
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,878,631 |
تعداد دریافت فایل اصل مقاله | 107,237,343 |
تاثیر میکروپلاستیک پلیاتیلن سنگین و بیوچار کود گاوی بر کربن، نیتروژن و برخی از ویژگیهای زیستی خاک | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 5، مرداد 1404، صفحه 1289-1307 اصل مقاله (1.33 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.390305.669883 | ||
نویسندگان | ||
مهشید ماه صفت1؛ صفورا ناهیدان* 2 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران. | ||
2گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران | ||
چکیده | ||
پژوهش حاضر با هدف بررسی تأثیر ذرات میکروپلاستیک پلیاتیلن سنگین و بیوچار کود گاوی بر کربن آلی، نیتروژن کل و برخی از ویژگیهای زیستی موثر بر چرخه کربن و نیتروژن در خاک انجام شد. آزمایش در قالب طرح کاملاً تصادفی با تیمارهای شامل خاک شاهد، میکروپلاستیک پلیاتیلن سنگین (2 درصد)، بیوچار (2 درصد) و مخلوط میکروپلاستیک (2 درصد) و بیوچار (2 درصد) در سه تکرار انجام شد. خاکهای تیمار شده به مدت 60 روز در دمای آزمایشگاه و رطوبت 70 درصد ظرفیت زراعی نگهداری شدند. نتایج نشان داد که بیوچار و بیوچار همراه با میکروپلاستیک باعث افزایش کربن آلی و نیتروژن کل خاک شدند. میکروپلاستیک و بیوچار به تنهایی و کاربرد همزمان هر دو موجب کاهش معنیدار تنفس میکروبی خاک شدند. تیمارهای آزمایشی تاثیر معنیداری بر نیتروژن زیست توده میکروبی نداشتند (05/0 .(p>میکروپلاستیک تاثیر معنیداری بر کربن زیست توده میکروبی خاک نداشت، ولی بیوچار و بیوچار به همراه میکروپلاستیک باعث افزایش 51/73 و 66/78 درصدی کربن زیست توده میکروبی نسبت به خاک شاهد شد. چنین روندی در مورد نسبت کربن به نیتروژن زیست توده میکروبی نیز مشاهده شد. میکروپلاستیک تاثیر معنیداری بر فعالیت آنزیم اورهآز، معدنیشدن و نیتریفیکاسیون خالص نیتروژن نداشت، ولی کاربرد همزمان بیوچار و میکروپلاستیک باعث افزایش 08/68 درصدی اورهآز و کاهش غیرمعنیدار نیتریفیکاسیون و معدنیشدن خالص نیتروژن نسبت به شاهد شد. درمجموع، نتایج نشان داد که اگرچه پلیاتیلن سنگین تاثیر چشمگیری بر اکثر ویژگیهای اندازهگیری شده این پژوهش ندارد ولی بیوچار میتواند با تغییر مقدار کربن و نیتروژن و ویژگیهای زیستی خاک بر چرخه کربن و نیتروژن خاک آلوده و غیرآلوده به میکروپلاستیک موثر باشد. | ||
کلیدواژهها | ||
تنفس پایه؛ زیست توده میکروبی؛ معدنی شدن نیتروژن؛ اورهآز | ||
مراجع | ||
Anderson, T. H., & K. H. Domsch. (1990). Application of eco-physiological quotients (qCO2 and Dq) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry, 22: 251-255. Auta, H. S., Emenike, C. U., Jayanthi, B., & Fauziah, S. H. (2018). Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine Pollution Bulletin, 127, 15-21. Banu, M. R., Rani, B., Kavya, S. R., & Nihala Jabin, P. P. (2023). Biochar: A black carbon for sustainable agriculture. International Journal of Environment and Climate Change, 13(6), 418-432. Blöcker, L., Watson, C., Wichern, F. (2020). Living in the plastic age- different short-term microbial response to microplastics addition to arable soils with contrasting soil organic matter content and farm management legacy. Environmental Pollution, 267, 115468. Boots, B., Russell, C. W., Green, D. S. (2019). Effects of microplastics in soil ecosystems: above and below ground. Environmental Science and Technology, 53(19), 11496-11506. Bonifazi, G., Capobianco, G., & Serranti, S. (2018). A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 198, 115-122. Bremner, J. M. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science, 55(1), 11-33. Brookes P. C., Landman, A., Puden, G., Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry,17: 837-842. Canatoy, R. C., Cho, S. R., Galgo, S. J. C., Park, S. Y., & Kim, P. J. (2024). Biochar manure decreases ammonia volatilization loss and sustains crop productivity in rice paddy. Frontiers in Environmental Science, 12, 1421320. Chen, H., Wang, Y., Sun, X., Peng, Y., & Xiao, L. (2020). Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere, 243, 125271. Clough, T. J., Condron, L. M., Kammann, C., & Müller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy, 3(2), 275-293. Dewi, R. K., Gong, Y., Huang, Q., Li, P., Hashimi, R., & Komatsuzaki, M. (2024). Addition of biochar decreased soil respiration in a permanent no-till cover crop system for organic soybean production. Soil and Tillage Research, 237, 105977. Dhir, B. (2021). Biochar amendment improves crop production in problematic soils. Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology, 189-204. Du, H., & Wang, J. (2021). Characterization and environmental impacts of microplastics. Gondwana Research, 98, 63-75. Duis, K., Coors, A. (2016). Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe, 28(1), 1-25. Elbasiouny, H., Mostafa, A. A., Zedan, A., Elbltagy, H. M., Dawoud, S. F., Elbanna, B. A., Safaa A. El-Shazly et al Elbehiry, F. (2023). Potential Effect of Biochar on Soil Properties, Microbial Activity and Vicia faba Properties Affected by Microplastics Contamination. Agronomy, 13(1), 149. Feng, C., Ma, Y., Jin, X., Wang, Z., Ma, Y., Fu, S., & Chen, H. Y. (2019). Soil enzyme activities increase following restoration of degraded subtropical forests. Geoderma, 351, 180-187. Fuller, S., Gautam, A. (2016). A procedure for measuring microplastics using pressurized fluid extraction. Environmental Science and Technology, 50, 5774–5780. Gao, W., Gao, K., Guo, Z., Liu, Y., Jiang, L., Liu, C., & Wang, G. (2021). Different responses of soil bacterial and fungal communities to 3 years of biochar amendment in an alkaline soybean soil. Frontiers in Microbiology, 12, 630418. Ge, X., Cao, Y., Zhou, B., Xiao, W., Tian, X., & Li, M. H. (2020). Combined application of biochar and N increased temperature sensitivity of soil respiration but still decreased the soil CO2 emissions in moso bamboo plantations. Science of the Total Environment, 730, 139003. Gulmine, J. V., Janissek, P. R., Heise, H. M., & Akcelrud, L. (2002). Polyethylene characterization by FTIR. Polymer testing, 21(5), 557-563. Guo, J. J., Huang, X. P., Xiang, L., Wang, Y. Z., Li, Y. W., Li, H., Cai, Q., Mo, C., Wong, M. H. (2020). Source, migration and toxicology of microplastics in soil. Environment International, 137, 105263. Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179-199. Hasan, M. M., & Tarannum, M. N. (2025). Adverse impacts of microplastics on soil physicochemical properties and crop health in agricultural systems. Journal of Hazardous Materials Advances, 100528. He, Y., DeSutter, T., Prunty, L., Hopkins, D., Jia, X., & Wysocki, D. A. (2012). Evaluation of 1:5 soil to water extract electrical conductivity methods. Geoderma, 185, 12-17. Huang, Y., Zhao, Y., Wang, J., Zhang, M., Jia, W., Qin, X., (2019). LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environmental Pollution, 254, 112983. Jenkinson, D. S., & J. N. Ladd. (1981). Microbial biomass in soil: Measurement and turnover. In: Soil Biochemistry, (Eds.): E.A. Paul and J.N. Ladd. Vol. 5. Marcel Dekker, New York. 415-471. Joergensen, R.G., & Wichern, F., (2018). Alive and kicking: why dormant soil microorganisms matter. Soil Biology and Biochemistry, 116, 419-430. Kabir, E., Kim, K. H., & Kwon, E. E. (2023). Biochar as a tool for the improvement of soil and environment. Frontiers in Environmental Science, 11, 1324533. Kang, Q., Zhang, K., Dekker, S. C., & Mao, J. (2025). Microplastics in soils: A comprehensive review. Science of The Total Environment, 960, 178298. Keeney, D.R., & Nelson. D.W. (1982). Nitrogen-inorganic forms. In: A.L. Page (Ed.), Methods of Soil Analysis, Part 2. American Society of Agronomy, Madison WI, USA. 643-698. Khalid, A. R., Shah, T., Asad, M., Ali, A., Samee, E., Adnan, F., & Haider, G. (2023). Biochar alleviated the toxic effects of PVC microplastic in a soil-plant system by upregulating soil enzyme activities and microbial abundance. Environmental Pollution, 332, 121810. Khan, T. F., & Sikder, A. H. F. (2024). Microplastic Can Decrease Enzyme Activities and Microbes in Soil. Open Journal of Soil Science, 14(01), 1-12. Kim, S. W., Liang, Y., Zhao, T., & Rillig, M. C. (2021). Indirect effects of microplastic-contaminated soils on adjacent soil layers: Vertical changes in soil physical structure and water flow. Frontiers in Environmental Science, 9, 681934. Lehmann, J., & Joseph, S. (2009). Biochar for environmental management- an introduction. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: Science and Technology, 1-11. London. Earth scan. Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: an introduction. In Biochar for Environmental Management, (1-13). Routledge. Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., Ritsema, C. J., Geissen, V. (2017). Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185, 907-917. Liu, W., Cao, Z., Ren, H., & Xi, D. (2022). Effects of microplastics addition on soil available nitrogen in farm and soil. Agronomy, 13(1), 75. Liu, X., Li, Y., Yu, Y., & Yao, H. (2023). Effect of nonbiodegradable microplastics on soil respiration & enzyme activity: a meta-analysis. Applied Soil Ecology, 184, 104770. Loeppert, R. H., Suarez, D. L., (1996). Carbonates and gypsum. In: Sparks, D.L. (Ed.), Methods of Soil Analysis. Part 3, Chemical Methods. SSSA, Madison, Wisconsin, USA. 437-474. Lozano, Y. M., Lehnert, T., Linck, L. T., Lehmann, A., & Rillig, M. C. (2021). Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass. Frontiers of Plant Science, 12. 616645. Mukherjee, A., & Lal, R. (2013). Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2), 313-339. Obia, A., Mulder, J., Martinsen, V., Cornelissen, G., & Børresen, T. (2016). In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research, 155, 35–44. Page, A. L., R. H. Miller & D. R. Keeney (1982). Methods of soil analyses. American Soil Science Agronomy Monograph, 1159. Palansooriya, K. N., Sang, M. K., Igalavithana, A. D., Zhang, M., Hou, D., Oleszczuk, P., Sung, J., Ok, Y. S. (2022). Biochar alters chemical and microbial properties of microplastic-contaminated soil. Environmental Research, 209, 112807. Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S.X., Bolan, N., Wang, H., Ok, Y. S., (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1, 3–22. Qi, R., Jones, D. L., Li, Z., Liu, Q., Yan, C. (2020). Behavior of microplastics and plastic film residues in the soil environment: A critical review. Science of the Total Environment, 703, 134722. Rillig, M. C., Kim, S. W., Kim, T. Y., Waldman, W. R. (2021). The global plastic toxicity debt. Environmental Science and Technology, 55, 2717–2719. Robinson, G. W. (1922). A new method for the mechanical analysis of soils and other dispersions. The Journal of Agricultural Science, 12, 306-321. Rong, L., Zhao, L., Zhao, L., Cheng, Z., Yao, Y., Yuan, C., Wang, L., Sun, H. (2021). LDPE microplastics affect soil microbial communities and nitrogen cycling. Science of the Total Environment, 773, 145640. Saleem, I., Riaz, M., Mahmood, R., Rasul, F., Arif, M., Batool, A., Akmal, M, H., Azeem, F., & Sajjad, S. (2022). Biochar and microbes for sustainable soil quality management. Microbiome under changing climate, Woodhead Publishing. 289-311. Seki, M., Sugihara, S., Miyazaki, H., Jegadeesan, M., Kannan, P., & Tanaka, H. (2020, May). Biochar combined with manure application can decrease organic matter decomposition compared to manure alone in the dry tropical cropland of south India. In EGU General Assembly Conference Abstracts. 17848. Shi, J., Wang, J., Lv, J., Wang, Z., Peng, Y., & Wang, X. (2022). Microplastic presence significantly alters soil nitrogen transformation and decreases nitrogen bioavailability under contrasting temperatures. Journal of Environmental Management, 317, 115473. Shyam, S., Ahmed, S., Joshi, S. J., & Sarma, H. (2025). Biochar as a Soil amendment: implications for soil health, carbon sequestration, and climate resilience. Discover Soil, 2(1), 18.Šlapáková, B., Jeřábková, J., Voříšek, K., Tejnecký, V., & Drábek, O. (2018). The biochar effect on soil respiration and nitrification. Plant Soil Environment, 64, 114-119. Smith, B. (2021). The infrared spectra of polymers II: polyethylene. Spectroscopy, 24-29. Sobarzo-Palma, C., López-Belchí, M. D., Noriega, F. A., Zornoza, R., Tortella, G., & Schoebitz, M. (2024). Microplastics Can Alter Plant Parameters Without Affecting the Soil Enzymatic Activity in White Lupine. Sustainability, 17(1), 149. Su, J., Zhu, Y., Chen, X., Lu, X., Yan, J., Yan, L., & Zou, W. (2024). Biochar influences polyethylene microplastic-contaminated soil properties and enzyme activities. Agronomy, 14(12), 2919. Tabatabai, M. A. & Bremner, J. M. (1972). Assay of urease activity in soils. Soil Biology and Biochemistry, 4: 479–486. Thies, J. E., & Rillig, M. C. (2012). Characteristics of biochar: biological properties. In Biochar for Environmental Management, (117-138). Routledge. Walkley, A., & Black, I. A. (1934). ʻʻAn examination of the method for determining soil organic matter, and a proposed modification of the chromic acid titration methodʼʼ. Soil Science, Vol. 37, No. 1, pp 29-38. Wang J., Zhang M., Chen G., Zhu T., Zhang S., Teng Y., Christie P., Luo Y. (2016). Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere, 151:171–177. Wang, F., Wang, Q., Adams, C. A., Sun, Y., Zhang, S. (2022). Effects of microplastics on soil properties: current knowledge and future perspectives. Journal of Hazardous Materials, 424, 127531. Wang, S., Wang, W., Rong, S., Liu, G., Li, Y., Wang, X., & Liu, W. (2024). Key Factors and Mechanisms of Microplastics Affecting Soil Nitrogen Transformation: A Review. Soil and Environmental Health, 100101. Horn, O., Nalli, S., Cooper, D., & Nicell, J. (2004). Plasticizer metabolites in the environment. Water Research, 38(17), 3693-3698. Warnock, D. D., Lehmann, J., Kuyper, T. W., Rillig, M.C. (2007). Mycorrhizal responses to biochar in soil- concepts and mechanisms. Plant and Soil, 300, 9–20. Wei, X., Wang, X., Ma, T., Huang, L., Pu, Q., Hao, M., & Zhang, X. (2017). Distribution and mineralization of organic carbon and nitrogen in forest soils of the southern Tibetan Plateau. Catena, 156, 298-304. Xiang, Y., Rillig, M. C., Peñuelas, J., Sardans, J., Liu, Y., Yao, B., & Li, Y. (2024). Global responses of soil carbon dynamics to microplastic exposure: A data synthesis of laboratory studies. Environmental Science and Technology, 58(13), 5821-5831. Xu, B., Liu, F., Cryder, Z., Huang, D., Lu, Z., He, Y., Wang, H., Lu, Z., Brookes, P.C., Tang, C., Gan, J., Xu, J. (2020). Microplastics in the soil environment: occurrence, risks, interactions and fate – a review. Critical Reviews in Environmental Science and Technology, 50, 2175–2222. Xu, H., Cai, A., Wu, D., Liang, G., Xiao, J., Xu, M., & Zhang, W. (2021). Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C: N ratio and soil pH: A global meta-analysis. Soil and Tillage Research, 213, 105125. Yang, H., Yumeng, Y., Yu, Y., Yinglin, H., Fu, B., & Wang, J. (2022). Distribution, sources, migration, influence and analytical methods of microplastics in soil ecosystems. Ecotoxicology and Environmental Safety, 243, 114009. Yi, M., Zhou, S., Zhang, L., & Ding, S. (2021). The effects of three different microplastics on enzyme activities and microbial communities in soil. Water Environment Research, 93(1), 24-32. Yu, H., Qi, W., Cao, X., Hu, J., Li, Y., Peng, J., Hu, C., Qu, J., 2021. Microplastic residues in wetland ecosystems: do they truly threaten the plant-microbe-soil system? Environment International, 156, 106708. Zhang, G. S., Zhang, F. X. (2020). Variations in aggregate-associated organic carbon and polyester microfibers resulting from polyester microfibers addition in a clayey soil. Environmental Pollution, 258, 113716. Zhang, Y., Li, X., Xiao, M., Feng, Z., Yu, Y., & Yao, H. (2022). Effects of microplastics on soil carbon dioxide emissions and the microbial functional genes involved in organic carbon decomposition in agricultural soil. Science of the Total Environment, 806, 150714. Zhang, Y., Yan, C., Wang, T., Zhang, G., Bahn, M., Mo, F., & Han, J. (2025). Biochar strategy for long-term N2O emission reduction: Insights into soil physical structure and microbial interaction. Soil Biology and Biochemistry, 202, 109685. Zhao, T., Lozano, Y. M., & Rillig, M. C. (2021). Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Frontiers in Environmental Science, 9, 675803. Zhao, S., Rillig, M. C., Bing, H., Cui, Q., Qiu, T., Cui, Y., & Fang, L. (2024). Microplastic pollution promotes soil respiration: A global‐scale meta‐analysis. Global Change Biology,30(7), 17415. Zhou, Z., Hua, J., & Xue, J. (2023). Polyethylene microplastic and soil nitrogen dynamics: Unraveling the links between functional genes, microbial communities, and transformation processes. Journal of Hazardous Materials, 458, 131857. Zhou, Z., Hua, J., Xue, J., & Yu, C. (2024). Differential impacts of polyethylene microplastic and additives on soil nitrogen cycling: A deeper dive into microbial interactions and transformation mechanisms. Science of the Total Environment, 173771. Zhu, F., Yan, Y., Doyle, E., Zhu, C., Jin, X., Chen, Z., Wang, C., He, H., Zhou, D., Gu, C. (2022). Microplastics altered soil microbiome and nitrogen cycling: the role of phthalate plasticizer. Journal of Hazardous Materials, 427, 127944. | ||
آمار تعداد مشاهده مقاله: 123 تعداد دریافت فایل اصل مقاله: 75 |