- Kumari, W. G. P., Ranjith, P. G., Perera, M. S. A., Shao, S., Chen, B. K., Lashin, A., … Rathnaweera, T. D. (2017). Mechanical behaviour of Australian Strathbogie granite under in-situ stress and temperature conditions: An application to geothermal energy extraction. Geothermics, 65, 44–59. https://doi.org/10.1016/j.geothermics.2016.07.002
- Xiao, Y., Yin, J., Hu, Y., Wang, J., Yin, H., & Qi, H. (2019). Monitoring and Control in Underground Coal Gasification: Current Research Status and Future Perspective. Sustainability 2019, Vol. 11, Page 217, 11(1), 217. https://doi.org/10.3390/SU11010217
- Sun, F., Yao, Y., Chen, M., Li, X., Zhao, L., Meng, Y., … Feng, D. (2017). Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency. Energy, 125, 795–804. https://doi.org/10.1016/J.ENERGY.2017.02.114
- Ranjith, P. G., Viete, D. R., Chen, B. J., & Perera, M. S. A. (2012). Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Engineering Geology, 151, 120–127.
- Lintao, Y., Marshall, A. M., Wanatowski, D., Stace, R., & Ekneligoda, T. (2017). Effect of high temperatures on sandstone – a computed tomography scan study. https://doi.org/10.1680/jphmg.15.00031, 17(2), 75–90. https://doi.org/10.1680/JPHMG.15.00031
- Ozguven, A., & Ozcelik, Y. (2014). Effects of high temperature on physico-mechanical properties of Turkish natural building stones. Engineering Geology, 183, 127–136. https://doi.org/10.1016/j.enggeo.2014.10.006
- Zhang, W., Sun, Q., Zhang, Y., Xue, L., & Kong, F. (2018). Porosity and wave velocity evolution of granite after high-temperature treatment: a review. Environmental Earth Sciences, 77(9), 350. https://doi.org/10.1007/s12665-018-7514-3
- Zhu, Z., Tian, H., Chen, J., Jiang, G., Dou, B., Xiao, P., & Mei, G. (2020). Experimental investigation of thermal cycling effect on physical and mechanical properties of heated granite after water cooling. Bulletin of Engineering Geology and the Environment, 79(5), 2457–2465. https://doi.org/10.1007/s10064-019-01705-w
- Chen, S., Yang, C., & Wang, G. (2017). Evolution of thermal damage and permeability of Beishan granite. Applied Thermal Engineering, 110, 1533–1542. https://doi.org/10.1016/j.applthermaleng.2016.09.075
- Lintao, Y., Marshall, A. M., Wanatowski, D., Stace, R., & Ekneligoda, T. (2017). Effect of high temperatures on sandstone - a computed tomography scan study. International Journal of Physical Modelling in Geotechnics, 17(2), 75–90. https://doi.org/10.1680/jphmg.15.00031
- Zhao, Z., Liu, Z., Pu, H., & Li, X. (2018). Effect of Thermal Treatment on Brazilian Tensile Strength of Granites with Different Grain Size Distributions. Rock Mechanics and Rock Engineering, 51(4), 1293–1303. https://doi.org/10.1007/s00603-018-1404-6
- Zhu, Z., Tian, H., Jiang, G., & Dou, B. (2022). Effects of high temperature on rock bulk density. Geomechanics and Geoengineering, 17(2), 647–657. https://doi.org/10.1080/17486025.2020.1827169
- Ferrero, A. M., & Marini, P. (2001). Technical note: Experimental studies on the mechanical behaviour of two thermal cracked marbles. Rock Mechanics and Rock Engineering, 34(1), 57–66. https://doi.org/10.1007/s006030170026
- Glover, P. W. J., Baud, P., Darot, M., Meredith, P. G., Boon, S. A., LeRavalec, M., … Reuschlé, T. (1995). α/β phase transition in quartz monitored using acoustic emissions. Geophysical Journal International, 120(3), 775–782. https://doi.org/10.1111/j.1365-246X.1995.tb01852.x
- Griffiths, L., Heap, M. J., Baud, P., & Schmittbuhl, J. (2017). Quantification of microcrack characteristics and implications for stiffness and strength of granite. International Journal of Rock Mechanics and Mining Sciences, 100, 138–150. https://doi.org/10.1016/j.ijrmms.2017.10.013
- Mahanta, B., Singh, T. N., & Ranjith, P. G. (2016). Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Engineering Geology, 210, 103–114. https://doi.org/10.1016/j.enggeo.2016.06.008
- Yin, T., Li, X., Cao, W., & Xia, K. (2015). Effects of Thermal Treatment on Tensile Strength of Laurentian Granite Using Brazilian Test. Rock Mechanics and Rock Engineering, 48(6), 2213–2223. https://doi.org/10.1007/s00603-015-0712-3
- Tian, H., Kempka, T., Xu, N. X., & Ziegler, M. (2012). Physical properties of sandstones after high temperature treatment. Rock Mechanics and Rock Engineering, 45(6), 1113–1117. https://doi.org/10.1007/s00603-012-0228-z
- Wong, L. N. Y., Zhang, Y., & Wu, Z. (2020). Rock strengthening or weakening upon heating in the mild temperature range? Engineering Geology, 272, 105619. https://doi.org/10.1016/j.enggeo.2020.105619
- Zhang, L., Mao, X., & Lu, A. (2009). Experimental study on the mechanical properties of rocks at high temperature. Science in China, Series E: Technological Sciences, 52(3), 641–646. https://doi.org/10.1007/s11431-009-0063-y
- Wong, L. N. Y., & Zhang, Y. H. (2019, June 23). Numerical Investigation of Micromechanisms of Thermal Strengthening in Rock. OnePetro. Retrieved from /ARMAUSRMS/proceedings-abstract/ARMA19/All-ARMA19/124676
- Wadhams, N. (2011). Gold Standards: How miners dig for riches in a 2-mile-deep furnace. Wired, 19(3), 42.
- Olasolo, P., Juárez, M. C., Morales, M. P., Damico, S., & Liarte, I. A. (2016). Enhanced geothermal systems (EGS): A review. Renewable and Sustainable Energy Reviews, 56, 133–144. https://doi.org/10.1016/j.rser.2015.11.031
- Hökmark, H., & Fälth, B. (2003). Thermal dimensioning of the deep repository-Influence of canister spacing, canister power, rock thermal properties and nearfield design on the maximum canister surface temperature.
- Soppe, W. J., Donker, H., Celma, A. G., & Prij, J. (1994). Radiation-induced stored energy in rock salt. Journal of Nuclear Material, 217(1–2), 1–31. https://doi.org/https://doi.org/10.1016/0022-3115(94) 90301-8.
- Yavuz, H., Demirdag, S., & Caran, S. (2010). Thermal effect on the physical properties of carbonate rocks. International Journal of Rock Mechanics and Mining Sciences, 47(1), 94–103. https://doi.org/10.1016/j.ijrmms.2009.09.014
- Yang, S.-Q., Ranjith, P. G., Jing, H.-W., Tian, W.-L., & Ju, Y. (2017). An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics, 65, 180–197. https://doi.org/10.1016/j.geothermics.2016.09.008
- Tian, H., Ziegler, M., & Kempka, T. (2014). Physical and mechanical behavior of claystone exposed to temperatures up to 1000 °C. International Journal of Rock Mechanics and Mining Sciences, 70, 144–153. https://doi.org/10.1016/j.ijrmms.2014.04.014
- Wu, G., Wang, Y., Swift, G., & Chen, J. (2013). Laboratory Investigation of the Effects of Temperature on the Mechanical Properties of Sandstone. Geotechnical and Geological Engineering 2013 31:2, 31(2), 809–816. https://doi.org/10.1007/S10706-013-9614-X
- Afolagboye, L. O. (2021). Using index tests to predict the compressive strength of crystalline rocks. Proceedings of the Institution of Civil Engineers - Construction Materials, 174(6), 289–297. https://doi.org/10.1680/jcoma.18.00061
- Talabi, A. O., & Tijani, M. N. (2013). Hydrochemical and stable isotopic characterization of shallow groundwater system in the crystalline basement terrain of Ekiti area, southwestern Nigeria. Applied Water Science, 3(1), 229–245. https://doi.org/10.1007/s13201-013-0076-3
- ISRM, (International Society for Rock Mechanics). (1978). Suggested method for petrographic description of rocks. Commission for standardization of laboratory and field tests. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(2), 43–45.
- ISRM, (International Society for Rock Mechanics). (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In R. Ulusay & J. A. Hudson (Eds.), Suggested methods prepared by the commission on testing methods (p. 628). Ankara, Turkey: Kozan Ofset.
- ISRM. (1981). ISRM suggested methods: rock characterization. In E. T. Brown (Ed.), Testing and monitoring. London: Pergamon.
- Franklin, J. A. (1985). Suggested method for determining point load strength. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22(2), 51–60. https://doi.org/10.1016/0148-9062(85)92327-7
- IAEG. (1979). Classification of rocks and soils for engineering geological mapping part I: Rock and soil materials. Bulletin of the International Association of Engineering Geology, 19(1), 364–371. https://doi.org/10.1007/BF02600503
- Afolagboye, L. O., Talabi, A. O., & Owoyemi, O. O. (2024). Slake Durability of Granitic Rocks in Wet and Dry Conditions. In M. Bezzeghoud, Z. A. Ergüler, J. Rodrigo-Comino, M. K. Jat, R. Kalatehjari, D. S. Bisht, … M. Gentilucci (Eds.), Recent Research on Geotechnical Engineering, Remote Sensing, Geophysics and Earthquake Seismology (pp. 65–68). Cham: Springer Nature Switzerland.
- Afolagboye, L. O., Owoyemi, O. O., & Akinola, O. O. (2023). Effect of pH Condition and Different Solution on the Slake Durability of Granitic Rocks. Geotechnical and Geological Engineering, 41(2), 897–906. https://doi.org/10.1007/S10706-022-02312-5/METRICS
- Cai, X., Zhou, Z., Liu, K., Du, X., & Zang, H. (2019). Water-Weakening Effects on the Mechanical Behavior of Different Rock Types: Phenomena and Mechanisms. Applied Sciences 2019, Vol. 9, Page 4450, 9(20), 4450. https://doi.org/10.3390/APP9204450
- Bell, F. G. (2007). Engineering geology (2nd ed.). Elsevier: Oxford.
- Zhang, W., & Sun, Q. (2018). Identification of Primary Mineral Elements and Macroscopic Parameters in Thermal Damage Process of Limestone with Canonical Correlation Analysis. Rock Mechanics and Rock Engineering, 51(4), 1287–1292. https://doi.org/10.1007/s00603-018-1401-9
- Jin, P., Hu, Y., Shao, J., Zhao, G., Zhu, X., & Li, C. (2019). Influence of different thermal cycling treatments on the physical, mechanical and transport properties of granite. Geothermics, 78(December 2018), 118–128. https://doi.org/10.1016/j.geothermics.2018.12.008
- Zhang, W., Sun, Q., Hao, S., Geng, J., & Lv, C. (2016). Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Applied Thermal Engineering, 98, 1297–1304. https://doi.org/10.1016/J.APPLTHERMALENG.2016.01.010
- Meng, Q. Bin, Wang, C. K., Liu, J. F., Zhang, M. W., Lu, M. M., & Wu, Y. (2020). Physical and micro-structural characteristics of limestone after high temperature exposure. Bulletin of Engineering Geology and the Environment, 79(3), 1259–1274. https://doi.org/10.1007/s10064-019-01620-0
- Zhang, W., Qian, H., Sun, Q., & Chen, Y. (2015). Experimental study of the effect of high temperature on primary wave velocity and microstructure of limestone. Environmental Earth Sciences, 74(7), 5739–5748. https://doi.org/10.1007/S12665-015-4591-4/METRICS
- Yang, S. Q., Xu, P., Li, Y. B., & Huang, Y. H. (2017). Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments. Geothermics, 69, 93–109. https://doi.org/10.1016/J.GEOTHERMICS.2017.04.009
- Gautam, P. K., Verma, A. K., Jha, M. K., Sharma, P., & Singh, T. N. (2018). Effect of high temperature on physical and mechanical properties of Jalore granite. Journal of Applied Geophysics, 159, 460–474. https://doi.org/10.1016/j.jappgeo.2018.07.018
- Somerton, W. H. (1992). Thermal properties and temperature-related behavior of rock/fluid systems. Amsterdam: Elsevier.
- Clark, S. P. (1966). Handbook of Physical Constants. The Geological Society of America , 97, 459–482. https://doi.org/10.1130/MEM97
- Wu, G., Teng, N. G., & Wang, Y. (2011). Physical and mechanical characteristics of limestone after high temperature. Chinese Journal of Geotechnical Engineering, 33, 259–264.
- Xu, X. L., Gao, F., & Zhang, Z. Z. (2014). Influence of confning pressure on deformation and strength properties of granite after high temperatures. Chinese Journal of Geotechnical Engineering, 36, 2246–2252.
- Hu, J., Sun, Q., & Pan, X. (2018). Variation of mechanical properties of granite after high-temperature treatment. Arabian Journal of Geosciences, 11(2), 1–8. https://doi.org/10.1007/S12517-018-3395-8/METRICS
- Zhu, Z. nan, Tian, H., Jiang, G. sheng, & Cheng, W. (2018). Effects of High Temperature on the Mechanical Properties of Chinese Marble. Rock Mechanics and Rock Engineering, 51(6), 1937–1942. https://doi.org/10.1007/S00603-018-1426-0/METRICS
- Freire-Lista, D. M., Fort, R., & Varas-Muriel, M. J. (2016). Thermal stress-induced microcracking in building granite. Engineering Geology, 206, 83–93. https://doi.org/10.1016/J.ENGGEO.2016.03.005
- Gómez-Heras, M., Smith, B. J., & Fort, R. (2006). Surface temperature differences between minerals in crystalline rocks: Implications for granular disaggregation of granites through thermal fatigue. Geomorphology, 78(3–4), 236–249. https://doi.org/10.1016/J.GEOMORPH.2005.12.013
|