
تعداد نشریات | 163 |
تعداد شمارهها | 6,877 |
تعداد مقالات | 74,134 |
تعداد مشاهده مقاله | 137,853,501 |
تعداد دریافت فایل اصل مقاله | 107,232,314 |
ارزیابی ریسک سلامت هیدروکربنهای آروماتیک چندحلقهای در ذرات معلق (PM2.5) هوای شهر اصفهان | ||
نشریه محیط زیست طبیعی | ||
دوره 78، شماره 1، خرداد 1404، صفحه 95-107 اصل مقاله (1.24 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jne.2025.390430.2771 | ||
نویسندگان | ||
محسن سلیمانی* 1؛ سمانه شهرابی فراهانی1؛ زهره ابراهیمی سیریزی2؛ ین هنینگ کریستنسن3 | ||
1گروه محیط زیست، دانشکدة منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران. | ||
2گروه محیطزیست، دانشکدة منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران. | ||
3گروه شیمی آنالیز، دانشکدة گیاه و محیطزیست، دانشگاه کپنهاگ، کپنهاگ، دانمارک. | ||
چکیده | ||
ذرات معلق بهدلیل اثرات متنوعی که بر کیفیت هوای محلی، منطقه ای و جهانی می گذارند از آلاینده های اصلی هوا بهشمار می روند. مطالعه بر روی ذرات معلق هوا بهدلیل توانایی جذب سایر آلاینده ها مانند هیدروکربن های آروماتیک چندحلقه ای (PAHs) و اثرگذاری بر سلامت انسان از اهمیت زیادی برخوردار هستند. هدف از این پژوهش ارزیابی ریسک سلامت PAHs همراه با ذرات معلق (PM2.5) در شهر اصفهان بود. بدینمنظور نمونه برداری 24 ساعته از ذرات معلق PM2.5 هوای شهر اصفهان در 50 نقطة مختلف و در چهار فصل سال (پاییز و زمستان 1396 و بهار و تابستان 1397) با دستگاه نمونه بردار هوا با حجم بالا انجام شد. ترکیبات PAHs جمع آوری شده بر روی فیلترهای کوارتزی به روش اولتراسونیک استخراج شدند و سپس با استفاده از دستگاه GC-MS اندازهگیری شد. بهمنظور ارزیابی ریسک سرطان زایی این ترکیبات، پتانسیل سرطانزایی معادل بنزو-ا-پایرن برای PAHs محاسبه شد و ریسک سرطان زایی این ترکیبات از طریق تنفس، بلع و تماس پوستی مورد ارزیابی قرار گرفت. نتایج بهدست آمده نشان داد که در فصل پاییز و همزمان با پدیدة وارونگی دما مقادیر غلظت PM2.5 و PAHs بیشتر از سایر فصول و بیشتر از حد آستانه بود. مجموع ریسک سرطانزایی اکثر نقاط شهر اصفهان در دسته خطر بالقوة سرطانزایی یعنی محدودة 6-10 تا 4-10 قرار گرفت. بیشترین میزان ریسک مربوط به مناطق شهری، شهرک های صنعتی و پس از آن ترمینال های اتوبوسهای بین شهری بود. با توجه به نتایج بهدست آمده مدیریت کنترل منابع تولید ترکیبات PAHs و لزوم برنامه ریزی در راستای کاهش انتشار این ترکیبات برای حفظ سلامت ساکنین شهر اصفهان توصیه می شود. | ||
کلیدواژهها | ||
آلایندههای آلی؛ آلودگی هوا؛ ریسک سرطانزایی؛ کیفیت هوا؛ هیدروکربنهای آروماتیک چندحلقهای | ||
مراجع | ||
Akyüz, M., Çabuk, H., 2009. Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. Journal of Hazardous Materials 170(1), 13-21. Ali-Taleshi, M.S., Riyahi Bakhtiari, A., Moeinaddini, M., Squizzato, S., Feiznia, S., Cesari, D., 2021. Single-site source apportionment modeling of PM2.5-bound PAHs in the Tehran metropolitan area, Iran: Implications for source-specific multi-pathway cancer risk assessment. Urban Climate 39, 100928. Azimi-Yancheshmeh, R., Moeinaddini, M., Feiznia, S., Riyahi-Bakhtiari, A., Savabieasfahani, M., van Hullebusch, E.D., Asgari Lajayer, B., 2021. Seasonal and spatial variations in atmospheric PM2.5-bound PAHs in Karaj city, Iran: Sources, distributions, and health risks. Sustainable Cities and Society 72, 103020. Bandowe, B.A.M., Nkansah, M.A., 2016. Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs, oxygenated-PAHs and azaarenes) in street dust from a major West African Metropolis. Science of the Total Environment 553, 439-449. Callén, M.S., López, J.M., Iturmendi, A., Mastral, A.M., 2013. Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area. Environmental Pollution 183, 166-174. Chang, J., Shen, J., Tao, J., Li, N., Xu, C., Li, Y., Liu, Z., Wang, Q., 2019. The impact of heating season factors on eight PM2.5-bound polycyclic aromatic hydrocarbon (PAH) concentrations and cancer risk in Beijing. Science of the Total Environment 688, 1413-1421. Chen, S.C., Liao, C.M., 2006. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Science of the Total Environment 366(1), 112-123. Chen, Z., Chen, D., Zhao, C., Kwan, M.-p., Cai, J., Zhuang, Y., Zhao, B., Wang, X., Chen, B., Yang, J., 2020. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environment International 139: 105558. Fan, X., Chen, Z., Liang, L., Qiu, G., 2019. Atmospheric PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Guiyang City, southwest China: Concentration, seasonal variation, sources and health risk assessment. Archives of Environmental Contamination and Toxicology 76(1), 102-113. Ghanavati, N., Nazarpour, A., Watts, M.J., 2019. Status, source, ecological and health risk assessment of toxic metals and polycyclic aromatic hydrocarbons (PAHs) in street dust of Abadan, Iran. Catena 177, 246-259. Goudarzi, G., Baboli, Z., Moslemnia, M., Tobekhak, M., Tahmasebi Birgani, Y., Neisi, A., Ghanemi, K., Babaei, A.A., Hashemzadeh, B., Ahmadi Angali, K., 2021. Assessment of incremental lifetime cancer risks of ambient air PM10-bound PAHs in oil-rich cities of Iran. Journal of Environmental Health Science and Engineering 19(1), 319-330. Hasheminejad, S., Moradi, H., Soleimani, M., 2024. Potential of Pinus eldarica Medw. tree bark for biomonitoring polycyclic aromatic hydrocarbons in ambient air. Scientific Report 14, 6259. Hoseini, M., Yunesian, M., Nabizadeh, R., Yaghmaeian, K., Ahmadkhaniha, R., Rastkari, N., Parmy, S., Faridi, S., Rafiee, A., Naddafi, K., 2016. Characterization and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban atmospheric particulate of Tehran, Iran. Environmental Science and Pollution Research 23(2), 1820-1832. Hatamian, S., 2025. The impact of long-term exposure to air pollution on cancer risk. Advanced Therapies Journal 7(22), 54-60. Huang, L., Zhang, J., Li, L., Wang, G., Gao, Q., Wang, D., Wang, Y., Wang, D., Zhou, S., 2025. PM2.5-bound synchronous polycyclic aromatic hydrocarbons and heavy metals in in a typical cold city in northern China: Differences in heating and non-heating periods. Journal of Environmental Management 381, 125359. Hosseiniebalam F., Ghaffarpasand O., 2015. The effects of emission sources and meteorological factors on sulphur dioxide concentration of Great Isfahan, Iran. Atmosheric Environment 100, 94-101. Iakovides, M., Iakovides, G., Stephanou, E.G., 2021. Atmospheric particle-bound polycyclic aromatic hydrocarbons, n-alkanes, hopanes, steranes and trace metals: PM2.5 source identification, individual and cumulative multi-pathway lifetime cancer risk assessment in the urban environment. Science of the Total Environment 752, 141834. Iakovides, M., Stephanou, E.G., Apostolaki, M., Hadjicharalambous, M., Evans, J.S., Koutrakis, P., Achilleos, S., 2019. Study of the occurrence of airborne polycyclic aromatic hydrocarbons associated with respirable particles in two coastal cities at eastern Mediterranean: Levels, source apportionment, and potential risk for human health. Atmospheric Environment 213, 170-184. Jain, S., Sharma, S.K., Choudhary, N., Masiwal, R., Saxena, M., Sharma, A., Mandal, T.K., Gupta, A., Gupta, N.C., Sharma, C., 2017. Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environmental Science and Pollution Research 24(17), 14637-14656. Jakovljević, I., Sever Štrukil, Z., Godec, R., Bešlić, I., Davila, S., Lovrić, M., Pehnec, G., 2020. Pollution sources and carcinogenic risk of PAHs in PM1 particle fraction in an urban area. International Journal of Environmental Research and Public Health 17(24), 1-15. Kaghazchi, M.E., Soleimani, M., 2023, Changes in ecological and health risk assessment indices of potentially toxic elements associated with ambient air particulate matters (PM2.5) in response to source, land use and temporal variation in Isfahan city, Iran. Urban Climate, 49, 101520. Kermani, M., Jonidi Jafari, A., Gholami, M., Shahsavani, A., Taghizadeh, F., Arfaeinia, H., 2021. Ambient air PM2.5-bound PAHs in low traffic, high traffic, and industrial areas along Tehran, Iran. Human and Ecological Risk Assessment: An International Journal 27(1), 134-151. Khairy, M.A., Lohmann, R., 2013. Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt. Chemosphere 91(7), 895-903. Kim, K.-H., Kabir, E., Kabir, S., 2015. A review on the human health impact of airborne particulate matter. Environment International 74, 136-143. Knafla, A., Phillipps, K.A., Brecher, R.W., Petrovic, S., Richardson, M., 2006. Development of a dermal cancer slope factor for benzo[a]pyrene. Regulatory Toxicology and Pharmacology 45(2), 159-168. Ma, L., Li, B., Liu, Y., Sun, X., Fu, D., Sun, S., Thapa, S., Geng, J., Qi, H., Zhang, A., 2020. Characterization, sources and risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in Harbin, a cold city in Northern China. Journal of Cleaner Production 264, 121673. Maghzi Najafabadi, A., Mahaki, B., Hajizadeh, Y., 2020. Spatiotemporal modeling of airborne fine particulate matter distribution in Isfahan. International Journal of Environmental Health Enginerring 9, 9. Mahboubfar, M. R., Ramesht, M. H. , Yazdanpanah, H., Azani, M., 2018. Contribution of inversion management to controlling the threshold of urban air quality index (Case study: Isfahan City). Physical Geography Research,= 50(2), 255-270. Manoli, E., Kouras, A., Karagkiozidou, O., Argyropoulos, G., Voutsa, D., Samara, C., 2016. Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: source apportionment of ambient PAH levels and PAH-induced lung cancer risk. Environmental Science and Pollution Research 23(4), 3556-3568. Marjovvi, A. Soleimani, M., Mirghaffari, N., Karimzadeh, H., Yuan, Y., Fang, L., 2022. Monitoring, source identification and environmental risk of potentially toxic elements of dust in Isfahan province, central Iran. Bulltin of Environmental Contamination and Toxicology,= 108(5), 901-908. Mo, Z., Wang, Z., Mao, G., Pan, X., Wu, L., Xu, P., Chen, S., Wang, A., Zhang, Y., Luo, J., 2019. Characterization and health risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons in 5 urban cities of Zhejiang Province, China. Scientific Reports 9 (1): 7296. Morakinyo, O.M., Mukhola, M.S., Mokgobu, M.I., 2020. Concentration levels and carcinogenic and mutagenic risks of PM(2.5)-bound polycyclic aromatic hydrocarbons in an urban-industrial area in South Africa. Environmental Geochemistry and Health 42 =(7), 2163-2178. Norouzi, S., Khademi, H., Ayoubi, S., Cano, A.F., Acosta, J.A., 2017. Seasonal and spatial variations in dust deposition rate and concentrations of dust-borne heavy metals, a case study from Isfahan, central Iran. Atmospheric Pollution Research 8(4), 686-699. OEHHA, 2011. California Office of Environmental Health Hazard Assessment. Appendix B. Chemical-specific summaries of the information used to derive unit risk and cancer potency values. Updated 2011. Retrieved April 10 2020, from. https://oehha.ca.gov/media/downloads/crnr/appendixb.pdf. Peng, C., Chen, W., Liao, X., Wang, M., Ouyang, Z., Jiao, W., Bai, Y., 2011. Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk. Environmental Pollution 159 (3): 802-808. Peng, C., Ouyang, Z., Wang, M., Chen, W., Jiao, W., 2012. Vegetative cover and PAHs accumulation in soils of urban green space. Environmental Pollution 161, 36-42. SFT. 1999. Guidelines on risk assessment of contaminated sites. SFT report 99.06. Norwegian Pollution Control Authority. Room, S.A., Lin, C.E., Pan, S.Y., Hsiao, T.C., Chou, C.C.K., Chi, K.H., 2023. Incremental lifetime cancer risk of PAHs in PM2.5 via local emissions and long-range transport during winter. Aerosol and Air Quality Research 23, 220319. Safo-Adu, G., Attiogbe, F., Gorman Ofosu, F., Emahi, I., Naa Dede Maud Palm, L., Enimil, E., 2025. Polycyclic aromatic compounds in ambient PM2.5 in the central region of Ghana: Molecular distribution, origin and cancer risk assessment. Atmospheric Environment 343, 120973. Soleimani, M., Ebrahimi, Z., Mirghaffari, N., Moradi, H., Amini, N., Poulsen, K.G., Christensen, J.H., 2022. Seasonal trend and source identification of polycyclic aromatic hydrocarbons associated with fine particulate matters (PM2.5) in Isfahan City, Iran, using diagnostic ratio and PMF model. Environmental Science and Pollution Research 29(18), 26449-26464. Soltani, N., Keshavarzi, B., Moore, F., Tavakol, T., Lahijanzadeh, A.R., Jaafarzadeh, N., Kermani, M., 2015. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Science of the Total Environment 505, 712-723. US EPA. 1991. Risk assessment guidance for superfund, Volume 1, Human health evaluation manual (Part B, Development of risk-based preliminary remediation goals). OSWER. [9285.7-01B. EPA/540/R-92/003]. US EPA. 2001. Supplementary guidance for conducting health risk assessment of chemical mixtures. EPA/630/R-00/002. Risk Assessment Forum, Office of Research and Development, National Center for Environmental Assessment, Washington, DC. US EPA. 2011. Exposure factors handbook: National Cente for Environmental Assessment, Washington, DC, EPA/600/R 09/052F. Available from the National Technical Information Service, Springfield, VA, and online at http://www.epa.gov/ncea/efh . US EPA. 2011. Exposure Factors Handbook 2011 Edition (Final). Washington, DC: US Environmental Protection Agency, EPA/600/R-09/052F. US EPA. 2011. Supplemental guidance for developing soil screening levels for superfund sites. OSWER 9355, 4-24. Statistical Centre of Iran. 2025. Available from https://www.amar.org.ir/ (Accesssed 1th Sepetember 2018) Wang, W., Ding, X., Turap, Y., Tursun, Y., Abulizi, A., Wang, X., Shao, L., Talifu, D., An, J., Zhang, X., 2020. Distribution, sources, risks, and vitro DNA oxidative damage of PM(2.5)-bound atmospheric polycyclic aromatic hydrocarbons in Urumqi, NW China. Science of the Total Environment 739, 139518. Wiriya, W., Prapamontol, T., Chantara, S., 2013. PM10-bound polycyclic aromatic hydrocarbons in Chiang Mai (Thailand): Seasonal variations, source identification, health risk assessment and their relationship to air-mass movement. Atmospheric Research 124, 109-122. Zarasvandi, A., Rastmanesh, F., Banitamim, F., Mokhtari, B., Saed, M., 2017. Investigation evaluation and determination of possible source of polycyclic aromatic hydrocarbons (PAHs) in the street dust of Ahvaz city medical chemistry concerning. Journal of Ilam University of Medical Sciences 25(1), 121-137 Zhang, J., Li, R., Zhang, X., Bai, Y., Cao, P., Hua, P., 2019. Vehicular contribution of PAHs in size dependent road dust: A source apportionment by PCA-MLR, PMF, and UNMIX receptor models. Science of the Total Environment 649, 1314-1322. Zhao, T., Yang, L., Huang, Q., Zhang, W., Duan, S., Gao, H., Wang, W., 2020. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated-PAHs (NPAHs) emitted by gasoline vehicles: Characterization and health risk assessment. Science of the Total Environment 727, 138631 Zheng, L., Ou, J., Liu, M., Chen, Y., Tang, Q., Hu, Y., 2019. Seasonal and spatial variations of PM10-bounded PAHs in a coal mining city, China: Distributions, sources, and health risks. Ecotoxicology and Environmental Safety 169, 470-478. Zhu, J., Hsu, C.Y., Chou, W.C., Chen, M.J., Chen, J.L., Yang, T.T., Wu, Y.S., Chen, Y.C., 2019. PM2.5- and PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the residential area near coal-fired power and steelmaking plants of Taichung City, Taiwan: In vitro-based health risk and source identification. Science of the Total Environment 670, 439-447. | ||
آمار تعداد مشاهده مقاله: 114 تعداد دریافت فایل اصل مقاله: 29 |