- Zhou, Z., et al. (2023). Vortex generators for passive cooling of rooftop photovoltaic systems under free convection. IEEE Journal of Photovoltaics, 13(5), 743–749. https://doi.org/10.1109/JPHOTOV.2023.3299752
- Fathabadi, H. (2021). Novel silica-based PV glass cover providing higher radiative cooling and power production compared with state-of-the-art glass covers. IEEE Journal of Photovoltaics, 11(6), 1485–1492. https://doi.org/10.1109/JPHOTOV.2021.3113160
- Kim, D. H., Kwak, H., Kim, M. S., & Song, Y. M. (2025). Advanced transparent radiative coolers: Materials, design, and applications. IEEE Journal of Selected Topics in Quantum Electronics, 31(6), 9900114. https://doi.org/10.1109/JSTQE.2025.3585564
- Zhou, Z., Jiang, Y., Ekins-Daukes, N., Keevers, M., & Green, M. A. (2021). Optical and thermal emission benefits of differently textured glass for photovoltaic modules. IEEE Journal of Photovoltaics, 11(1), 131–137. https://doi.org/10.1109/JPHOTOV.2020.3033390
- Dosymbetova, G., et al. (2023). Neural network-based active cooling system with IoT monitoring and control for LCPV silicon solar cells. IEEE Access, 11, 52585–52602. https://doi.org/10.1109/ACCESS.2023.3280265
- de Arrieta, I. G., Echániz, T., Fuente, R., & López, G. A. (2024). Angle-resolved direct emissivity measurements on unencapsulated solar cells for passive thermal control. IEEE Journal of Photovoltaics, 14(3), 459–465. https://doi.org/10.1109/JPHOTOV.2024.3372329
- Hirst, L. C., Fujii, H., Wang, Y., Sugiyama, M., & Ekins-Daukes, N. J. (2014). Hot carriers in quantum wells for photovoltaic efficiency enhancement. IEEE Journal of Photovoltaics, 4(1), 244–252. https://doi.org/10.1109/JPHOTOV.2013.2289321
- Legendre, J., & Chapuis, P.-O. (2025). CRESCENT-1D: A 1-D solver of coupled charge and light transport in heterostructures for the design of near-field thermophotonic engines. IEEE Transactions on Electron Devices, 72(3), 1211–1220. https://doi.org/10.1109/TED.2025.3528870
- Yang, K., Wu, X., Zhou, L., et al. (2025). Towards practical applications of radiative cooling. Nature Reviews Clean Technology, 1, 235–254. https://doi.org/10.1038/s44359-025-00041-5
- Lee, M., Kim, G., Jung, Y., et al. (2023). Photonic structures in radiative cooling. Light: Science & Applications, 12, 134. https://doi.org/10.1038/s41377-023-01119-0
- Li, L., Zhang, Q., Liu, G., et al. (2025). Advanced passive daytime radiative cooling: from material selection and structural design to application towards multifunctional integration. Advanced Composites and Hybrid Materials, 8, 97. https://doi.org/10.1007/s42114-024-01127-7
- Asokan, J., Kumar, P., Arjunan, G., et al. (2025). Photocatalytic performance of spinel ferrites and their carbon-based composites for environmental pollutant degradation. Journal of Cluster Science, 36, 42. https://doi.org/10.1007/s10876-024-02754-2
- Yu, Z., Wang, B., Gui, L., et al. (2024). Development of photocatalytic and electrocatalytic coatings via thermal spraying for environmental and energy storage applications: a short review. Surface Science and Technology, 2, 7. https://doi.org/10.1007/s44251-023-00030-5
- Rana, G., Viswanathan, K., Dhiman, V., et al. (2025). Photocatalytic degradation of VOCs: Emerging trends in visible light catalyst modifications and surface engineering. Journal of Cluster Science, 36, 76. https://doi.org/10.1007/s10876-025-02799-x
- Duda, A., Kopyciński, B., Hawełek, Ł., et al. (2024). Preparation, characterization, and photocatalytic performance of atmospheric plasma-sprayed TiO₂/Al₂O₃ coatings on glass substrates. Archives of Civil and Mechanical Engineering, 24, 142. https://doi.org/10.1007/s43452-024-00938-1
- Castañeda de la Hoya, F. M., Torres-Delgado, G., Hernández-García, F. A., et al. (2025). Photocatalytic degradation of 2,4-Dichlorophenoxyacetic acid using ZnO in thin film: Effect of sintering temperature and irradiation source. Journal of Materials Science: Materials in Electronics, 36, 1292. https://doi.org/10.1007/s10854-025-15363-0
- Adibekyan, A., Schumacher, J., Pattelli, L., et al. (2025). Emissivity and reflectivity measurements for passive radiative cooling technologies. International Journal of Thermophysics, 46, 66. https://doi.org/10.1007/s10765-025-03532-6
- Xue, P., Shen, Y., Ye, S., et al. (2023). Secondary solar heat gain modelling of spectral-selective glazing based on dynamic solar radiation spectrum. Building Simulation, 16, 2211–2224. https://doi.org/10.1007/s12273-023-0986-4
- Grbčić, L., Park, M., Elzouka, M., et al. (2025). Inverse design of photonic surfaces via multi fidelity ensemble framework and femtosecond laser processing. npj Computational Materials, 11, 35. https://doi.org/10.1038/s41524-025-01518-4
- Li, Y., Wang, F., Zhang, A., et al. (2024). Performance of the multilayer film for infrared stealth based on VO₂ thermochromism. Journal of Thermal Science, 33, 1312–1324. https://doi.org/10.1007/s11630-024-1998-9
- Liang, J., Tan, X., Dai, Q., et al. (2025). A composite photonic structure with periodic array of SiO₂ particles for solar cell radiative cooling. Applied Physics A, 131, 308. https://doi.org/10.1007/s00339-025-08391-4
- Yadav, D. K., Malakar, S., Arora, V. K., et al. (2024). Evacuated tube solar collector-based drying system: Analytical modeling, influencing factors, and recent progress in drying of agri-commodities. Food Engineering Reviews, 16, 567–594. https://doi.org/10.1007/s12393-024-09382-6
- Ramirez-Cuevas, F. V., Gurunatha, K. L., Li, L., et al. (2024). Infrared thermochromic antenna composite for self-adaptive thermoregulation. Nature Communications, 15, 9109. https://doi.org/10.1038/s41467-024-53177-6
- Grosso, G., Moldaschl, T., Fuger, R., & Binder, A. (2021). Multiphysics reduced order modelling of a packaged laser diode. In 2021 27th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC) (pp. 1–6). IEEE. https://doi.org/10.1109/THERMINIC52472.2021.9626505
- Zhao, X., Xu, Y., & Hopkins, D. C. (2016). Advanced multi-physics simulation for high performance power electronic packaging design. In 2016 International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM) (pp. 1–5). IEEE. https://doi.org/10.1109/3DPEIM.2016.8048203.
- Jia, B., Yang, H., Wang, Z., Wang, Y., & Lu, W. (2024). Evolutions of surface charge distribution on DC GIL insulators under electro-thermal coupling field. In 20th International Conference on AC and DC Power Transmission 2024 (pp. 1338–1341). IET. https://doi.org/10.1049/icp.2024.2472
- Viarengo, S., et al. (2023). A new coupled electrodynamic T–A and thermal model for the critical current characterization of high-temperature superconducting tapes and cables. IEEE Access, 11, 107548–107561. https://doi.org/10.1109/ACCESS.2023.3321194
- Suresh, K., & Parimalasundar, E. (2022). IPWM Based IBMSC DC-AC Converter Using Solar Power for Wide Voltage Conversion System. Canadian Journal of Electrical and Computer Engineering, 45(4), 394–400. https://doi.org/10.1109/icjece.2022.3207873
- Zhu, E., Zong, Z., Li, E., et al. (2025). Frequency transfer and inverse design for metasurface under multi-physics coupling by Euler latent dynamic and data-analytical regularizations. Nature Communications, 16, 2251. https://doi.org/10.1038/s41467-025-57516-z
- Zhang, B., Ma, J., Kou, Y., et al. (2025). Modelling of the electrical-magnetic-thermal-mechanical coupling behavior for the coil-structure electromagnetic launch. Computational Mechanics, 76, 1–22. https://doi.org/10.1007/s00466-024-02584-z
- Du, W., Sun, L., & Ma, Z. (2025). Multiphysics coupling analysis and structure optimization of flux switching permanent magnet linear motors. Scientific Reports, 15, 21001. https://doi.org/10.1038/s41598-025-04518-y
- Yujiao, Z., Yinghao, L., Sizhe, N., et al. (2024). Multi-physics coupling simulation of GMAW arc and droplet behaviors based on CFD. Welding in the World, 68, 2589–2610. https://doi.org/10.1007/s40194-024-01806-5
- Kang, X., Tong, Y., Wu, W., et al. (2023). Transient multi-physics behavior of an insert high temperature superconducting no-insulation coil in hybrid superconducting magnets with inductive coupling. Applied Mathematics and Mechanics - English Edition, 44, 255–272. https://doi.org/10.1007/s10483-023-2960-6
- Sutanto, B., et al. (2025). Three-dimensional multi-physics modelling and optimisation of a hybrid of radiation filtering and passive cooling strategy for floating photovoltaic systems. Scientific Reports, 15, 27112. https://doi.org/10.1038/s41598-025-10409-sutanto
- Shao, Q. (2025). Optimization method for geometric shape of DC GIL insulators based on electric thermal multi-physics field coupling model. Electrical Engineering, 107, 3425–3434. https://doi.org/10.1007/s00202-024-02680-6
- Dan, Q. (2024). Multi-objective optimization of photovoltaic power plant layout planning and system efficiency in waterworks. In 2024 International Conference on Computers, Information Processing and Advanced Education (CIPAE) (pp. 554–559). IEEE. https://doi.org/10.1109/CIPAE64326.2024.00107
- Wang, X., Duan, Y., Xiao, B., Zhou, Z., Peng, H., & Wang, Y. (2019). Hybrid solar power system optimization based on multi-objective PSO algorithm. In 2019 Chinese Automation Congress (CAC) (pp. 4176–4180). IEEE. https://doi.org/10.1109/CAC48633.2019.8997401
- Ouhsiane, L., Siroux, M., Ganaoui, M. E., & Mimet, A. (2018). Multi-objective optimization of hybrid PVT solar panels. In 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE) (pp. 1–5). IEEE. https://doi.org/10.23919/ICUE-GESD.2018.8635683
- Phonrattanasak, P., Miyatake, M., & Sakamoto, O. (2013). Optimal location and sizing of solar farm on Japan east power system using multi-objective Bees algorithm. In 2013 IEEE Energytech (pp. 1–6). IEEE. https://doi.org/10.1109/EnergyTech.2013.6645334
- Khelifa, A., & Bounib, M. (2023). Intelligential method optimization for improve heat transfer in solar hybrid collector. In 2023 1st International Conference on Renewable Solutions for Ecosystems: Towards a Sustainable Energy Transition (ICRSEtoSET) (pp. 1–4). IEEE. https://doi.org/10.1109/ICRSEtoSET56772.2023.10525485
- Huang, J., Chen, M., & Xu, D. (2020). An optimization design method of front-stage DC/DC converters for PV system. In 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia) (pp. 1722–1728). IEEE. https://doi.org/10.1109/IPEMC-ECCEAsia48364.2020.9367944
- Haridy, S., Radwan, A., Kemel, A., Abo Zahhad, E. M., El-Sharkawy, I. I., & Shamsuzzaman, M. (2025). Enhancing the thermo-electrical performance of low-concentrator photovoltaic module using design of experiments. In 2025 9th International Conference on Green Energy and Applications (ICGEA) (pp. 1–5). IEEE. https://doi.org/10.1109/ICGEA64602.2025.11009242
- Zhao, S., Li, Q., Sun, Y., et al. (2025). Application of multi-objective optimization based on Sobol sensitivity analysis in solar single-double-effect LiBr-H₂O absorption refrigeration. Frontiers in Energy, 19, 69–87. https://doi.org/10.1007/s11708-024-0938-4
- Athia, N., Pandey, M., & Saxena, S. (2024). Multi-objective optimization through experimental technical investigation of a green hydrogen production system. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-024-05767-athia
- Wang, X., & Li, Y. (2025). Design of intelligent energy management system for electric vehicles based on multi-objective optimization. Energy Informatics, 8, 93. https://doi.org/10.1186/s42162-025-00547-z
- Aburabi’e, M., Bataineh, K., & Al-Kabaha, Y. (2025). Multi objective design optimization of residential buildings: Energy consumption, life cycle cost and thermal discomfort based on NSGA-II. Innovative Infrastructure Solutions, 10, 354. https://doi.org/10.1007/s41062-025-02158-9
- Mohan, G. B., Kumar, R. P., & Elakkiya, R. (2025). Enhancing pre-trained models for text summarization: A multi-objective genetic algorithm optimization approach. Multimedia Tools and Applications, 84, 29949–29965. https://doi.org/10.1007/s11042-024-20374-w.
- Hashemian, N., & Noorpoor, A. (2019). Assessment and multi-criteria optimization of a solar- and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Conversion and Management, 195, 788–797. https://doi.org/10.1016/j.enconman.2019.05.039
|