
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,885,406 |
تعداد دریافت فایل اصل مقاله | 107,254,165 |
مقایسه توانایی تشخیص تنش آبی با استفاده از ماهوارههای سنتینل 2 و لندست 9/8 در مزارع نیشکر | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 5، مرداد 1404، صفحه 1219-1238 اصل مقاله (2.37 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.389356.669872 | ||
نویسندگان | ||
الهه ذرتی پور1؛ امیر سلطانی محمدی* 2؛ شادمان ویسی3؛ سعید برومندنسب4؛ عبدعلی ناصری5 | ||
1دانشجوی دکتری آبیاری و زهکشی، دانشکده مهندسی آب و محیطزیست، دانشگاه شهید چمران اهواز | ||
2گروه مهندسی آب، دانشکده مهندسی آب و محیط زیست، دانشگاه شهیدچمران اهواز، خوزستان، ایران | ||
3مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی ، کرج، ایران | ||
4دانشکده مهندسی آب و محیطزیست، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
5دانشکده مهندسی آب و محیطزیست، دانشگاه شهید چمران اهواز، اهواز، ایران. | ||
چکیده | ||
تنش آبی گیاه از مهمترین عوامل تأثیرگذار بر مدیریت آب و نظارت بر وضعیت دسترسی گیاه به آب بوده، که در صورت تشخیص دقیق در کوتاهمدت سبب بهبود عملکرد و جلوگیری از هدررفت منابع آب میگردد. هدف از پژوهش حاضر، مقایسه قابلیت باندهای فروسرخ ماهواره سنتینل2 و باندهای حرارتی ماهواره لندست 8-9 در تعیین تنش آبی گیاه در کشت و صنعت نیشکر امیرکبیر، واقع در استان خوزستان بود. بهمنظور ارزیابی برآوردها از دادههای واقعی محاسبه شده تنش براساس حسگرهای دما و رطوبت نسبی نصب شده در نقاط مختلف مزارع و معادله تجربی ایدسو استفاده گردید. برای برآورد تنش آبی براساس باندهای حرارتی لندست8-9 از شاخص دمای سطح زمین (LST) و براساس باندهای فروسرخ سنتینل2 از شاخص تنش رطوبتی (MSI) استفاده گردید. طبق یافتهها، باندهای حرارتی ماهواره لندست8-9، به طور میانگین با R2 معادل 92/0-78/0، RMSE معادل 11/0-08/0، rMBE معادل 14/20-54/14 و r معادل با 96/0-88/0 نسبت به باندهای فروسرخ سنتینل2 بهطور میانگین با R2 معادل 89/0-74/0، RMSE معادل 15/0-14/0، rMBE معادل 62/38-53/28 و r معادل با 94/0-86/0 اندکی برآورد بهتری در مقایسه با دادههای واقعی تنش نشان داد. اما روند تغییرات تنش در هر دو ماهواره تفاوت معنی داری را نشان نمیدهد. همچنین، براساس نقشه پراکنش مکانی تنش آبی برآورد شده با استفاده از باندهای حرارتی و فروسرخ بهترتیب، بیشترین میزان تنش معادل با 65/0 و 69/0 و مربوط به تاریخ 2 مرداد حاصل گردید. لذا، هر دو ماهواره در برآورد تنش آبی نیشکر عملکرد قابل قبولی داشته و در صورت عدم دسترسی به تصاویر لندست 8-9، استفاده از تصاویر سنتینل2 نیز در برآورد تنش آبی گیاه پیشنهاد میگردد. | ||
کلیدواژهها | ||
ابزار دقیق؛ سنجش از دور؛ شاخص تنش رطوبتی؛ شاخص دمای سطح؛ نظارت محصول | ||
مراجع | ||
Abbasi, F., & Shinidashtgol, A. (2016). Recommendations for optimal fertilizer utilize in sugarcane fields. First edition. Agricultural Education Publishing. Agricultural Engineering and Technical Research Institute. (In Persian) Alauddin, M., Amarasinghe, U. A., & Sharma, B. R. (2010). Are there any ‘bright’spots and ‘hot’spots of rice water productivity in Bangladesh? A spatio-temporal analysis of district-level data. Berni, J. A. J., Zarco-Tejada, P. J., Suárez, L., González-Dugo, V., & Fereres, E. (2009). Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci, 38(6), 6. Besten, N., Steele-Dunne, S., de Jeu, R., & van der Zaag, P. (2021). Towards monitoring waterlogging with remote sensing for sustainable irrigated agriculture. Remote Sensing, 13(15), 2929. Chai, L., & Chen, Z. (2017, April). A Sensitivity Analysis of NDWI and SRWI to Different types of Vegetation Moisture. In EGU General Assembly Conference Abstracts (p. 12217). Das, S., Kaur, S., & Sharma, V. (2024). Determination of threshold crop water stress index for sub-surface drip irrigated maize-wheat cropping sequence in semi-arid region of Punjab. Agricultural Water Management, 301, 108957. Datt, B. (1999). Remote sensing of water content in Eucalyptus leaves. Australian Journal of botany, 47(6), 909-923. Alordzinu, K. E., Li, J., Lan, Y., Appiah, S. A., Al Aasmi, A., & Wang, H. (2021). Rapid estimation of crop water stress index on tomato growth. Sensors, 21(15), 5142. Filippi, P., Whelan, B. M., Vervoort, R. W., & Bishop, T. F. (2022). Identifying crop yield gaps with site-and season-specific data-driven models of yield potential. Precision Agriculture, 1-24. Gabriel, J.L., García-González, I., Quemada, M., Martin-Lammerding, D., Alonso-Ayuso, M., Hontoria, C. (2021). Cover crops reduce soil resistance to penetration by preserving soil surface water content. Geoderma, 386, 114911. Gardner, B. R., Nielsen, D. C., & Shock, C. C. (1992). Infrared thermometry and the crop water stress index. II. Sampling procedures and interpretation. Journal of production agriculture, 5(4), 466-475. Gerhards, M., Rock, G., Schlerf, M., & Udelhoven, T. (2016). Water stress detection in potato plants using leaf temperature, emissivity, and reflectance. International journal of applied Earth observation and geoinformation, 53, 27-39. Hopkins, W. G., & Hüner, N. P. (1995). Introduction to plant physiology. Hsiao, T. C., Fereres, E., Acevedo, E., & Henderson, D. W. (1976). Water stress and dynamics of growth and yield of crop plants. In Water and Plant life: Problems and modern approaches (pp. 281-305). Berlin, Heidelberg: Springer Berlin Heidelberg. Hunt Jr, E. R., & Rock, B. N. (1989). Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote sensing of environment, 30(1), 43-54. Idso, S. B. (1982). Non-water-stressed baselines: A key to measuring and interpreting plant water stress. Agricultural Meteorology, 27(1-2), 59-70. Idso, S. B., Jackson, R. D., Pinter Jr, P. J., Reginato, R. J., & Hatfield, J. L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural meteorology, 24, 45-55. Jackson, R. D., Reginato, R. J., & Idso, S. (1977). Wheat canopy temperature: a practical tool for evaluating water requirements. Water resources research, 13(3), 651-656. Jalilvand, E., Tajrishy, M., Hashemi, S. A. G. Z., & Brocca, L. (2019). Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region. Remote Sensing of Environment, 231, 111226. Jamshidi, S., Zand-Parsa, S., & Niyogi, D. (2021). Assessing crop water stress index of citrus using in-situ measurements, Landsat, and Sentinel-2 data. International Journal of Remote Sensing, 42(5), 1893-1916. Jones, H. G. (1999). Use of infrared thermometry for estimation of stomata conductance as a possible aid to irrigation scheduling. Agricultural and forest meteorology, 95(3), 139-149. Jimenez-Munoz, J., C., Sobrino, J. A., Skokovic, D., Mattar, C., & Cristobal, J. (2014). Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840–1843. Kang, Y., Khan, S., & Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security–A review. Progress in natural Science, 19(12), 1665-1674. Karlqvist, S., Burdun, I., Salko, S. S., Juola, J., & Rautiainen, M. (2024). Retrieval of moisture content of common Sphagnum peat moss species from hyperspectral and multispectral data. Remote Sensing of Environment, 315, 114415. Katimbo, A., Rudnick, D. R., DeJonge, K. C., Lo, T. H., Qiao, X., Franz, T. E., ... & Duan, J. (2022). Crop water stress index computation approaches and their sensitivity to soil water dynamics. Agricultural Water Management, 266, 107575. King, B. A., & Shellie, K. C. (2023). A crop water stress index based internet of things decision support system for precision irrigation of wine grape. Smart Agricultural Technology, 4, 100202. King, B. A., Shellie, K. C., Tarkalson, D. D., Levin, A. D., Sharma, V., & Bjorneberg, D. L. (2020). Data-driven models for canopy temperature-based irrigation scheduling. Transactions of the ASABE, 63(5), 1579-1592. Kumari, A., Singh, D. K., Sarangi, A., Hasan, M., & Sehgal, V. K. (2024). Optimizing wheat supplementary irrigation: Integrating soil stress and crop water stress index for smart scheduling. Agricultural Water Management, 305, 109104. Lees, K. J., Quaife, T., Artz, R. R. E., Khomik, M., Sottocornola, M., Kiely, G., ... & Clark, J. M. (2019). A model of gross primary productivity based on satellite data suggests formerly afforested peatlands undergoing restoration regain full photosynthesis capacity after five to ten years. Journal of environmental management, 246, 594-604. Liu, L., Zhang, S., & Zhang, B. (2016). Evaluation of hyperspectral indices for retrieval of canopy equivalent water thickness and gravimetric water content. International Journal of Remote Sensing, 37(14), 3384-3399. Makaya, N. P., Mutanga, O., Kiala, Z., Dube, T., & Seutloali, K. E. (2019). Assessing the potential of Sentinel-2 MSI sensor in detecting and mapping the spatial distribution of gullies in a communal grazing landscape. Physics and Chemistry of the Earth, Parts A/B/C, 112, 66-74. Mazidi, M., Hesam, M., Ghorbani, K., & Komaki, C. B. (2024). Feasibility of estimating cotton water stress based on spectral indices of Landsat and Sentinel 2 satellite images. Journal of Water and Soil Conservation, 31(2), 99-117. (In Persian) Mazidi, M., Hesam, M., Ghorbani, K., & Komaki, C. B. (2024). Evaluation of Cotton Water Stress Estimation Using Multispectral Satellite Images Based on M5 Tree Model. Journal of Water Research in Agriculture, 37(4), 385-400. (In Persian) Meingast, K. M., Falkowski, M. J., Kane, E. S., Potvin, L. R., Benscoter, B. W., Smith, A. M., ... & Miller, M. E. (2014). Spectral detection of near-surface moisture content and water-table position in northern peatland ecosystems. Remote Sensing of Environment, 152, 536-546. Moesinger, L., Zotta, R. M., van Der Schalie, R., Scanlon, T., de Jeu, R., & Dorigo, W. (2022). Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI). Biogeosciences, 19(21), 5107-5123. Nielsen, D. C. (1990). Scheduling irrigations for soybeans with the Crop Water Stress Index (CWSI). Field Crops Research, 23(2), 103-116. Oltra-Carrió, R., Baup, F., Fabre, S., Fieuzal, R., & Briottet, X. (2015). Improvement of soil moisture retrieval from hyperspectral VNIR-SWIR data using clay content information: From laboratory to field experiments. Remote Sensing, 7(3), 3184-3205. Pahlevan, N., Chittimalli, S. K., Balasubramanian, S. V., & Vellucci, V. (2019). Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems. Remote sensing of Environment, 220, 19-29. Pei, S., Dai, Y., Bai, Z., Li, Z., Zhang, F., Yin, F., & Fan, J. (2024). Improved estimation of canopy water status in cotton using vegetation indices along with textural information from UAV-based multispectral images. Computers and Electronics in Agriculture, 224, 109176. Peng, J., Shen, H., He, S. W., & Wu, J. S. (2013). Soil moisture retrieving using hyperspectral data with the application of wavelet analysis. Environmental Earth Sciences, 69, 279-288. Quinlan, J.R., 1992. Learning with continuous classes. In 5th Australian joint conference on artificial intelligence. 343-348 Ren, S., Guo, B., Wang, Z., Wang, J., Fang, Q., & Wang, J. (2022). Optimized spectral index models for accurately retrieving soil moisture (SM) of winter wheat under water stress. Agricultural Water Management, 261, 107333. Safi, A. R., Karimi, P., Mul, M., Chukalla, A., & de Fraiture, C. (2022). Translating open-source remote sensing data to crop water productivity improvement actions. Agricultural Water Management, 261, 107373. Sayago, S., Ovando, G., Bocco, M., 2017. Landsat images and crop model for evaluating water stress of rainfed soybean. Remote Sensing of Environment, 198, 30-39. Sobrino, J. A., Jiménez-Muñoz, J. C., El-Kharraz, J., Gómez, M., Romaguera, M., & Soria, G. (2004). Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site. International Journal of Remote Sensing, 25(1), 215-230. Solgi, S., Ahmadi, S. H., & Seidel, S. J. (2023). Remote sensing of canopy water status of the irrigated winter wheat fields and the paired anomaly analyses on the spectral vegetation indices and grain yields. Agricultural Water Management, 280, 108226. Taghvaeian, S., Comas, L., DeJonge, K. C., & Trout, T. J. (2014). Conventional and simplified canopy temperature indices predict water stress in sunflower. Agricultural water management, 144, 69-80. Tanner, C. B. (1963). Plant temperatures. Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892-898. Vanino, S., Nino, P., De Michele, C., Bolognesi, S. F., D'Urso, G., Di Bene, C., ... & Napoli, R. (2018). Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sensing of Environment, 215, 452-470. Veysi, S., Naseri, A. A., & Hamzeh, S. (2020). Relationship between field measurement of soil moisture in the effective depth of sugarcane root zone and extracted indices from spectral reflectance of optical/thermal bands of multispectral satellite images. Journal of the Indian Society of Remote Sensing, 48(7), 1035-1044. Veysi, S., Naseri, A. A., Hamzeh, S., & Bartholomeus, H. (2017). A satellite based crop water stress index for irrigation scheduling in sugarcane fields. Agricultural water management, 189, 70-86. Veysi, S., Galehban, E., Nouri, M., Mallah, S., & Nouri, H. (2024). Comprehensive framework for interpretation of WaPOR water productivity. Heliyon, 10(16). Veysi, S. (2017). Detection Sugarcane Water Stress Using Field Data and Satellite Images For Irrigation Scheduling. PhD thesis. Supervised by Abdali Naseri. Ahvaz: Shahid Chamran University of Ahvaz, Faculty of Water Sciences Engineering. Virnodkar, S., Pachghare, V. K., Patil, V. C., & Jha, S. K. (2021). Performance evaluation of RF and SVM for sugarcane classification using sentinel-2 NDVI time-series. In Progress in Advanced Computing and Intelligent Engineering: Proceedings of ICACIE 2019, Volume 2 (pp. 163-174). Springer Singapore. Vieira, M. A., Formaggio, A. R., Rennó, C. D., Atzberger, C., Aguiar, D. A., & Mello, M. P. (2012). Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sensing of Environment, 123, 553-562. Wang, M., Li, M., Zhang, Z., Hu, T., He, G., Zhang, Z., ... & Liu, X. (2022). Land surface temperature retrieval from Landsat 9 TIRS-2 data using radiance-based split-window algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 1100-1112. Waters, R., Allen, R., Bastiaanssen, W., Tasumi, M., & Trezza, R. (2002). Sebal. Surface energy balance algorithms for land. Idaho implementation. Advanced Training and Users Manual, Idaho, USA. Xiao, Y., Zhao, W., Zhou, D., & Gong, H. (2013). Sensitivity analysis of vegetation reflectance to biochemical and biophysical variables at leaf, canopy, and regional scales. IEEE Transactions on Geoscience and Remote Sensing, 52(7), 4014-4024. Yi, Q., Wang, F., Bao, A., & Jiapaer, G. (2014). Leaf and canopy water content estimation in cotton using hyperspectral indices and radiative transfer models. International Journal of Applied Earth Observation and Geoinformation, 33, 67-75. Zhao, B., Adama, T., Ata-Ul-Karim, S. T., Guo, Y., Liu, Z., Xiao, J., ... & Duan, A. (2021). Recalibrating plant water status of winter wheat based on nitrogen nutrition index using thermal images. Precision Agriculture, 1-20. Zhou, Z., Majeed, Y., Naranjo, G. D., & Gambacorta, E. M. (2021). Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Computers and Electronics in Agriculture, 182, 106019.
| ||
آمار تعداد مشاهده مقاله: 126 تعداد دریافت فایل اصل مقاله: 101 |