset, as indicated by low RMSE and MAE, low error variability, and a near-perfect R² score. 

But, the testing results indicate higher errors, more variability, and a reduced R² score, signaling 

challenges with generalization. To improve the model’s generalizability, techniques such as 

cross-validation, parameter tuning, or reducing model complexity could be employed(Huang 

et al., 2020; Sahour et al., 2021; Sun et al., 2023). These results underscore the significance of 
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balancing training performance with testing robustness to reach reliable and consistent 

predictive models(Chun et al., 2020). 

3.4 M5P model  

The performance metrics of the M5P model contribute valuable insights into its effectiveness 

in predicting result for both training and testing datasets plotted in Table 5. The result of the 

M5P model has been plotted in Fig. 6. The training RMSE of 3.652 show that the M5P model 

performs well on the training dataset, devloping relatively small prediction errors. Even though, 

the testing RMSE of 10.360 reveals a significant increase in error magnitude when applied to 

unseen data. This difference  suggests that the model may struggle to generalize to new 

observations, pointing to potential overfitting to the training data. The MAE, which represents 

the average absolute error, shows a similar trend. The training MAE of 3.118 is relatively low, 

indicating good predictive accuracy during training. However, the testing MAE of 7.802 

highlights a notable increase in the average error for unseen data. This larger error in testing 

further underscores the model's limited generalization capability and aligns with the RMSE 

results. 

Table 5 M5P model results for training and testing 

 Training metrics Testing metrics 

RMSE 3.652 10.360 

MAE 3.118 7.802 

Standard deviation 39.549 20.747 

R2 score 0.983 0.229 

 

The standard deviation of errors provides insight into the variability of the prediction errors. A 

training standard deviation of 39.549 suggests that while the model performs accurately on 

average, there may be occasional large deviations from actual values during training. For the 

testing dataset, the standard deviation drops to 20.747, which might indicate reduced error 

variability in testing. However, this reduction is accompanied by higher average errors, 

suggesting that the model's predictions for unseen data may cluster more tightly around a less 

accurate mean. The R² score, which measures the proportion of variance in the target variable 

explained by the model, provides the most striking observation. The training R² score of 0.983 

indicates that the model almost perfectly captures the variance in the training data, 



 

 

demonstrating excellent fit. In contrast, the testing R² score of 0.229 is significantly lower, 

showing that the model explains only a small fraction of the variance in the testing dataset. 

This dramatic drop indicates poor generalization and suggests that the model's structure might 

overfit the training data patterns, rendering it ineffective at capturing the underlying 

relationships in new data. 

 

 

Fig. 6 (a) Training and (b) testing of M5P model 

The M5P model indicate  strong performance on the training dataset, as proof by low RMSE 

and MAE, relatively high error variability, and a near-perfect R² score. but, its performance on 

the testing dataset is markedly weaker, with higher RMSE and MAE, a lower standard 

deviation, and a significantly reduced R² score. These results highlight the model's overfitting 

to the training data, leading to limited effectiveness in predicting unseen data. To enhance the 
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model's generalizability, steps such as pruning the decision tree, optimizing parameters, or 

using additional regularization techniques should be considered. Balancing the model's 

complexity to enhance both training fit and testing accuracy is essential for achieving robust 

and reliable predictive performance. 

3.5 Linear regression  

The performance metrics of the Linear Regression Forest model highlight its capability to 

foretell outcomes on both the training and testing datasets, offering insights into its accuracy, 

consistency, and generalizability. The evaluation metrics include Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), Standard Deviation of errors, and the R² score (Table 

6).  

Table 6 Linear regression model results for training and testing 

 Training metrics Testing metrics 

RMSE 10.029 10.332 

MAE 7.942 8.197 

Standard deviation 10.029 9.868 

R2 score 0.872 0.233 

 

Fig. 7 shows a plot of the linear regression model's outcome. The training (10.029) and testing 

(10.332) datasets have comparable values for the RMSE, which calculates the average 

magnitude of prediction errors.This closeness indicate that the model maintains consistent 

performance across both datasets, without a significant increase in error when applied to unseen 

data. At the same time the RMSE values indicate moderate prediction preciousness they also 

suggest room for improvement in minimizing errors. The average absolute error, or MAE, has 

a comparable pattern. The model's constant performance during the training and testing phases 

is further highlighted by the near value of the training MAE of 7.942 and testing MAE of 8.197. 

These MAE values indicate that the model’s average prediction error is relatively stable, 

although slightly higher than desired for precise predictions. The standard deviation of errors, 

which reflects the variability in prediction errors, provides additional insight into the model’s 

consistency(Behnood et al., 2017). The training standard deviation of 10.029 and the testing 

standard deviation of 9.868 are nearly identical, recommend that the error variability is similar 

in both phases. This consistency shows  that the model does not exhibit extreme changes in 



 

 

error across datasets, contributing to its robustness(Ali, 2024). The R² score, or coefficient of 

determination, reveals the model’s ability to explain the variance in the target variable. The 

training R² score of 0.872 shows that the model captures a substantial portion of the variance 

in the training data, shows a good fit. However, the testing R² score drops significantly to 0.233, 

indicating that the model explains only a small fraction of the variance in the testing dataset. 

This decline in R² score suggests that while the model performs well on the training data, it 

struggles to generalize and capture the underlying relationships in unseen data. 

 

 

Fig. 7 (a) Training and (b) testing of linear regression model 

The Linear Regression Forest model demonstrates regular error metrics across the training and 

testing datasets, as evidenced by similar RMSE, MAE, and standard deviation values. This 
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consistency recommend  that the model does not overfit the training data. However, the sharp 

drop in the R² score between training and testing indicates a challenge in explaining the 

variance in unseen data. This reduced decriptive power points to potential limitations in the 

model's structure or feature selection that hinder its ability to generalize effectively(Lin et al., 

2016). 

3.6 Non-linear regression  

The performance metrics of the non-linear regression model give a detailed understanding of 

its foreteiling accuracy and competency to generalize across training and testing datasets. Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE), Standard Deviation of errors, and 

the R² score are shown in Table 7. 

Table 7 Linear regression model results for training and testing 

 Training metrics Testing metrics 

RMSE 5.095 6.729 

MAE 3.439 4.647 

Standard deviation 5.095 6.689 

R2 score 0.967 0.675 

 

The result of the linear regression model has been plotted in Fig. 8. The RMSE, which measures 

the average magnitude of prediction errors, the training RMSE is 5.095, indicating that the 

model predicts outcomes with relatively low error during training. The testing RMSE of 6.729 

is slightly higher, reflecting a modest increase in error when applied to unseen data. This 

difference suggests that while the model generalizes reasonably well, there is some loss of 

accuracy outside the training dataset (Zhou et al., 2024). The values shows a good balance 

between fitting the training data and maintaining performance on new data. The MAE, which 

represents the average absolute error, complements the RMSE by focusing on the magnitude 

of errors without squaring them. A training MAE of 3.439 shows that, on average, the model’s 

predictions are close to actual values in the training set. The testing MAE of 4.647, while a 

little larger, remains within a reasonable range. The relatively small difference between training 

and testing MAE indicates that the model's predictions are consistent and not significantly 

pretended  by overfitting. The standard deviation of errors, reflecting the variability of 

prediction errors, offers additional context. The training standard deviation of 5.095 and the 



 

 

testing standard deviation of 6.689 show a slight increase in error variability for unseen data. 

This difference recommend that while the model is consistent, there may be more fluctuations 

in its predictions for the testing set compared to the training set. Though  the standard deviation 

values remain manageable, pointing to an overall reliable predictive performance. The R² 

score, or coefficient of determination, is a critical metric for assessing how well the model 

explains the variance in the target variable. The training R² score of 0.967 indicates that the 

model captures a significant portion of the variance in the training data, explaining  an excellent 

fit. However, the testing R² score of 0.675, though considerably lower, still reflects a strong 

ability to explain variance in unseen data(Zhou et al., 2024). This drop in R² score between 

training and testing suggests that while the model generalizes reasonably well, there is room 

for improvement in capturing the underlying patterns in new data. 
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Fig. 8 (a) Training and (b) testing of non-linear regression model 

The non-linear regression model exhibits strong performance on the training dataset, as 

demonstration  by low RMSE and MAE values, low error variability, and a high R² score. Its 

testing performance, while a little weaker, remains robust, with manageable increases in RMSE 

and MAE and a respectable R² score. These results show  that the model strikes a good balance 

between fitting the training data and generalizing to new observations, although further 

refinements, such as feature optimization or regularization techniques, could improve its 

predictive accuracy(Zhou et al., 2024). 

3.7 Comparative discussions  

The comparative study of the ANN, XGBoost, Random Forest, M5P, Linear Regression Forest, 

and Non-linear Regression models provides insights into their predictive capabilities, strengths, 

and weaknesses when applied to training and testing datasets. The results are asses using key 

performance metrics such as RMSE, MAE, Standard Deviation, and R² scores, alongside 

visualization tools like the Taylor diagram for model assessment. The ANN model indicate 

strong training performance with an R² score of 0.971, indicating excellent fit and its ability to 

capture complex patterns. However, the testing R² score of 0.589 reveals overfitting, where the 

model struggles to generalize effectively to unseen data. At the same time it captures some 

variability in the test dataset, significant improvements, such as regularization or architecture 

simplification, are needed to reduce the generalization gap. XGBoost exhibits near-perfect 

training results with an R² score of 0.999 and minimal errors (RMSE: 0.005, MAE: 0.002). 

However, the testing R² score drops to 0.798, and RMSE increases to 10.208, highlighting 

overfitting(Zhou et al., 2024). The model retains relatively strong predictive power on the 

testing dataset, but the discrepancy between training and testing metrics underscores the need 

for strategies like cross-validation or parameter tuning to enhance generalizability. Random 

Forest achieves robust training performance with an R² score of 0.977 and low errors (RMSE: 

2.995, MAE: 2.026). The testing R² score of 0.853 indicates that it generalizes better than ANN 

and XGBoost. However, higher testing errors (RMSE: 11.075, MAE: 6.338) and increased 

error variability suggest overfitting. Its relatively consistent performance between training and 

testing phases makes it a reliable option, though further optimization could improve testing 

accuracy(Maabreh and Almasabha, 2024). The M5P model captures training variability well, 

with an R² score of 0.983, low RMSE (3.652), and MAE (3.118). However, its testing R² score 

plummets to 0.229, and errors increase significantly (RMSE: 10.360, MAE: 7.802), signaling 



 

 

poor generalization. The stark contrast between training and testing metrics highlights severe 

overfitting(Habib and Okayli, 2024). Simplifying the model or implementing pruning 

techniques could enhance its applicability to unseen data. Linear Regression Forest maintains 

consistent performance between training and testing datasets, with close RMSE (10.029 vs. 

10.332) and MAE (7.942 vs. 8.197) values. However, the sharp decline in R² from 0.872 

(training) to 0.233 (testing) indicates limited explanatory power for unseen data. This suggests 

that while the model avoids overfitting, it may lack the complexity to capture the underlying 

relationships in the data effectively. The Non-linear Regression model strikes a balance 

between training (R²: 0.967, RMSE: 5.095) and testing performance (R²: 0.675, RMSE: 6.729). 

It generalizes better than ANN and M5P, with relatively small differences in error metrics 

across datasets. The model effectively captures non-linear relationships and offers strong 

generalizability, making it a robust choice. 

4. Statistical analysis 

Analysis of variance (ANOVA) results shows prime model fit. The R-Square value of 0.9991 

recommend that 99.91% of the variability in the dependent variable is describe by the model, 

implying a nearly perfect correlation between the predictors and the response variable. The 

coefficient of variation (CV) of 0.0461 (or 4.61%) show low relative variability, indicating 

high precision and consistency in the model's predictions. The RMSE of 19.4788 represents 

the average prediction error, and while its significance depends on the scale of the data, it is 

quite low in relative terms given the high R². Lastly, the degrees of freedom (DF) of 3 typically 

corresponds to the number of predictors or groups being compared, suggesting that the model 

includes three explanatory factors or comparisons. Overall, these results demonstrate a highly 

reliable and accurate model. 

Table 8 ANOVA outcomes 

R-Square Coefficient of variance RMSE  DF 

0.9991 0.0461 19.4788 3 

 

5. Conclusions  

This study compares the performance of six predictive models: ANN, XGBoost, Random 

Forest, M5P, Linear Regression, and Non-Linear Regression using metrics such as RMSE, 

MAE, R², and standard deviation across training and testing datasets. 



 

 

 The ANN model performs well on the training data (R² = 0.971) but struggles with 

unseen data (R² = 0.589), indicating overfitting. 

 XGBoost achieves nearly perfect training results (R² = 0.999, RMSE = 0.005) but 

generalizes moderately (testing R² = 0.798), reflecting reduced but still acceptable 

performance on new data.  

 Random Forest shows strong training performance (R² = 0.977) but a noticeable drop 

in generalization (testing R² = 0.853). 

 The M5P model demonstrates severe overfitting; its training R² is 0.983, but the testing 

R² plunges to 0.229.  

 Linear Regression achieves consistent RMSE and MAE between training and testing 

but has a substantial drop in R² (0.872 to 0.233), limiting its explanatory power.  

 Non-Linear Regression strikes a good balance, with testing RMSE and R² (6.729, 

0.675) indicating reasonable generalization despite slightly reduced accuracy. 

The Taylor diagram visually compares models using RMSE, standard deviation, and 

correlation, highlighting overfitting trends and generalization challenges. Non-linear 

regression and XGBoost emerge as robust contenders, while ANN and M5P require 

modifications for improved generalizability. Regularization, parameter tuning, or expanded 

datasets are suggested for enhancing performance. 

6. Limitations 

The study was conducted on a limited number of samples due to time and resource constraints, 

which may affect the generalizability of the findings. Long-term performance, including 

durability under environmental stressors, was not assessed in this phase. All tests were 

performed under controlled laboratory conditions. Techniques such as SEM and XRD, which 

could offer deeper insights into the stabilization mechanisms, were not conducted. ANN 

requires large datasets and is prone to overfitting, with interpretability being a major challenge. 

XGBoost, although accurate and robust, can be computationally intensive and sensitive to 

hyperparameter tuning. Random Forests offer good generalization but can become unwieldy 

with large numbers of trees and lack transparency in feature influence. M5P, a model tree 

algorithm, may not scale well with complex, high-dimensional data and can be sensitive to 

noise. Linear Regression assumes a linear relationship between variables, which oversimplifies 

many real-world problems and makes it ineffective for capturing complex patterns. Non-Linear 



 

 

Regression, while more flexible, often involves complex equations and can struggle with 

convergence and overfitting, especially in the presence of noise or outliers. 
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