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Abstract 

Dynamic vibration absorbers (DVAs) are widely used to mitigate resonant vibrations in mechanical 

systems by shifting the associated response peaks. However, optimizing their performance is 

computationally demanding, especially in systems with many degrees of freedom or numerous 

components, such as inerter-based DVAs. This study proposes a computationally efficient, 

surrogate-assisted optimization framework that leverages a novel Peak-Slope (PS) performance 

metric. As a reinterpretation of the classical 𝑯∞ approach, the PS metric evaluates the effectiveness 

of vibration absorbers by measuring the secant slope between adjacent resonance peaks in the 

frequency response function. A well-tuned DVA yields a PS value approaching zero, indicating 

minimal variation between peaks and thus optimal mitigation of resonance. To reduce complexity, 

the structural parameters are held constant, and the influence of absorber parameters on the PS 

metric is isolated. The optimization space is simplified using surrogate models constructed via 

quartic polynomial regression. A novel decoupling algorithm introduced in this study enables 

efficient estimation of the PS metric as the Decoupled Peak-Slope (DPS) by expressing it as a sum of 

independent surrogate functions, each dependent on a single DVA parameter. Optimization is then 

performed by minimizing this total sum. A fully coupled 1DOF–1DOF system, incorporating masses, 

springs, dampers, and inerters, is used as the benchmark to validate the method. The DPS approach 

is compared against traditional genetic algorithm (GA)-based optimization, demonstrating 

substantial gains in both speed and accuracy. Further validation is conducted using reduced-order 

systems from the literature, confirming the true decoupling capability of the framework. For four 

distinct structural configurations, the decoupled surrogate equations are generated and 

summarized, forming a catalogue of precomputed polynomial functions that enables rapid 

evaluation of optimal DVA parameters across a range of systems. The results show strong agreement 

with analytical solutions and superior performance over GA-based methods. This positions the DPS 

framework as a fast, accurate tool for future semi-active DVA systems, enabling real-time tuning via 

precomputed surrogate functions. 

Keywords: Dynamic Vibration Absorber (DVA), Surrogate Modelling, Peak-Slope Metric, Optimization, 
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Nomenclature 

Symbol  Definition       Units 

𝛽𝑝  Inerter ratio of the p-th absorber: 𝑏𝑎,𝑝/𝑀    — 

𝜆𝑝  Stiffness ratio of the p-th absorber: 𝑘𝑎,𝑝/𝐾1    — 

𝜇𝑝  Mass ratio of the p-th absorber: 𝑚𝑎,𝑝/𝑀    — 

𝜈𝑝  Damping ratio of the p-th absorber: 𝑐𝑎,𝑝/𝐶1    — 

𝜔𝑑𝑐   Decoupled natural frequency: √(𝐾1/𝑀)    rad/s 

𝜔𝑖 , 𝜔𝑗   Resonance frequencies of the i-th and j-th peaks   rad/s 

𝜁𝑑𝑐  Decoupled damping ratio: 𝐶1/(2𝑀𝜔𝑑𝑐)    — 

[𝐹]  Force vector including base excitation and external forces  N 

𝐾1, 𝐶1  Stiffness and damping of the host structure    N/m, Ns/m 

𝑀  Reference mass of the main system     kg 

𝑃  Number of dynamic vibration absorbers (DVAs)   — 

[𝑀], [𝐶], [𝐾] Mass, damping, and stiffness matrices of the system   — 

𝑏𝑎,𝑝  Inerter coefficient of the p-th absorber    kg 

𝑐𝑎,𝑝  Damping coefficient of the p-th absorber    Ns/m 

𝑘𝑎,𝑝  Stiffness of the p-th absorber     N/m 

𝑚𝑎,𝑝  Mass of the p-th absorber      kg 

𝑞  Generalized displacement vector     m 

 

1. Introduction 

The presence of vibrations in mechanical systems is an inherent consequence of dynamic operations, frequently 

resulting in diminished performance, reduced precision, and accelerated structural degradation. To mitigate these 

adverse effects, the implementation of effective vibration control is regarded as essential for enhancing reliability and 

prolonging operational lifespan. Vibration control methodologies are typically categorized into passive and active 

systems. In passive control, energy dissipation is achieved through the inherent mechanical characteristics of materials 

and structures, utilizing devices such as tuned mass dampers (TMDs), viscoelastic layers, and isolation mounts. These 

techniques are widely favoured due to their structural simplicity, cost-efficiency, and long-term reliability under a 

broad range of operating conditions[1-3].  Active vibration control is characterized by the use of sensors, actuators, 

and real-time control algorithms to counteract vibrations through feedback or feedforward mechanisms. Adaptive and 

hybrid strategies have also been developed to extend the effectiveness of active systems across varying operational 

states. These methods are particularly advantageous in high-precision and dynamically variable environments, such 

as aerospace structures and advanced manufacturing platforms[4-6]. 

 

Dynamic Vibration Absorbers (DVAs), commonly referred to as tuned mass dampers (TMDs) in structural 

engineering, are passive devices designed to mitigate vibratory energy by introducing a secondary mass-spring-

damper system. This system is tuned to, or slightly detuned from, the dominant natural frequency of the primary 

structure, effectively splitting the original resonance into multiple peaks and redistributing vibrational energy away 

from the main system. The foundational concept, patented by Frahm in 1909 [7], was rigorously analyzed in the 

seminal work of Ormondroyd and Den Hartog [8, 9]. Subsequent contributions by Bishop and Welbourn, as well as 

Brock, formalized practical tuning and damping methodologies, solidifying DVAs as an integral tool in machinery, 

civil infrastructure, and aerospace design [10, 11]. The advent of smart materials has greatly expanded the capabilities 

of vibration control, introducing semi-active and hybrid designs capable of real-time adjustments. Materials such as 

magnetorheological (MR) fluids, piezoelectric, and shape-memory alloys have transformed the landscape of vibration 

control, offering enhanced adaptability and multifunctionality. These innovations have found applications ranging 

from structural systems to high-precision industrial settings, marking a significant technological leap in vibration 

control [5, 12-29]. 

 

Classical fixed-point theory has traditionally assumed undamped single-degree-of-freedom (SDOF) systems as 

hosts, overlooking the complexities inherent in real-world structures. However, actual systems exhibit intrinsic 

damping, modal coupling, geometric nonlinearity etc. Early investigations addressing these phenomena began with 

Carter and Liu’s pioneering study on nonlinear absorbers [30] and Thomson’s development of viscously damped 

tuning charts [31]. These milestones paved the way for subsequent methodological advancements aimed at tackling 

the challenges posed by these structural complexities. Exact closed-form solutions for damped systems under 𝐻∞ and 



840 Mahan Dashti Gohari et al. 

𝐻2  criteria were later introduced by researchers[32-34], providing robust frameworks for system tuning. These 

contributions were extended to accommodate multiple optimization criteria and detuned configurations [35-39]. 

Consequently, research began to emphasize multiple-tuned-mass-damper (MTMD) arrays and distributed networks 

capable of mitigating vibrations across a broader range of frequencies. Foundational work in modal interaction by 

Igusa and Xu [40], and Clarke [41] demonstrated that arrays comprising numerous smaller absorbers outperform single, 

large absorbers in terms of robustness and reliability. These studies laid the groundwork for subsequent advancements 

in geometric and topological optimization methodologies applicable to pipelines, towers, and rotating spacecraft [42-

46].  

 

Through these methodological innovations, the field has transitioned beyond the limitations of idealized SDOF 

models towards configurations capable of addressing multi-modal, non-linear, and distributed vibration problems 

effectively. Simultaneously, the necessity to mitigate broadband, low-frequency vibrations, especially in challenging 

applications such as spacecraft panels, vehicle chassis, and offshore risers, has driven the evolution of modelling 

approaches. Classical lumped SDOF models are steadily being supplanted by high-order continuous and hybrid 

formulations to address spatially distributed characteristics and multi-modal interactions in host structures [46-52].  

These advanced models account for complex damping behaviours by incorporating distributed damping layers, Visco-

elastic joints, and poroelastic materials, which have been shown to significantly enhance vibration attenuation under 

diverse operational constraints [53, 54].  

 

Despite its theoretical appeal, 𝐻∞ design remains computationally intensive, particularly when applied to high-

order analytical models common in advanced vibration absorber systems. Its reliance on detailed analytical models 

makes the optimization process difficult and time-consuming. In practice, standard numerical methods often struggle 

with this complexity and tend to become stuck in suboptimal solutions, limiting the practical effectiveness of 𝐻∞ 

design [55, 56].   

 

DVAs are widely adopted for passive vibration control in engineering systems; however, optimizing their 

performance under realistic conditions remains a significant challenge. When complex features such as damping, 

inerters, and multi-modal coupling are introduced, traditional optimization methods, especially those based on 

classical and analytical methods, often lose effectiveness and robustness due to their high computational requirements. 

Moreover, conventional numerical techniques, including direct search and gradient-based methods, are frequently 

hampered by high computational costs, poor scalability, and difficulty in handling nonlinear or high-dimensional 

parameter spaces. While surrogate models have been explored to alleviate some of these issues, there is still a lack of 

dedicated, high-fidelity surrogate-assisted frameworks tailored to DVAs that can deliver both speed and precision. 

This gap limits the practical application of DVAs in complex structures where rapid, accurate optimization is essential. 

 

To overcome the limitations of conventional DVA tuning approaches, this study introduces a surrogate-assisted 

optimization framework centered on a physically intuitive performance metric called the Peak-Slope (PS). The PS 

metric quantifies the slope between adjacent resonance peaks in a system’s frequency-response function (FRF), 

providing a generalization of the classical equal-peak method used in vibration control. When the system is well-

tuned, the PS value approaches zero, indicating balanced peak amplitudes and optimal energy distribution. To make 

the optimization process both fast and scalable, a new decoupling algorithm is developed. This algorithm expresses 

the overall PS value as a sum of independent, single-variable functions, each one corresponding to an individual 

absorber parameter (such as damping or stiffness). Instead of optimizing over a high-dimensional parameter space, 

the problem is simplified into a series of univariate surrogate models. These models are constructed using quartic 

polynomial regression, which is selected after testing several polynomial orders and shown to provide the best trade-

off between accuracy and computational speed. Importantly, this decoupling targets only the absorber parameters, 

keeping the structural and excitation parameters fixed. This focused optimization, termed Decoupled Peak-Slope 

(DPS), transforms the original high-fidelity dynamic model into a set of simple polynomial expressions. The total PS 

can then be minimized by summing these expressions and searching for their optimal parameter values no full-system 

simulation is needed during the optimization stage. To demonstrate the method’s effectiveness, the framework is 

validated on a fully coupled 1DOF–1DOF mechanical benchmark. Because the surrogate functions can be stored in 

compact polynomial form, this method is highly suitable for real-time or semi-active vibration absorber applications. 

Engineers can retrieve precomputed tuning curves for fast reconfiguration, enabling intelligent vibration control with 

negligible computational overhead. Visual examples, comparison plots, and tabular summaries included throughout 

the manuscript help clarify each step of the methodology and reinforce its practical value. 
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2. Methodology 

2.1. The Peaks Slope (PS) criteria 

According to the 𝐻∞ criterion, a system achieves minimal response at resonance when the peaks of the Frequency 

Response Function (FRF) are of equal magnitude [57-62]. In the analysis of coupled linear dynamic systems, the FRF 

serves as a fundamental tool for characterizing the system’s steady-state response to harmonic excitation across a 

continuous frequency range. In systems exhibiting multiple vibration modes, the FRF typically displays a series of 

distinct resonance peaks, each corresponding to a natural frequency and its associated response amplitude. To provide 

a consistent and quantitative measure of the amplitude variation between these resonant peaks, we introduce a novel 

scalar performance metric termed the Peak-Slope (PS). This metric captures the rate of change in amplitude between 

adjacent resonances and thereby offers an objective means of evaluating the balance and uniformity of the system’s 

dynamic response. Importantly, the PS criterion is broadly applicable, enabling comparisons across systems with 

varying degrees of freedom, coupling characteristics, and absorber configurations. Its generality makes it especially 

suitable for surrogate-assisted optimization frameworks aimed at tuning dynamic vibration absorbers in both simple 

and complex structural systems. 

2.2. General Definition of PS 

Let 𝐴𝑖  and 𝐴𝑗  be the amplitudes of the i-th and j-th resonant peaks, respectively, and let ω𝑖  and ω𝑗  be their 

corresponding resonance frequencies, where i  <  j, and i, j belong to the set 1,2, … , N, with N denoting the total 

number of resonant peaks in the system. The Peaks Slope (PS) between the i-th and j-th peaks is defined as: 

 

PS𝑖,𝑗 =
𝐴𝑗 − 𝐴𝑖

𝜔𝑗 − 𝜔𝑖

 (1) 

 

This expression represents the slope of the secant line that intersects the FRF magnitude curve at the two selected 

resonant peaks. It characterizes the rate of amplitude change per unit frequency between two resonance modes. 

 

2.3. Matrix, Vector, and Scalar Form for Multiple Peaks 

To capture the pairwise slope relationships between all resonant peaks in a symmetric fashion, the set of Peaks 

Slope values can be represented using a skew-symmetric matrix 𝐏𝐒  ∈  𝑅ⁿˣⁿ, where each entry P𝑆ᵢⱼ corresponds to 

the Peaks Slope between the i-th and j-th resonance peaks. The PS matrix is defined as: 

 

[𝑃𝑆] =

[
 
 
 
 

0 𝑃𝑆12 𝑃𝑆13

𝑃𝑆21 0 𝑃𝑆23

𝑃𝑆31 𝑃𝑆32 0
⋯

𝑃𝑆1𝑁

𝑃𝑆2𝑁

𝑃𝑆3𝑁

⋮ ⋱ ⋮
𝑃𝑆𝑁1 𝑃𝑆𝑁2 𝑃𝑆𝑁3 ⋯ 0 ]

 
 
 
 

 (2) 

 

 

Where: 

 

𝑃𝑆ⱼᵢ =  −𝑃𝑆ᵢⱼ,  ∀ 𝑖 ≠  𝑗 (3) 

𝑃𝑆𝑖𝑗 = 0,           ∀𝑖 = 𝑗 (4) 

 

In systems with more than two resonant peaks, organizing the pairwise Peak-Slope values into a vector, instead of 

using the full matrix, provides a more efficient and practical representation. This vector format significantly reduces 

computational and memory demands while retaining all critical information about the amplitude variations between 

each pair of resonance peaks. By preserving the essential dynamics of the system in a simplified structure, the vector 

form supports faster processing and easier integration into surrogate modelling and optimization procedures without 

sacrificing analytical depth or accuracy. 

 

𝑃𝑆 = [𝑃𝑆1,2, 𝑃𝑆2,3, … , 𝑃𝑆𝑁−1,𝑁] (5) 

 

In practical applications where reducing complexity is essential, such as in optimization tasks or early design 



842 Mahan Dashti Gohari et al. 

stages a simplified scalar version of the PS metric can be employed. Instead of evaluating the full matrix or vector of 

slope values between all frequency peaks, this approach focuses on the maximum slope observed between adjacent 

dominant peaks in the FRF. This simplification captures the most critical imbalance in dynamic behaviour while 

avoiding the overhead of analysing the complete spectral structure. This scalar form maintains the essential physical 

interpretation of the PS metric: when the dominant peaks are well balanced, the slope approaches zero, indicating 

effective tuning of the dynamic vibration absorber. Conversely, large PS values indicate a mismatch in peak 

amplitudes and poor absorber performance. The compactness of this scalar form makes it especially well-suited for 

surrogate modeling and sensitivity analyses, where computational resources are limited or fast evaluations are needed. 

The scalar Peak-Slope is formally defined as: 

         

PS(θ) = max
1≤𝑖<𝑗≤𝑁𝑝

|
𝐴𝑗(θ) − 𝐴𝑖(θ)

𝜔𝑗 − 𝜔𝑖

| (6) 

 

2.4. Physical Interpretation and Theoretical Implications 

The PS metric provides an intuitive and quantitative measure of imbalance in a system’s frequency response, 

specifically targeting the asymmetry between adjacent resonance peaks in the FRF. When the PS value is close to 

zero, it indicates that the peaks have nearly equal amplitudes, an outcome associated with optimal absorber tuning, as 

it reflects a more uniform distribution of vibratory energy across the system. This condition is especially important in 

vibration mitigation applications, where minimizing the system's peak response amplitude is critical to improving 

performance and reliability. Conversely, larger PS values signal greater imbalance, suggesting potential issues such 

as poor parameter selection, misplacement of absorbers, or inefficient modal interactions. As such, PS serves not only 

as a tuning objective but also as a diagnostic indicator of absorber performance. From a theoretical standpoint, the PS 

metric can be seen as a practical reformulation of the classical 𝐻∞, which is widely used in control theory to assess 

system robustness. However, unlike 𝐻∞, which typically requires computationally expensive norm evaluations over 

frequency domains, the PS offers a simplified, localized scalar measure that is more computationally efficient and 

numerically stable key advantages for real-time or surrogate-based optimization. 

 

Importantly, the PS metric is well-suited for use with surrogate models due to its smooth, continuous nature and 

its sensitivity to tuning parameters. This compatibility reduces the need to solve complex differential equations during 

every optimization iteration. Instead, the system's performance trends can be approximated using polynomial 

surrogates, dramatically accelerating the design process without compromising accuracy. 

 

2.5. Decoupling of the PS Criterion 

The design space for such systems is represented by a comprehensive parameter vector θ ∈ 𝑅𝑞 , which is 

partitioned into three mutually independent subspaces: 

 

• The primary structural parameters, denoted θS, govern the physical architecture of the host structure. 

These include the masses mi across each degree of freedom 𝑖 , as well as the stiffness and damping 

interactions represented by kij and cij, respectively, between any two connected masses 𝑖 and 𝑗. These 

parameters define the core dynamics of the structure without any absorbers attached. 

 

• The absorber parameters, denoted θA , capture the characteristics of each attached dynamic vibration 

absorber. In a system compromising P DVAs, each absorber contributes a normalized mass ratio μp =
ma,p

M
, where ma,p is the p-th absorber mass and M is the reference mass of the primary system. Absorbers 

may also include inerters, represented by dimensionless ratios βp =
ba,p,l

M
, where ba,p,l is l-th inerter of the 

p-th DVA. The stiffness ratio is defined as λp =
ka,p,l

K1
, where ka,p,l is the l-th stiffness coefficient of the p-

th DVA and 𝐾 is a reference stiffness in the host structure. The damping ratio is given by νp =
ca,p,l

C
, 

where ca,p,l is l-th damper coefficient of the p-th DVA and 𝐶 is a baseline damping coefficient.  

 

• The excitation and environmental parameters, denoted θE, account for external forcing conditions and 

boundary movements. These include base excitation amplitudes ALow  and Aup , representing the 
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amplitude of harmonic motion applied at the lower and upper supports of the system, and the forcing 

magnitude 𝐹 acting on the main structure. Additional parameters include the characteristic frequency 

ω𝑑𝑐 = √
𝐾

𝑀
 derived from the main stiffness and mass, and the associated damping ratio ζ𝑑𝑐 =

𝐶

2𝑀ω𝑑𝑐
, 

which captures the system’s decay behavior in the absence of absorbers. 

 

 

And thus, the design space can be written as:  

 

𝜃 = 𝜃𝑆 + 𝜃𝐴 + 𝜃𝐸 (7) 

 

Accordingly, an iterative additive surrogate is constructed, wherein the overall PS is reconstructed by successively 

fitting one‐dimensional component functions. Let the absorber–design vector be defined as: 

 

 

η(i) = [ β1
(i), … , β𝑃

(i),  λ1
(i), … , λ𝑃

(i),  μ1
(i), . . , μ𝑃

(i),  ν1
(i), … , ν𝑃

(i)]
𝑇
 (8) 

 

 

where each β𝑝
(i)

, λ𝑝
(i)

, μ𝑝
(i)

 and ν𝑝
(i)

 denotes, in normalized form, the inerter ratio, stiffness ratio, mass ratio, and 

damping ratio of the 𝑝-th element for the 𝑖-th set.  

 

The PS function, which models the system response as a function of the full input vector, is defined as follows: 

 

PS(𝜂) ≔ 𝑋(𝜂) (9) 

 

Thus, the response is approximated as a sum of univariate component functions that is considered as: 

𝐷𝑃𝑆(𝜂)   ≔ ∑ 𝑋𝑟(𝜂)

𝑑

𝑟=1

 (10) 

The error function for each set of input values is written as: 

 

𝜀(𝑖) = 𝑃𝑆(𝜼(𝒊)) − 𝐷𝑃𝑆(𝜼(𝒊)) (11) 

 

The following algorithm is applied until |ε(𝑖)| falls below a prescribed tolerance τtol: 

 

1) Sampling grid selection: An 𝑚‑point grid {η(1), … , η(𝑚)} is chosen uniformly over each coordinate’s admissible 

interval. 

2) Initialisation: All component functions are set to zero, 𝑋𝑟
(0)(η) = 0, so that DPS(0) =  0. 

3) Outer iteration:  For each coordinate index 𝑟 = 1,… , 𝑅 the following steps are performed: 

a) Outer iteration:  

A partial design vector is formed by fixing all other coordinates at reference values ηref  except for one 

parameter ηvar
(𝑖): 

 

𝜼𝒓
(𝒊) = [𝜂1

ref, … , 𝜂𝑟−1
ref ,  𝜂𝑣𝑎𝑟

(𝑖),  𝜂𝑟+1
ref , … , 𝜂𝑅

ref]
⊤

 (12) 

 

b) The one‑dimensional residual samples are then computed as 

    

𝑦𝑟
(𝑖)  =  𝐷𝑃𝑆(𝑘)(η𝑟

(𝑘)
)  − ∑ 𝑋𝑠

(𝑘)
(𝜂𝑠

ref)

𝑅

𝑠=1,  𝑠 ≠ 𝑟

,    𝑖  =  1,   … ,  𝑚. (13) 

   

c) Univariate fit: In this step, a regression procedure is performed to update the component function 𝑋𝑟
(𝑘+1)

 for 

the 𝑟 -th coordinate direction. Given a set of 𝑚 one-dimensional residual samples {(η𝑟
(𝑖), 𝑦𝑟

(𝑖))}𝑖=1
𝑚 , the goal 

is to find a function 𝑓 within a suitable hypothesis space ℋ𝒳𝓇
 (e.g., polynomials, radial basis functions, 
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splines, Gaussian processes) that best fits the residual data. This is achieved by solving the following 

regularized optimization problem: 

 

𝐷𝑃𝑆𝑟
(𝑘+1)

= arg min
𝑓∈ℋ𝒳𝓇

[
1

𝑚
∑ℒ(𝑦𝑟

(𝑖))

𝑚

𝑖=1

+ α Ω(𝑓)] ,  α ≥ 0 (14) 

 

      where  ℒ(𝑦𝑟
(𝑖)) is a loss function (e.g. squared error, absolute error, Huber loss, log loss or etc.), Ω(𝑓) is 

a regularization penalty (e.g. norm, total variation, smoothness penalty or etc.) ,and 𝛼 ≥ 0 is a regularization 

coefficient enforcing smoothness or preventing overfitting.  

 

Fig.1(a) presents a flowchart outlining the algorithm used to extract decoupled functions 𝐷𝑃𝑆(𝑘) from a fully coupled 

dynamic system. The process begins by setting the parameters for the main system, the DVA, and the tolerance for 

the “Maximum Peak Slope.” An input space is defined, followed by the computation of the peak slope values across 

this space. A decoupled functional form is then proposed and fitted using a selected method. The fitting accuracy is 

evaluated against the actual peak slope values. The algorithm iteratively refines the fit and input coverage until the 

fitting satisfies the tolerance, captures system complexity, and sufficiently spans the input space. Once validated as a 

reliable approximation of the full system, the decoupled functions are extracted. Figure 1(b) illustrates the overall 

process used to extract the optimal DVA parameters from the decoupled surrogate functions. The procedure begins 

by setting the values of the structural system parameters, excitation and environmental conditions, and the allowable 

range of DVA parameters for the fully coupled system. Using the surrogate-assisted algorithm introduced in Figure 

1(a), the appropriate coefficient values for each decoupled DPS function are computed. The optimization is then 

carried out by minimizing the total sum of all 𝑋(𝑖) values, including those corresponding to fixed or zero parameters. 

The resulting set of DVA parameters that minimizes this summation is identified as the optimal configuration. Finally, 

this optimal parameter set is extracted for implementation or further analysis. 

 

 
 

(a) 
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(b) 

Figure 1. (a) Algorithm flowchart for extracting decoupled functions from a fully coupled system using peak slope analysis and model 

fitting. (b) Flowchart of the overall procedure used to determine the optimal DVA parameter set from the decoupled surrogate model, 

based on system, excitation, and design constraints. 

3. Benchmark Analysis of a Fully Coupled 1DOF–1DOF System  

3.1. System Overview and Configuration 
To validate the proposed surrogate-assisted PS optimization framework, a fully coupled 1DOF–1DOF mechanical 

system has been selected as a comprehensive benchmark. This configuration is deliberately constructed to incorporate 

all fundamental elements typically found in vibratory structures: primary and secondary masses, springs, dampers, 

and inerters. The term fully coupled is used to emphasize that both the primary system and the DVA are not only 

interconnected with each other, but also jointly coupled to all supporting base nodes, ensuring a complete exchange 

of dynamic interactions. This benchmark system serves as a representative model for complex real-world applications, 

making it an ideal platform to demonstrate the core operational behaviour and benefits of the proposed algorithm. To 

enhance clarity, a schematic of the system layout is provided in Fig. 2, which visually illustrates the arrangement of 

components and their interconnections.  

3.2. Mathematical Modelling of the System with Assumptions 

 

The main system is modelled as a fundamental 1DOF structure consisting of a mass, springs, and dampers 

connected to upper and lower bases. Key assumptions include linear elastic behaviour (for stiffnesses 𝐾1 and𝐾2), 

linear structural damping (for damping coefficients 𝐶1and 𝐶2), and purely translational motion, with rotational effects 

neglected. These assumptions enable a simplified yet accurate representation suitable for vibration analysis and control 

optimization. The upper and lower bases are modelled adaptively, either as additional masses in complex systems or 

as fixed foundations, depending on the application. The DVA is also represented as a 1DOF system incorporating 

masses, springs, dampers, and inerters, fully coupled with the main system and the bases. Its modelling assumptions 

mirror those of the primary structure. 

Let 𝑞 be the generalized coordinate of the system. The displacements of the main system and the DVA at time 

𝑡 are denoted by 𝑈(𝑡) and 𝑢(𝑡), respectively. 
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Figure 2: A schematic view for a  fully coupled 1DOF - 1 DOF system 

 

 

 𝑞 =  [
𝑈(𝑡)

𝑢(𝑡)
] , 𝑞̇ =  [

𝑈(𝑡)̇

 𝑢(𝑡)̇
] , 𝑞̈ =  [

𝑈(𝑡)̈

 𝑢(𝑡)̈
] (15) 

 

The equation of motion can be expressed using the dimensional parameters as:  

 

[𝑀][𝑞̈] + 2ζ𝑑𝑐ω𝑑𝑐[𝐶][𝑞̇] + ω𝑑𝑐
2 [𝐾][𝑞] = [𝐹] (16) 

 

where the mass, damping, spring matrices are considered as:  

[𝑀] = [
1 + β1 −β1

−β1 μ + β1 + β2 + β3
] (17) 

[𝐶] = [
1 + 𝑁 + ν1 −ν1

−ν1 ν1 + ν2 + ν3
] 

(18) 

[𝐾] = [
1 + Λ + λ1 −λ1

−λ1 λ1 + λ2 + λ3
]   

(19) 

[𝐹] = [
𝐹′ + 2ζ𝑑𝑐ω𝑑𝑐(𝑈𝐿𝑜𝑤

̇ + 𝑁𝑈𝑈𝑝
̇ ) + ω𝑑𝑐

2 (𝑈𝐿𝑜𝑤(𝑡) + Λ𝑈𝑈𝑝(𝑡))

β2𝑈𝐿𝑜𝑤
̈ + β3𝑈𝑈𝑝

̈ + 2ζ𝑑𝑐ω𝑑𝑐(ν2𝑈𝐿𝑜𝑤
̇ + ν3𝑈𝑈𝑝

̇ ) + ω𝑑𝑐
2 (λ2𝑈𝐿𝑜𝑤(𝑡) + λ3𝑈𝑈𝑝(𝑡))

] 
(20) 

 

The dimensional parameters of the system are meticulously defined to facilitate normalized analysis and 

optimization. The mass ratio, denoted by μ, is defined as (μ ≡
𝑚

𝑀
), representing the ratio of the inerter mass \(m\) to 

the main mass 𝑀. The inerter ratios, β1, β2, and β3, are defined for each respective inerter coefficient as (β𝑖 ≡
𝑏𝑖

𝑀
), 

where 𝑏𝑖  are the inerter coefficients. Stiffness ratios are represented by λ1, λ2, λ3, and Λ, defined by (λ𝑖 ≡
𝑘𝑖

𝐾1
) for 

(𝑖 =  1, 2, 3) , and (Λ ≡
𝐾2

𝐾1
) , where 𝑘𝑖  are the stiffness coefficients and 𝐾1  and 𝐾2  are the system stiffnesses. 

Similarly, damping ratios ν1 , ν2 , ν3 , and 𝑁  are defined as (ν𝑖 ≡
𝑐𝑖

𝐶1
)  and (𝑁 ≡

𝐶2

𝐶1
) , where 𝑐𝑖  are the damping 

coefficients and 𝐶1 and 𝐶2 are the system damping coefficients. The decoupled natural frequency ω𝑑𝑐and the damping 
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ratio ζ𝑑𝑐 are defined using the lower base parameters as (ω𝑑𝑐 ≡ √
𝐾1

𝑀
) and (ζ𝑑𝑐 ≡

𝐶1

2𝑀ω𝑑𝑐
), respectively. Additionally, 

the parameter 𝐹(𝑡)
′  is defined as 𝐹(𝑡)

′ ≡
𝐹(𝑡)

𝑀
, normalizing the external force by the main system mass. Lastly, the 

dimensional frequency Ω is defined as (Ω ≡
ω

ω𝑑𝑐
), relating the excitation frequency ω to the decoupled system's 

natural frequency. 

3.3. Semi-analytical Solutions for Harmonic and Synchronized Motion 
The semi-analytical method involves proposing a solution for the generalized coordinate of the system, which has 

unknown coefficients but a known structure. The unknown coefficients are then determined by applying boundary 

and initial conditions.  The analysis assumes that the bases and the harmonic excitation are in harmonic synchrony, 

meaning they all function at the same frequency of ω at the same time. Thus, the generalized coordinate system can 

be written as the steady-state response as: 

 

𝑞 = [
𝑈(𝑡)

𝑢(𝑡)
] = [

𝐴
𝑎
] 𝑒𝑗ω𝑡 (21) 

 

where ω is the excitation frequency and 𝐴 and 𝑎 are the vibration amplitudes of the main and DVA systems, 

respectively. Harmonic excitation of the main system's mass and the harmonic motion of the bases can be further 

characterized as: 

 

𝐹(𝑡)
′ = 𝑓𝑒𝑗ω𝑡 (22) 

 

𝑈𝐿𝑜𝑤(𝑡) = 𝐴𝐿𝑜𝑤𝑒𝑗ω𝑡 (23) 

 

𝑈𝑈𝑝(𝑡) = 𝐴𝑈𝑝𝑒
𝑗ω𝑡 (24) 

 

The amplitude of the main system's excitation is denoted by 𝑓, while 𝐴𝐿𝑜𝑤 and 𝐴𝑈𝑝 represent the amplitudes of 

the motion of the lower and upper bases, respectively. By replacing into the, the equation of motion of the system may 

be reformulated as: 

 

[
𝐴
𝑎
] = ω𝑑𝑐

2 ((−Ω2[𝑀] + 2𝑗ωζ𝑑𝑐Ω[𝐶] + [𝐾])𝑒𝑗ω𝑡)
−1

[𝑓] (25) 

3.4. System Parameters 

In order to evaluate the introduced algorithm, a numerical analysis was carried out using arbitrary values for the 

main system, listed in Tab.1. 

 

Table 1: Numerical Case Study Parameters 

Main System Parameters Value 

Λ 1 

𝑁 1 

𝐴𝑈𝑝 = 𝐴𝐿𝑜𝑤 0.0001 

𝐹 100 

ω𝑑𝑐  1000 

ζ𝑑𝑐 0.01 

 

3.5. Decoupled Peak Slope Function 

The dynamic behaviour of the system is encapsulated by the DPS functions, which aggregates the contributions 

of ten distinct sub-functions, each associated with specific system parameters: 

 



848 Mahan Dashti Gohari et al. 

𝐷𝑃𝑆 = ∑𝑋𝑖(𝑝𝑖)

10

𝑖=1

 (26) 

 

where each 𝑋𝑖(𝑝𝑖)  corresponds to parameters such as μ, β1, λ1, ν1, β2, λ2, ν2, β3, λ3  and ν3 . The main system 

parameters are held constant and thus excluded from the DPS functions, as they represent fixed aspects of the actual 

system model.  

 

Initial conditions for each sub-function are uniformly established: 

 

𝑋𝑖
(0)

= 𝑋𝑖,0,  ∀𝑖 = 1,… ,10 (27) 

 

where 𝑋𝑖,0 denotes the initial value of each 𝑋𝑖  at iteration 𝑘 = 0. The parameters 𝑝𝑗  associated with each sub-

function are defined within specific ranges: 

 

𝑝𝑗 ∈ {𝑝𝑗,𝑖 ,  𝑝𝑗,𝑖 + Δ𝑝𝑗 , … , 𝑝𝑗,𝑓},  ∀𝑗 = 1,… ,10. (28) 

 

Here, 𝑝𝑗,𝑖  and 𝑝𝑗,𝑓  represent the initial and final values of parameter 𝑝𝑗 , respectively, with (Δ𝑝𝑗)  indicating the 

incremental step size. The iterative procedure for updating each sub-function 𝑋𝑖 is governed by the following equation: 

 

𝑋𝑖(𝑝𝑖)
(𝑘+1)

= DPS(𝑝𝑖,Other Parameters) − ∑𝑋𝑗,(𝑂𝑡ℎ𝑒𝑟𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

1

𝑗≠𝑖

 ;  {

𝑝𝑖 ∈ {𝑝𝑖,𝑖, 𝑝𝑖,𝑖 + Δ𝑝𝑖 , … , 𝑝𝑖,𝑓}

for 𝑖 = 1,2, … ,10
for 𝑘 = 0,1, …

  (29) 

 

This equation updates each 𝑋𝑖 based on the current DPS value and the sum of all other sub-functions from the previous 

iteration (k). The iterative process continues until convergence is achieved. Each 𝑋𝑖(𝑝𝑖)
(𝑘) serves as a data point in 

the optimization framework. Approximate functions are employed to estimate the behaviour of each 𝑋𝑖  across 

iterations, facilitating efficient and accurate optimization of the DPS function. 

 

3.6. Performance of Polynomial Fits 

The performance of various polynomial fitting methods was assessed to determine the most accurate 

approximation of the DPS sub-function. Fig. 3 and Table 2 summarize the results based on mean error, standard 

deviation, and RMSE. In each subplot of Figure 3, the x-axis shows the actual PS values, while the y-axis shows the 

corresponding estimations. Each point represents a unique DVA parameter set, with the red dashed line indicating a 

perfect fit. Accuracy improved with polynomial degree: the linear fit (Fig. 3a) showed the highest error ( 𝑅𝑀𝑆𝐸 =
1.4430 × 10−10), followed by the quadratic fit (Fig. 3b), which reduced the RMSE to 8.3068 × 1011. The cubic fit 

(Fig. 3c) achieved further improvement (𝑅𝑀𝑆𝐸 = 1.9874 × 1011), while the quartic fit (Fig. 3d) yielded the best 

accuracy (𝑅𝑀𝑆𝐸 = 2.9908 × 10−12), closely matching the perfect fit line. Thus, the quartic polynomial was selected 

as the optimal method for approximating the DPS function. 

3.7. DPS Analysis Benchmark of a Fully Coupled 1DOF–1DOF System  

A genetic algorithm (GA) was configured to benchmark the DPS method under identical design constraints. The 

GA used a population size of 150, evolved over 20 generations, with crossover and mutation probabilities of 0.70 and 

0.20, respectively. All DVA variables were bounded between 0 and 1, except the mass ratio 𝜇1 , which was limited to 

[0, 0.75]. Each GA evaluation required a full frequency-response calculation, in contrast to the DPS method’s closed-

form surrogate evaluations. To assess the GA’s stochastic performance, we executed one hundred independent runs 

with distinct random seeds. Despite occasional success in locating optimum PS values, the GA exhibited significant 

variability: the best PS across all runs was 4.3 × 10−5 , the mean PS was 4.4 × 10−5  and the worst PS reached 

1.4 × 10−4. By comparison, the DPS method deterministically achieved a PS of 6.9344 × 10−5 in a single pass. Table 

3 contrasts the optimized parameter sets found by the DPS method with the GA’s best, mean, and worst solutions. In 

terms of PS, the DPS optimum (6.9344 × 10−5 ) lies between the GA’s best (4.3 × 10−5 ) and worst (1.4 × 10−4), 

yet it is obtained without any randomness or repeated trials. 
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Figure 3: Polynomial fitting methods: (a) Linear, (b) Quadratic, (c) Cubic, (d) Quartic. Red dashed line: perfect fit; points: actual vs. 

predicted slopes. 

 

Table 2: Polynomial Fit Methods Error Analysis 

Fit Method Mean Error Standard Deviation RMSE 

Linear Polynomial 9.6730 × 10−11 1.0819 × 10−10 1.4430 × 10−10 

Quadratic Polynomial 5.8807 × 10−11 5.9277 × 10−11 8.3068 × 10−11 

Cubic Polynomial 1.2789 × 10−11 1.5370 × 10−11 1.9874 × 10−11 

Quartic Polynomial 1.5188 × 10−12 2.6031 × 10−12 2.9908 × 10−12 

 

Fig. 4 offers a visual comparison of FRFs generated by the proposed DPS method and three representative cases 

from 100 independent GA runs: the best, mean, and worst performers. The FRFs corresponding to the best and average 

GA outcomes display well-balanced resonance peaks and achieve slightly lower PS values than the DPS solution, 

confirming successful absorber tuning. However, the worst-case GA result reveals a clear mismatch between the 

peaks, demonstrating that the method can yield significantly suboptimal solutions. This comparison highlights a key 

limitation of GA-based optimization: its probabilistic nature leads to variability in solution quality and necessitates 

multiple runs to statistically find an optimal configuration. By contrast, the DPS method deterministically delivers a 

consistently high-quality solution in a single pass. Although its peak balancing may not always surpass the best GA 

run, its performance is reliably close and avoids the computational cost of repeated evaluations. These findings 

underscore the practical advantage of the DPS approach in applications where rapid computation, repeatability, and 

robustness are more critical than achieving a marginally lower PS value. This example also serves to clarify the 

functional effectiveness of the proposed method, reinforcing the mathematical narrative with visual and comparative 

evidence for broader reader accessibility. 

Table 3. DPS versus GA parameter sets and PS metrics 

 DPS optimum Best GA Mean GA Worst GA 

PS 6.9344 × 10⁻⁵ 4.3 × 10⁻⁵ 4.4 × 10⁻⁵ 1.4 × 10⁻⁴ 

𝛽1 0.79 0.006 0.104 0.63 

𝛽2 0.98 0.467 0.047 0.71 
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 DPS optimum Best GA Mean GA Worst GA 

𝛽3 0.47 0.338 0.422 0.31 

𝜆1 1.99 0.96 0.89 0.23 

𝜆2 0.83 0.62 0.57 0.72 

𝜆3 1.68 0.57 0.43 1 

𝜇1 0.17 0.49 0.05 0.4 

𝜈1 1.69 0.78 0.18 1 

𝜈2 1.49 0.13 0.54 0.97 

𝜈3 2.35 0.32 0.18 0.57 

 

 
Figure 4. Comparison of frequency response functions (FRFs) between the DPS method and GA-based optimization for a benchmark 

system 

 

3.8. Validation of the DPS procedure against the analytical solutions of lower degree systems 

 

To assess the accuracy and robustness of the proposed DPS method, a validation study was conducted using a 

well-established lower-degree-of-freedom system for which analytical solutions are available. The core rationale is: 

if the decoupling procedure is valid, then the surrogate-based equations derived from a fully coupled system must 

yield correct results even when applied to a reduced-order model with fewer components. This ensures that the original 

coupling dynamics have been fully disentangled. To test this, the fully coupled 1DOF–1DOF system introduced earlier 

in the study served as the basis for surrogate construction. However, for validation, the DPS method was applied to a 

simplified benchmark system based on Asami et al.[34], where the main mass is connected to a fixed base via a spring 

and damper, and the DVA mass is linked to the main mass through another spring-damper pair (Fig.5).  
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Figure 5: Schematic diagram of the system used for validation. 

Asami et al.[34] derived both first-order and second-order analytical solutions for this setup. These were used to 

benchmark the DPS method, with structural parameters held constant: natural frequency Ω𝑑𝑐 = 14.14Ω, damping 

ratio ζ𝑑𝑐 = 0.24, applied force of 100 N, and a mass ratio μ =  0.5. The optimization objective was to determine the 

absorber stiffness ratio λ1 and damping ratio ν1 that minimize the Peak-Slope (PS) metric. The resulting optimized 

parameters and PS values are shown in Table 4. 

 

Table 4. Comparison of Optimized Parameters and PS Metric for the Asami et al.[34] Benchmark System 

Method 𝛌𝟏 𝛎𝟏 PS Value 

Asami (1st Order) 0.1525 4.568 0.59913 

Asami (2nd Order) 0.1250 4.041 0.38587 

DPS Method 0.1280 3.381 0.04915 

 

 

Fig.6a presents the FRFs obtained using the Asami 1st-order formula, the Asami 2nd-order formula, and the 

proposed DPS method. All three methods yield similar overall system responses, validating the general accuracy of 

the DPS framework. However, a more detailed comparison is provided in Figure 6b, which displays a bar chart of the 

corresponding PS values. Here, the DPS method achieves a PS value that is nearly an order of magnitude smaller than 

those from both analytical approaches, indicating superior peak balancing and absorber tuning. This outcome confirms 

that the decoupling assumption embedded in the DPS framework holds even in simple, low-degree-of-freedom 

systems where analytical baselines are available. The implication is that if such accuracy is maintained at low DOFs, 

the method is likely to scale effectively to more complex systems with higher DOFs. Crucially, because the DPS 

optimization relies on minimizing the sum of precomputed surrogate functions, each representing a single absorber 

parameter, the computational burden is significantly reduced. This transforms the traditionally intensive DVA tuning 

process into a structured, repeatable, and low-cost procedure. By enabling direct use of these surrogate functions 

across varying system architectures, the method supports the development of reusable design catalogues. These 

catalogues eliminate the need for re-running time-consuming numerical optimizations, providing engineers with rapid 

access to near-optimal absorber configurations tailored to specific structural dynamics. 
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(a) 

 

 
(b) 

Figure 6: (a) Frequency response functions (FRFs) and (b) corresponding Peak-Slope (PS) values for the DPS method compared to 

Asami’s first- and second-order analytical solutions. 

 

4. Generalized Optimization Using Catalogues Derived from the DPS Framework  

Following the successful validation of the DPS method, this section introduces a structured algorithm for creating 

design catalogues that enable rapid optimization of DVA parameters for a wide range of mechanical systems, even 

those that represent simplified subsystems of a fully coupled baseline model. The core principle of the DPS framework 

lies in its decoupling of the optimization space: each DVA parameter is isolated into its own univariate surrogate 

function derived from the original, fully coupled system. Importantly, this approach allows the resulting decoupled 

equations to be universally applied to any system configuration that falls within the modelled parameter ranges, 



Journal of Computational Applied Mechanics 2025, 56(4): 838-862 853 

regardless of whether all elements of the full system are present.  

 

This generality is made possible by the logic of the decoupling algorithm: if a system of interest lacks certain 

components from the full model (e.g., no inerter or a fixed damping value), the associated parameters are simply set 

to zero (if absent) or treated as constants (if fixed). However, even when a parameter is set to zero, its corresponding 

decoupled surrogate function must still be evaluated and included in the optimization process. This ensures that any 

residual influence from the full system model is properly accounted for in the reduced configuration.  

 

The optimization objective is defined as minimizing the summation of all decoupled surrogate functions, 

regardless of whether the associated parameter is present in the system or not. In this formulation, the optimal set of 

DVA parameters is obtained when the total sum of all DPS functions approaches zero, indicating minimal peak 

variation and thus optimal vibration mitigation.  

 

Optimization Goal ≡  min ∑𝑋𝑖(𝑃𝑖)

𝑛

𝑖=1

 (30) 

 

where n is the total number of decoupled functions derived from the full system (including inactive or zero-valued 

parameters).  

 

To support this algorithmic approach, a design catalogue was constructed from four distinct structural 

configurations of the fully coupled 1DOF–1DOF system, each characterized by a unique set of fixed structural 

properties (e.g., natural frequency, damping ratio, and mass ratios). For each configuration, ten decoupled surrogate 

functions were generated, each corresponding to a discrete variation of a single DVA parameter. These surrogate 

functions are represented as quartic polynomials: 

 

𝑋𝑖(𝑝𝑖) = 𝑎𝑖,0 + 𝑎𝑖,1𝑝𝑖 + 𝑎𝑖,2𝑝𝑖
2 + 𝑎𝑖,3𝑝𝑖

3 + 𝑎𝑖,4𝑝𝑖
4 (31) 

  

The corresponding polynomial coefficients, along with the structural parameters for each case, are detailed in 

Table 5.  

 

To use the catalogue for a given system: 

1. Identify available parameters: Determine which DVA parameters exist in the system. Set any absent 

parameters to zero. 

2. Assign fixed values: If some parameters are fixed due to design or physical constraints, substitute them 

accordingly. 

3. Set the available ranges for the DVA parameters: For each parameter, retrieve the corresponding 

coefficient from the catalogue and create the surrogate functions. 

4. Perform optimization: Minimize the sum of all DPS functions (𝑋𝑖(𝑝𝑖)) values (including those for zero or 

fixed parameters) over the range of free variables. 

5. Extract the set of optimum DVA values: The set of DVA values that minimizes the summation of the DPS 

values (min ∑ 𝑋𝑖(𝑃𝑖))
𝑛
𝑖=1  is the optimum DVA value set.  

 

This formulation enables the rapid identification of near-optimal DVA designs for any subsystem related to the 

original fully coupled model. Because the catalogue captures a comprehensive mapping of parameter influence on 

vibration suppression, it allows for efficient reuse across diverse applications, eliminating the need for re-running 

high-fidelity simulations.  

 

Table 5a. Structural parameters for the four benchmark systems 

System Λ N 𝑨𝑼𝒑 = 𝑨𝑳𝒐𝒘 F  𝛚𝒅𝒄 𝛇𝒅𝒄 

1 1.00 1.00 1 × 10−4 100 1000 0.01 

2 0.75 0.75 1 × 10−4 100 800 0.02 

3 0.50 0.50 1 × 10−4 100 800 0.02 

4 0.50 0.50 1 × 10−4 100 700 0.03 
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Table 5b. Quartic coefficients of the DPS model for 4 distinct systems 

System 1 

Coefficients a₄ a₃ a₂ a₁ a₀ 

μ₁ −8.2269e−12 2.2743e−10 −2.1919e−09 8.5432e−09 −1.1436e−08 

β₁ 1.2785e−11 −2.9913e−10 2.6576e−09 −8.3011e−09 −2.7080e−09 

λ₁ 3.3333e−12 −1.1461e−10 6.9518e−10 −2.7359e−10 1.1169e−09 

ν₁ 3.4793e−12 −7.5003e−11 5.1341e−10 −2.7621e−09 1.5231e−08 

β₇ 4.3369e−11 −9.1300e−10 5.6815e−09 −1.1223e−08 2.5909e−08 

λ₇ −4.6563e−11 9.9032e−10 −6.4370e−09 1.3672e−08 −2.7614e−08 

ν₇ −3.1186e−12 8.3988e−11 −5.1866e−10 9.5108e−10 −1.3858e−10 

β₈ −3.0277e−11 1.1787e−09 −1.5057e−08 6.9366e−08 −6.3326e−08 

λ₈ 2.4785e−11 −1.0481e−09 1.3963e−08 −6.5790e−08 6.0165e−08 

ν₈ 1.7830e−13 −2.1887e−11 5.8945e−10 −4.1231e−09 4.9205e−09 
 

System 2 

Coefficients a₄ a₃ a₂ a₁ a₀ 

μ₁ −4.2169e−12 1.2141e−10 −1.2323e−09 5.5550e−09 −1.1764e−08 

β₁ 1.0636e−11 −2.3902e−10 1.9574e−09 −5.1823e−09 −2.0384e−09 

λ₁ 4.8080e−13 −4.7496e−11 2.8672e−10 6.2064e−11 −5.8066e−10 

ν₁ 1.3318e−13 1.4513e−11 −3.3418e−10 4.6261e−10 1.1578e−08 

β₇ 6.1234e−11 −1.2616e−09 7.7004e−09 −1.4060e−08 2.3311e−08 

λ₇ −6.3736e−11 1.3240e−09 −8.3711e−09 1.6329e−08 −2.4919e−08 

ν₇ −3.4698e−12 9.3584e−11 −5.9060e−10 1.1988e−09 −3.8190e−10 

β₈ 1.4112e−12 4.8618e−10 −1.0332e−08 6.0675e−08 −7.2392e−08 

λ₈ −3.6533e−12 −4.3901e−10 9.9743e−09 −5.9718e−08 7.2568e−08 

ν₈ 8.7218e−13 −4.2572e−11 8.3451e−10 −5.3544e−09 6.7529e−09 
 

System 3 

Coefficients a₄ a₃ a₂ a₁ a₀ 

μ₁ −4.1081e−12 1.1424e−10 −1.1141e−09 4.9374e−09 −1.1596e−08 

β₁ 1.2882e−11 −2.8725e−10 2.1328e−09 −4.1703e−09 −3.1410e−09 

λ₁ −1.3282e−12 8.7284e−12 −2.0724e−10 1.2659e−09 −2.3467e−09 

ν₁ −3.0662e−13 2.7309e−11 −4.3590e−10 4.8020e−10 1.3097e−08 

β₇ 5.5906e−11 −1.0275e−09 4.6508e−09 −2.4566e−10 9.8006e−09 

λ₇ −5.9476e−11 1.1141e−09 −5.5237e−09 3.0669e−09 −1.1962e−08 

ν₇ −3.7642e−12 9.6193e−11 −5.2460e−10 6.3498e−10 5.4645e−10 

β₈ −2.6076e−11 1.3459e−09 −1.9714e−08 1.0138e−07 −1.2572e−07 

λ₈ 2.4964e−11 −1.3287e−09 1.9607e−08 −1.0115e−07 1.2625e−07 

ν₈ 8.9637e−13 −5.0816e−11 1.0127e−09 −6.3609e−09 7.4244e−09 
 

System 4 

Coefficients a₄ a₃ a₂ a₁ a₀ 

μ₁ 1.0580e−11 −3.3315e−10 3.8848e−09 −1.9060e−08 2.9010e−08 

β₁ 6.9658e−12 −1.2374e−10 5.0191e−10 2.2950e−09 −9.1548e−09 

λ₁ −1.1743e−11 3.0699e−10 −3.3189e−09 1.5790e−08 −3.0429e−08 

ν₁ 2.4462e−12 −5.2918e−11 4.2835e−10 −3.7223e−09 2.1408e−08 

β₇ −2.4987e−11 6.6586e−10 −4.7916e−09 −4.3244e−09 1.0973e−07 

λ₇ 8.3603e−13 7.0632e−11 −3.6724e−09 4.5886e−08 −1.8443e−07 

ν₇ −2.6664e−12 6.3649e−11 −1.6792e−10 −1.0670e−09 3.5905e−09 

β₈ 4.9277e−11 −1.9031e−09 2.8576e−08 −1.9746e−07 5.2849e−07 

λ₈ −4.0292e−11 1.6182e−09 −2.5352e−08 1.8158e−07 −4.9873e−07 
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ν₈ 9.2586e−12 −3.0220e−10 3.8118e−09 −2.0104e−08 3.2698e−08 
 

 

As an example, the frequency response function (FRF) of System 1, optimized using the DPS method across 

different parameter ranges, is presented in Fig 7. 

 

 

 
Figure 7. Frequency response functions (FRFs) of System 1 optimized using the DPS method across various parameter ranges. 

The variation of surrogate coefficients with changes in structural parameters has not been explored in this study. 

A general catalogue that accounts for both structural and absorber variability would require an expanded parameter 

space, new sampling methods, and potentially alternative surrogate models. This direction was intentionally excluded 

in order to maintain clarity of scope and focus on validating absorber-only decoupling against full genetic algorithms. 

To partially address this limitation, a sensitivity analysis has been included in Appendix A, where structural parameters 

are varied while absorber values are held fixed. The relative error between the surrogate-based DPS and the full-model 

PS is recorded across a realistic parameter range. Strong agreement is observed, suggesting that the surrogate model 

remains accurate under moderate structural variation. This provides support for the current formulation and motivates 

future work toward more generalized, structure-inclusive surrogate frameworks. 

 

5. Conclusion 

This study presents a novel and computationally efficient surrogate-assisted optimization framework for tuning 

dynamic vibration absorbers (DVAs), specifically designed to address the high computational demands of traditional 

methods in complex mechanical systems. At the core of this framework is the introduction of the Peak-Slope (PS) 

metric, a generalization of the classical equal-peak tuning criterion, which quantifies absorber effectiveness by 

measuring the secant slope between adjacent resonance peaks. Optimal tuning corresponds to the configuration that 

minimizes this slope, offering a direct and physically interpretable measure of vibration mitigation. A key innovation 

of the framework is the decoupling of the parameter space into independent subspaces (structural, absorber, and 

excitation), which enables targeted surrogate modeling using quartic polynomial regression. These surrogate models 

replace full analytical evaluations within a genetic algorithm (GA) optimization loop, reducing computation times 

from hours to seconds without compromising accuracy. To validate the generality and accuracy of the proposed 

approach, a benchmark fully coupled 1DOF–1DOF system with further comparison against analytical solutions from 

reduced-order models is employed. The results demonstrate not only excellent agreement with established methods 

but, in some cases, superior performance of the proposed Decoupled Peak-Slope (DPS) approach in minimizing 

resonance responses. This confirms that the decoupling strategy preserves the essential system dynamics while 

enabling flexible and efficient optimization across diverse configurations. Building on this, the study introduces a 
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catalogue of precomputed surrogate models—quartic polynomial representations of the PS metric across various 

structural configurations and parameter ranges. This database allows for rapid evaluation and optimization of DVA 

settings, even for partially defined or simplified systems. The surrogate catalogue thus transforms from a 

computational shortcut into a practical design tool that supports near-instantaneous DVA tuning for real-world 

applications. One of the most promising directions for future research lies in extending this framework to semi-active 

DVA systems, where absorber parameters can be dynamically adjusted in real time—such as through 

magnetorheological dampers or variable stiffness mechanisms. In such cases, rapid recalibration of absorber properties 

is often required in response to changes in external excitation or structural conditions. The use of precomputed, 

decoupled surrogate equations enables real-time, non-iterative optimization, bypassing the need for repeated 

simulations or GA runs. By minimizing the sum of relevant surrogate functions for a given state, optimal absorber 

settings can be directly inferred, allowing on-the-fly tuning. This lays the groundwork for both improved passive 

solutions and advanced real-time control in semi-active systems, particularly in fields such as aerospace, automotive 

engineering, and adaptive civil infrastructure. 

 

 

In addition, a new research direction aims to extend the current framework beyond a fixed structural configuration. 

As implemented, the decoupling method assumes a static host structure, with the surrogate catalogue tailored to a 

specific set of system parameters. However, preliminary results from the sensitivity analysis presented in Appendix 

A suggest that the DPS formulation retains strong predictive performance even under moderate variations in structural 

parameters. This finding motivates the exploration of a more generalized surrogate architecture, potentially a meta-

catalogue, that encodes not only DVA dynamics but also correlations between structural and absorber parameters. 

Such an approach would support the rapid generation of DPS surrogates across diverse structural configurations, 

thereby significantly enhancing the framework’s modularity and adaptability. Realizing this capability would require 

the development of new methods for cross-domain sampling, parametric encoding of structural features, and 

hierarchical surrogate modelling. Nonetheless, if successful, it could enable a unified and transferable DVA 

optimization engine suitable for adaptive or time-varying hosts. 

 

In conclusion, this study provides a foundational advancement toward the development of a modular, scalable, 

and adaptable framework for the optimization of dynamic vibration absorbers (DVAs). By enabling efficient 

surrogate-assisted tuning across a wide range of configurations, the proposed approach not only supports improved 

passive vibration mitigation but also paves the way for real-time control in semi-active systems. Furthermore, the 

generality and flexibility of the decoupled surrogate modelling strategy suggest promising potential for broader 

application in structurally diverse environment that this lays the groundwork for future development of universally 

applicable tuning methodologies. 

 

 

Appendix A: Sensitivity Analysis of the structural parameters of the system for the fixed values of the DVA 

parameters  

To perform a sensitivity analysis, the effect of variations in the main system parameters is investigated while the 

DVA parameters are held fixed. This approach is intended to provide insight into how changes in the main system 

parameters influence the DPS. Although the method is highly preliminary, it is considered worthwhile, as it offers 

valuable understanding of the DPS's dependency on the main system parameters under constant DVA configurations. 

The analysis is carried out by evaluating how the main system parameters vary across different fixed sets of 

dimensional DVA parameters, and how these variations affect the DPS, which is initially influenced by all parameters. 

The relative error, used as the primary performance metric, is defined as the error between the DPS approximation 

and the actual PS obtained from the fully coupled system 1 model which is derived by the fixed values of the main 

system and the variation of the DVA parameters. 

 

• An extensive analysis of the main system parameters should be conducted, covering a wide range for each 

parameter within the predefined boundary. This step is essential as it offers a comprehensive perspective on 

how the main system parameters impact on the DPS across a broad spectrum of DVA parameter values. 

• Variety in DVA parameter values: The study includes changing DVA parameters within a predetermined 

range (e.g., 0 to 1) to examine the impact of different DVA parameter values on the pre calculated DPS. 

 

The following figures show the sensitivity of different parameters for different variations of the DVA parameters, 
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respectively. 

 

 

 
Figure A.1: Sensitivity analysis of 𝑨𝑳𝒐𝒘 and 𝑨𝑼𝒑 for different variation of the DVA parameters 

 
Figure A.2: Sensitivity analysis of 𝑭 for different variation of the DVA parameters 
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Figure A.3: Sensitivity analysis of the 𝑵 for different variation of the DVA parameters 

 
Figure A.4: Sensitivity analysis of the 𝚲 for different variation of the DVA parameters 

The results of the sensitivity analysis provide important validation for the robustness of the DPS formulation. By 

systematically varying key structural parameters while keeping the DVA parameters fixed, it is shown that the relative 

error between the DPS prediction and the PS response remained consistently low. In most cases, the relative error 

stayed below 1%, with typical values well under 0.5%, indicating that the decoupled surrogate retains a high degree 

of accuracy even when applied to structural configurations that deviate moderately from the original training case. 

Notably, even parameters that significantly alter the system’s modal characteristics, such as 𝜔𝑑𝑐  and 𝜁𝑑𝑐 , produced 

minimal degradation in DPS performance across the tested range. These findings reinforce the idea that, within 

practical bounds, the DPS surrogate behaves largely independently of the host structure, thereby validating its use in 

modular and reusable absorber design workflows. 
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Figure A.5: Sensitivity analysis of the 𝛚𝒅𝒄 for different variation of the DVA parameters 

 
(a) 
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(b) 

Figure A.6: Sensitivity analysis of the zeta_{dc} for different variations of the DVA parameters (a) ranges from 0 to 0.4, and (b) ranges 

from 0.4 to 1.  
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