
 
 
 

 
 
 

Accepted Manuscript 

 
 
 
Using SFA and GMPI methods for geochemical exploration of buried 
porphyry copper deposits, case study: Janja copper-gold deposit, SE Iran 
 
 
 
Masoud Esmailzadeh, Ali Imamalipour 
 
 
 
DOI:    10.22059/geope.2025.395854.648821 
 
 
 
Receive Date:   23 May 2025 
Revise Date:   03 August 2025 
Accept Date:   17 August 2025 
 

GEOPERSIA 



 
 

Accepted Manuscript  
 

 
Using SFA and GMPI methods for geochemical exploration of 
buried porphyry copper deposits, case study: Janja copper-gold 
deposit, SE Iran 
 
Masoud Esmailzadeh , Ali Imamalipour *  
 
Department of Mining Engineering, Urmia University, Urmia, Iran 
 
Received: 23 May 2025, Revised: 03 August 2025, Accepted: 17 August 2025 
 
Abstract 
The Janja Porphyry Copper-Gold Deposit, situated in the Zabol–Zahedan–Saravan subzone of Eastern 
Iran, is obscured by a thick alluvial cover, which complicates exploration.  This study investigates the 
geochemical distribution of elements in surface cover to delineate anomaly patterns associated with 
concealed mineralization. A total of 153 stream sediment samples and 16,300 drill core samples from 
74 boreholes (38 in overburden, 36 in exposed bedrock) were analyzed using ICP-MS and Fire Assay 
techniques. Centered Log-Ratio (CLR) transformation, Staged Factor Analysis (SFA), and Geochemical 
Mineralization Prediction Index (GMPI) delineate anomaly patterns associated with concealed porphyry 
and vein-type mineralization. Results show that the concentrations of elements Ag, As, Cd, Mo, Pb, S, 
Sb, and Zn have increased in the overburden (up to five times Clarke values), with Cu (1,211.53 ppm) 
and Au (0.1 ppm) enriched in hypogene diorite (2,561.4 ppm Cu, 0.15 ppm Au). SFA identified three 
elemental groups, including lithogenic (Al, Fe, Mn), mineralization-related (Cu, Pb, Zn, Ag), and 
broadly dispersed elements (Mo, As, S). Anomalous concentrations of Ag, Mo, Cd, and S  elements in 
overburden serve as key indicators for concealed deposits. This CLR-SFA-GMPI approach mitigates 
closure effects, enhances anomaly detection, and offers a scalable strategy for exploring porphyry Cu 
deposits in arid covered terrains within global porphyry belts. 
 
Keywords: Geochemical Exploration, Janja Porphyry Cu Deposit, Overburden, GMPI, SFA. 
 
Introduction 
 
Porphyry deposits rank among the most critical targets in mineral resource assessment due to 
their substantial contributions to global copper, gold, and molybdenum production(Cooke et al., 
2014; Lowell & Guilbert, 1970; Sillitoe, 2010). These deposits are frequently affected by erosion 
and weathering, often remaining concealed beneath alluvial, colluvial, or weathered materials, 
which complicates their detection and increases exploration costs (Anand et al., 2016; Butt et al., 
2000; Moradpouri et al., 2023). The global decline in the discovery of economic deposits, coupled 
with rising demand for base and precious metals, underscores the urgent need for innovative 
exploration techniques (Hagemann et al., 2016; Kelley et al., 2004). Many mineral resources are 
estimated to remain undiscovered under thick sedimentary cover, where surface conditions—both 
lithological and non-lithological—modulate geochemical signals from underlying mineralization 
(Anand et al., 2014; Butt et al., 2000). Consequently, extensive research and exploration efforts 
have focused on these challenging environments (Hou et al., 2004; Sillitoe, 2010). 
    Exploration efforts increasingly target deeper deposits in so-called "brownfields," as 
greenfield exploration is typically costlier and riskier (Hagemann et al., 2016). Conducting 
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surveys near known mines enhances the likelihood of uncovering hidden deposits. Detecting 
deep mineralization requires integrating geological, geochemical, geophysical, and three-
dimensional spatial analysis methods to model and assess subsurface mineral systems (Fallara 
et al., 2006; Hosseini-Dinani & Aftabi, 2016; Porwal & Carranza, 2015; J. Wang et al., 2017; 
M. Wang et al., 2017). 
    The primary goal of regional-scale geochemical exploration is to identify anomalies and 
correlate them with mineralized zones through stream sediment analysis (Esmaeiloghli, Lima, 
et al., 2024; Esmaeiloghli, Tabatabaei, et al., 2024; Ghasemzadeh et al., 2019; Saremi et al., 
2023). These sediments, formed by the erosion of upstream rocks within drainage basins, 
provide insights into mineralization and lithological characteristics (Shahrestani & Mokhtari, 
2017a, 2017b; Shahrestani, Mokhtari, & Alipour-Asll, 2019; Shahrestani, Mokhtari, Carranza, 
et al., 2019). However, factors such as topography, slope, lithology, and faulting affect these 
data nonlinearly, posing challenges for interpretation (Yousefi et al., 2013). Advances in data 
mining, statistical, and intelligent methods have facilitated the extraction of complex patterns 
(Zuo, 2017; Zuo et al., 2021). Spatial geochemical data are essential for delineating 
mineralization boundaries and understanding element transport and dispersion (Ayari et al., 
2022; Bigdeli et al., 2023; Hajihosseinlou et al., 2024a, 2024b). Geochemical maps, by 
highlighting anomalies, assist in identifying deposit types and supporting Mineral Prospectivity 
Mapping (MPM) (Barak et al., 2024; Barak et al., 2021; Hajihosseinlou et al., 2023, 2024a, 
2024b; Mirzabozorg & Abedi, 2023; Saremi et al., 2025; Saremi, Hoseinzade, et al., 2024; 
Saremi, Maghsoudi, et al., 2024). Multivariate analysis, in particular, offers effective tools for 
exploring covered terrains by detecting elemental anomalies and dispersion patterns in surface 
sediments (Ghasemzadeh et al., 2022; Yousefi et al., 2019). 
    Recent advancements in processing compositional data, such as the Centered Log-Ratio 
(CLR) transformation to address closure effects and Staged Factor Analysis (SFA) to reduce 
noise and enhance anomalies, have significantly improved exploration accuracy and efficiency 
(Yousefi et al., 2014; Zuo et al., 2021). Understanding the distribution patterns of geochemical 
elements is a fundamental step in assessing future geological and anthropogenic changes and 
interpreting past processes (Batanova & Sobolev, 2000; Carranza, 2008; Reimann et al., 2011; 
Wang & Zuo, 2024). Geochemical data from diverse samples—such as soil, stream sediments, 
and bedrock—reflect a wide range of geological and chemical processes (Grunsky & de Caritat, 
2019; Grunsky, 2010; Grunsky et al., 2009). Analyzing background levels and spatial 
distributions of these elements plays a key role in pinpointing potential exploration targets 
(Cheng, 1996). However, their distribution results from complex, long-term interactions 
between primary and secondary geological processes, as well as human activities (Macklin et 
al., 1994; Spadoni, 2006; Wang et al., 2020). Geochemical data analysis demands a systematic 
approach to process and interpret high-dimensional multivariate data, providing a reliable 
foundation for exploration. Common challenges include the closure effect, selecting 
appropriate multivariate methods, and identifying anomalies (Grunsky, 2010; Tolosana-
Delgado & Van den Boogaart, 2013). Thus, developing a comprehensive framework to address 
these issues is essential for a scientifically robust analysis. 
    This study provides valuable insights into the behavior of elements within semi-transitional 
and transitional alluvial covers under arid conditions through the detailed identification of 
geochemical patterns in the Janja porphyry copper deposit. The Janja porphyry copper deposit, 
located in the Zabol-Zahedan-Saravan subzone of Eastern Iran’s structural belt, exemplifies a 
concealed mineral system. It formed due to the intrusion of diorite to granodiorite bodies into 
Late Cretaceous flysch-type rocks, with significant portions now buried beneath semi-
transitional alluvial cover as a result of erosion and sedimentation processes (Camp & Griffis, 
1982; Moradi et al., 2014). Previous exploration efforts in this region have achieved limited 
success, hindered by the limitations of conventional methods, arid desert conditions, and 



 

complex structural features (Moradpouri et al., 2023). Nevertheless, the deposit’s distinctive 
geochemical characteristics—especially the enrichment of key elements in the surface cover—
indicate significant potential for discovering hidden resources. 
    This research aims to investigate the geochemical distribution of elements in the alluvial 
cover of the Janja area and identify indicators of concealed mineralization. It employs 
geochemical data from 153 stream sediment samples and 74 drillholes, utilizing advanced 
techniques such as the Centered Log-Ratio (CLR) transformation for data normalization, 
Staged Factor Analysis (SFA) for multi-element pattern analysis, and the Geochemical 
Mineralization Prediction Index (GMPI) for spatial anomaly mapping. This approach reveals 
geochemical patterns linked to porphyry and vein-type mineralization, offering a deep 
understanding of element behavior in arid, covered terrains and proposing an innovative 
framework for exploration applicable to similar porphyry belts worldwide. 
    The paper commences with a description of the geology and mineralization characteristics 
of the Janja deposit, followed by details on sampling methods, geochemical analyses, and 
statistical techniques. Subsequent sections present the results of univariate and multivariate 
analyses, including elemental distribution maps, and discuss the exploration implications of the 
findings along with recommendations for future research. 
 
Geology of the Janja Area 
 
The Janja porphyry copper deposit lies in the Saberi region, Nimruz County, Sistan and 
Baluchestan Province, within the Zabol-Zahedan-Saravan subzone of Eastern Iran’s structural 
belt. Regionally, this area is located in the western part of the Chagai magmatic arc. The Chagai 
arc, extending from Pakistan into Southeast Iran, is a prominent metallogenic belt renowned for 
its porphyry copper deposits (Mastoi et al., 2020; Perelló et al., 2008; Shah et al., 2020; Siddiqui 
et al., 2018; Siddiqui et al., 2017; Zürcher et al., 2019). Part of the Tethyan metallogenic belt 
(Hong et al., 2025; Muhammad et al., 2024; Murad et al., 2021; Zhang et al., 2024), this arc spans 
approximately 300 km east-west and features superimposed magmatic arcs with mineralization 
events from 43–37 Ma (middle-late Eocene), 24–22 Ma (early Miocene), and 18–15 Ma (middle 
Miocene) (Perelló et al., 2008). This complex region, with significant metallogenic potential, 
hosts world-class deposits like Reko Diq, Shadan, and potentially Hired (Perelló et al., 2008; 
Raeisi et al., 2023), linked to subduction-related magmatism and tectonic activity from the 
Cretaceous to Quaternary (Muhammad et al., 2024; Nicholson et al., 2010). 
Positioned in the Flysch Belt between the Lut Desert and Hamun Basins, the Zabol-Zahedan-
Saravan subzone adjoins the Oligocene to Middle Miocene magmatic arc (Camp and Griffis, 
1982; Moradi et al., 2014). Host rocks comprise Late Cretaceous flysch (Sefidabeh Formation), 
including shale, sandstone, fine-grained conglomerate, and limestone interbeds, 
metamorphosed by diorite, quartz diorite, and granodiorite intrusions into medium- to low-
temperature hornfels-skarn facies (Griffis, 1990). 
    Porphyry mineralization at Janja is confirmed by Miocene, U–Pb zircon ages (16.5 ± 0.5 Ma), 
is tied to diorite to granodiorite intrusions with porphyritic textures, comprising plagioclase, 
hornblende, minor quartz, and chalcopyrite. Hydrothermal alteration includes potassic, propylitic, 
argillic, and rare phyllic zones, associated with disseminated, veinlet, and stockwork 
mineralization. The mineralogy includes sulfide minerals such as pyrite, chalcopyrite, covellite, 
chalcocite, molybdenite and bornite; and oxide minerals including magnetite, hematite, goethite, 
and hydro-carbonate minerals including malachite and azurite (Rahimi et al., 2022) (Figure 1). 
    Much of the area is covered by Quaternary alluvium and dunes, up to 17 m thick, obscuring 
surface mineralization and necessitating advanced geochemical methods (IMPASCO, 2022). The 
landscape features rugged hornfels outcrops and gently sloping dioritic bodies, with enriched 
alluvial elements creating favorable conditions for studying concealed mineralization (Figure 2). 



 

 
Figure 1. The geological map of the study area, at a scale of 1:5000, has been revised from IMPASCO 
(2022) 
 

 
Figure 2. General view of the study area and drilled boreholes in the Janja area.; Rough areas indicate 
hornfels outcrops and gently sloping areas related to the diorite-quartz porphyry intrusion 



 

    Exploration drilling reveals a mineralized zone extending beyond 700 m, with reserves of 
238 million metric tons at 0.31 wt.% Cu and 0.28 ppm Au. Polymetallic Au-Ag-Cu-Pb-Zn vein 
systems (1–10 m thick) along SE trending faults host galena, sphalerite, chalcopyrite, and 
malachite, with over 40 historical mining localities highlighting the region’s potential (Olang, 
2016). The central intrusion lies under alluvial cover, with exposures in the north. 
 
Materials and Methods 
 
This investigation utilized geochemical data derived from 153 stream sediment samples and 
16,300 drill core samples extracted from 74 boreholes across the Janja porphyry copper deposit. 
Stream sediment samples were systematically gathered from both active and inactive drainage 
systems to assess the distribution of elements within the alluvial cover. Among the 74 
boreholes, 38 were positioned within the alluvial overburden, while 36 penetrated exposed 
bedrock zones. Drill core samples, collected from the 0–10 meter depth range in overburden 
boreholes, were selected to analyze elemental patterns within the semi-transitional alluvial 
cover. The maximum overburden thickness, measured at 17.2 meters, was recorded in borehole 
BH23 (IMPASCO, 2022). Sampling protocols adhered to exploration standards compliant with 
ISO 17025 (Figure 4). 
    Stream sediment samples underwent drying at 60°C, sieving to -80 mesh, and reduction to a 
final weight of 50 grams. Drill core samples were pulverized to <2 mm, homogenized, and 
reduced to 100 grams. Geochemical analysis of 19 elements (comprising Ag, Au, Al, As, Ca, 
Cd, Cr, Cu, Fe, Li, Mg, Mn, Mo, Ni, Pb, S, Sb, V, Zn) was conducted using ICP-MS (Agilent 
7700) at the Zar Azma Laboratory. Gold analysis employed the Fire Assay method (Au-AA23, 
with a detection limit of 1 ppb), whereas other elements were assessed with the following 
detection limits: Cu (1 ppm), Ag (0.1 ppm), Mo (0.5 ppm), Zn (1 ppm), Pb (1 ppm), As (0.5 
ppm), and S (10 ppm). 
 

 
Figure 3. a) Outcrop of light gray diorite-quartz diorite. b) Diffuse, faceted magnetite and chalcopyrite 
crystals within a silicate matrix. c) Chalcopyrite vein associated with secondary quartz and biotite 

(a) 

(c) (b) 



 

 

 

Figure 1. a) Location of stream sediment samples b) 3D Model of overburden covering of the Janja 
deposit c) Location of drilling holes 
 
    Correlation analysis and Principal Component Analysis (PCA) were applied to explore 
elemental associations and corroborate the findings. Elemental distribution maps and three-
dimensional overburden models were constructed using Inverse Distance Weighting (IDW) 
Kriging within ArcGIS Pro. Statistical computations were performed using SPSS (version 26), 
R (with packages compositions and factoextra), and Python (utilizing the pandas library). 
 
Results and Discussion 
 
Centered Log-Ratio (CLR) Transformation 
 
Within the domain of geochemical data analysis, addressing the closure effect embedded in 
compositional datasets holds utmost importance (Filzmoser et al., 2009; Zuo et al., 2013). 

(a) 

(b) (c) 



 

Geochemical compositions, routinely quantified in units such as weight percent (wt%), parts 
per million (ppm), or parts per billion (ppb), are subject to two critical constraints: their values 
remain non-negative and sum to a constant value (e.g., 100% or 1,000,000 ppm), while a 
modification in one component inevitably alters the proportional representation of the others. 
This condition, known as the closure effect, generates biases in statistical assessments and 
promotes erroneous correlations stemming from the constant-sum restriction (Chayes, 1960; 
Pearce, 1968; Pearson, 1897). Simply isolating subsets of the data does not mitigate this issue. 
As a result, extensive research has emphasized the necessity of transforming geochemical 
datasets before analysis to ensure compatibility with Euclidean-based multivariate statistical 
methods (Aitchison, 1982; Buccianti & Grunsky, 2014; Geboy et al., 2013; Pawlowsky-Glahn 
& Buccianti, 2011; Thiombane et al., 2018). 
Log-ratio transformation strategies for analyzing compositional data are classified into three 
primary categories: 
 Additive Log-Ratio (ALR) 
 Centered Log-Ratio (CLR) 
 Isometric Log-Ratio (ILR) 
(Khammar et al., 2021). These techniques are formulated to eliminate the structural dependency 
arising from the constant-sum property typical of compositional data. 
Among these approaches, the Centered Log-Ratio (CLR) transformation stands out as a favored 
technique due to its simplicity in execution and effectiveness in reducing closure-induced 
distortions (Ayati et al., 2013). The CLR method entails calculating the natural logarithm of 
each variable and adjusting it by the geometric mean of all variables (Equation 1), thus enabling 
a more reliable interpretation of geochemical signatures. 
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    A significant advantage of the CLR transformation is its ability to preserve all variables 
within the analytical process, distinguishing it from the Additive Log-Ratio (ALR) method, 
which mandates the selection and omission of a reference variable. In comparison, the Isometric 
Log-Ratio (ILR) technique reconfigures the dataset into an orthogonal coordinate system, 
diminishing dimensionality while delivering elevated accuracy for intricate analyses; however, 
its interpretative challenges arise from computational complexities (Filzmoser et al., 2008; 
Graffelman et al., 2018; Hassanpour & Afzal, 2013; Shahbazi et al., 2021). 
    A pivotal attribute of CLR lies in its capacity to facilitate a thorough examination of 
geochemical datasets without the exclusion of any components. Nonetheless, this approach is 
accompanied by certain constraints, notably its lack of compatibility with select multivariate 
statistical methods, as data transformed by CLR may not fulfill the foundational assumptions 
of certain statistical frameworks (Aitchison, 1982). Such incompatibilities may present 
difficulties in applications demanding sophisticated analytical techniques. 
    To more effectively highlight the distinctions and properties of these approaches, the 
subsequent table offers a detailed comparison of ALR, CLR, and ILR (Table 1): 
    The table below presents an in-depth comparative analysis of the Additive Log-Ratio (ALR), 
Centered Log-Ratio (CLR), and Isometric Log-Ratio (ILR) transformation techniques. This 
assessment highlights that CLR, due to its optimal balance between precision and ease of 
application, is often preferred for a broad spectrum of geochemical applications. However, the 
selection of the most appropriate method depends on the dataset's characteristics, the specific 
analytical objectives, and the statistical methodologies utilized (Aitchison, 1982). For example, 
ALR is sufficient for initial exploratory analyses, whereas ILR is more appropriate for advanced 



 

studies requiring detailed modeling (Hassanpour & Afzal, 2013; Shahbazi et al., 2021). 
    Following the identification and correction of outliers, a logarithmic transformation was 
applied to datasets displaying a log-normal distribution. To assess the normality of the data 
distribution, the F-function was utilized, calculated from skewness (Sk) and kurtosis (K) 
parameters (Equation 2). 
 

Equation 2: F = 2|Sk| + |3 - K| 
 
The closer the F value is to zero, the closer the data distribution is to a normal distribution 
(Table 2, Figure 5). 
 
Staged Factor Analysis (SFA) 
 
Staged Factor Analysis (SFA) represents an advanced multivariate statistical technique that 
enhances conventional Factor Analysis (FA) by systematically processing geochemical datasets 
to accurately isolate factors linked to mineralization. 
 
Table 1. The table provides a comparison of the Additive Log-Ratio (ALR), Centered Log-Ratio (CLR), 
and Isometric Log-Ratio (ILR) 

Method Definition Advantages Disadvantages Applications 
Related 
Methods 

CLR 

Calculation of the 
logarithm of each 

variable divided by 
the geometric mean of 

all variables 

Preserves all 
variables, reduces 

closure effects, 
easy to implement 

Incompatibility with 
some multivariate 
statistical methods 

Geochemical data 
analysis, principal 

component analysis 
(PCA), clustering 

PCA, K-means 
clustering 

ALR 

Calculation of the 
logarithm of the ratio 
of each variable to a 
selected reference 

variable 

Simplicity in 
calculations, 
suitable for 
preliminary 

analyses 

Dependence on the 
choice of reference 

variable, exclusion of 
one variable from 

analysis 

Preliminary 
geochemical 

investigations, 
simple analyses 

Univariate 
analyses, 
traditional 
statistical 
methods 

ILR 

Transformation of 
variables into 

orthogonal 
coordinates in the 
closed data space 

High accuracy in 
advanced 
analyses, 

complete removal 
of structural 
collinearity 

Computational 
complexity, difficulty 
in interpreting results 

Complex 
geochemical 

analyses, advanced 
modeling 

Orthogonal 
space-based 

analyses, 
advanced 
clustering 
methods 

 
Table 2. Statistical description of stream sediment samples 

Element Cu Mo As Pb Zn S Ag Sb 

Mean  26.65 0.95 12 24.88 72.63 404.03 0.25 1.68 
Median  26 0.93 10.3 19 68 140 0.27 1.08 

Std  6.9 0.27 8.71 43.9 39.84 1071.43 0.07 4 
Max  103 1.83 100 544 538 7821 0.42 44.5 

Skewness 
Raw 8.92 0.47 7.66 11.01 10.53 5.19 -0.27 8.81 
LN 4.04 -0.03 3.58 3.24 4.23 1.86 -0.7 4.45 

CLR -1.16 -0.99 0.45 0.39 -1.22 2.35 -1.15 4.64 

Kurtosis 
Raw 99.39 2.68 72.18 129.74 123.37 31.01 2.15 89.49 
LN 36.34 2.06 20.52 22.38 36.7 6.92 2.35 24.88 

CLR 5.08 10.12 4.26 6.79 4.33 8.93 6.67 30.31 

F 
Raw 114.24 1.26 84.5 148.76 141.42 38.39 1.39 104.11 
LN 41.41 0.99 24.67 25.87 42.16 7.64 2.05 30.79 

CLR 4.4 9.1 2.16 4.57 3.77 10.63 5.98 36.59 



 

 
Figure 2. Histogram of elements before and after normalization using LN and CLR 

 
    This methodology proceeds through a structured, iterative framework involving two key 
phases: (1) the exclusion of non-informative elements (noise) characterized by low factor 
loadings (e.g., below a 0.5 threshold), which contribute minimally to any factor, accomplished 
by iteratively applying factor analysis with varimax rotation until all retained elements display 
significant loadings; and (2) the identification of factors most strongly correlated with the 
targeted mineral deposit type, thereby yielding meaningful geochemical signatures. This 
strategy effectively reduces geochemical noise and improves the detection of multi-element 
anomalies associated with mineralization, particularly when analyzing stream sediment data 
(Afzal et al., 2017; Afzal et al., 2016; Farahmandfar et al., 2020; Fyzollahhi et al., 2018; 
Ghasemzadeh et al., 2019; Imamalipour et al., 2024; Sadeghi et al., 2021; Yousefi et al., 2012, 
2014). 
    SFA provides notable advancements over Stepwise Factor Analysis (SWFA) by not only 
eliminating noisy elements but also tailoring the analysis to specific mineralization types, thus 
optimizing factors for geochemical interpretation. To mitigate the closure effect inherent in 
compositional geochemical data, SFA is commonly paired with preprocessing methods such as 
logarithmic transformation, ensuring the statistical robustness of the outcomes (Filzmoser et 
al., 2009). The iterative refinement process and emphasis on mineralization-related factors 
render SFA more effective than traditional FA, delivering precise and dependable multi-
element signatures for delineating geochemical halos surrounding mineral deposits, as 
evidenced by various exploration studies (Figure 6) (Afzal et al., 2016; Saadati et al., 2020; 
Yousefi et al., 2012, 2014). 
 
Geochemical Mineralization Probability Index (GMPI) 
 
The Geochemical Mineralization Probability Index (GMPI) constitutes an advanced fuzzy 
weighting technique, specifically engineered to improve geochemical mapping during mineral 
exploration, with a particular focus on stream sediment samples. Initially proposed by Yousefi 
et al. (2012), this approach converts multi-element factor scores (FSs), commonly obtained 
from Principal Component Analysis (PCA), into a continuous fuzzy scale ranging from 0 to 1, 
utilizing the logistic sigmoid function (Equation 3): 



 

  
Figure 3. The general SFA method of obtaining geochemical signatures of relevance to the 
target(Hoseinzade & Mokhtari, 2017; Saremi, Maghsoudi, et al., 2024; Yousefi et al., 2014) 
 

Equation 3: GMPI =
1

1 + 𝑒ିFS  

    In this equation, FS denotes the multi-element signature characterizing a given sample, while 
e e e represents the base of the natural logarithm (Yousefi & Carranza, 2015; Yousefi et al., 
2014). This transformation normalizes exploration data across varying scales, facilitating the 
synthesis of geochemical and geophysical datasets within Mineral Potential Mapping (MPM). 
By allocating fuzzy weights to individual samples, GMPI accentuates their relative importance 
in targeting specific deposit types, thereby enhancing the detection of geochemical anomalies. 
(Afzal et al., 2016; Imamalipour et al., 2024). 
    GMPI tackles the challenge of handling continuous and unbounded exploration data within 
Geographic Information Systems (GIS) by mapping all evidence layers onto the [0, 1] interval, 
which supports effective data comparison and integration (Yousefi & Carranza, 2017). In 
application, GMPI applies logistic transformation to fuzzy geochemical and geophysical data—
such as magnetic anomalies or signatures derived from Principal Component Analysis (PCA)—
and determines parameters like slope (s) and inflection point (i) based on evidence layer values 
(Yousefi & Carranza, 2015). This technique not only diminishes data dimensionality but also 
intensifies anomaly prominence, positioning GMPI as a critical instrument for regional mineral 
exploration. The robust mathematical framework and flexibility of GMPI in accommodating 
multivariate datasets highlight its significance in contemporary exploration methodologies. 
 
Semi-Transported Sediments 
 
Within the semi-transported sediments comprising the overburden of the deposits, notably in 
regions where alluvial cover thickness surpasses 10 meters (reaching a maximum of 17.2 
meters), notable enrichment is detected in Ag (up to 0.6 ppm), Mo (up to 9 ppm), Cd (up to 0.6 
ppm), and S (up to 0.5%). It seems that enrichment reflects the pronounced mobility of these 
elements under oxidative and low pH conditions. The mobility of metals is generally higher in 
acidic environments and lower in alkaline environments due to pH's impact on metal speciation 
and solubility. Such a trend is consistent with chemical weathering mechanisms, including 
sulfide oxidation, alongside chemical and mechanical dispersion within alluvial layers. 



 

Comparable observations have been documented by Anand et al. (2016) in Australian porphyry 
deposits, linking the enrichment of molybdenum and arsenic to their elevated solubility in 
alkaline settings (Anand et al., 2016). 
    Conversely, anomalies of Cu (up to 1490 ppm) and Au (up to 0.15 ppm) are predominantly 
detected in proximity to outcrops of porphyritic diorite. The mean concentrations of these 
elements within the overburden zone are recorded at 1212 ppm for copper and 0.1 ppm for gold, 
suggesting their restricted mobility in this environment. This pattern corroborates findings by 
Kelley et al. (2004) in Arizona’s porphyry belts, which recognize copper and gold as direct 
indicators of mineralization in areas adjacent to their source (Kelley et al., 2004). 
    Statistical analysis highlights a marked disparity in element mobility between the overburden 
and hypogene zones. This distinction emphasizes the pivotal influence of surficial processes, 
such as erosion and weathering, on the geochemical distribution of elements. Accordingly, this 
study underscores the necessity of examining geochemical and surficial processes to elucidate 
mineralization patterns and facilitate the exploration of mineral resources (Table 3). It is worth 
noting  that  the average values of elements in the outcrop column refer to the average 
concentrations of these elements in samples taken from rock outcrops, while the average values 
of element concentrations in the overburden column refer to the values of concentrations in the 
cover thickness obtained from drill cores. The thickness of the overburden varies from 10 to 
17.2 meters. 
    By comparing the coefficient of variation (CV) in core samples from the hypogene zone with 
those from the overburden overlying the mineral deposit, it becomes apparent that the CV for 
nearly all elements is upper in samples from the hypogene zone compared to those from the 
overburden (Figure 7). The F-function values for the elements Cu and Au in mineralized diorite 
outcrops are approximately double those observed in the overburden. Conversely, for elements 
including Ag, As, Cd, Mo, Pb, S, Sb, and Zn, the F-function values in the overburden is more 
than those in samples from mineralized diorite outcrops (Figure 8). 
 

Table 3. Descriptive statistics of geochemical elements in the Janja area 
  Mean Earth 

Crust 

F  CV%  

  
Hypogene 

zone 
Outcrops Overburden 

Hypogene 
zone 

Outcrops Overburden 
Hypogene 

zone 
Outcrops Overburden 

Ag 0.97 0.28 0.6 0.08 12.2 3.5 7.5 284.54 58.47 55.09 

Al 63215 48045 61040 81300 0.8 0.6 0.8 39 65 25 

As 8 7 11 2 4.4 4 6.2 141 75 87 

Au 0.32 0.15 0.1 0 80.9 38.4 26.1 100.91 61.16 75.77 

Ca 29720 13425 31275 36300 0.8 0.4 0.9 52 78 99 

Cd 0.6 0.51 0.6 0 3 2.5 3 221.25 134.62 71.16 

Cu 2561 1490 1212 55 46.6 27.1 22 68 48 55 

Fe 22881 18597 26982 50000 0.5 0.4 0.5 61 67 33 

K 16305 11965 14290 25900 0.6 0.5 0.6 45 70 32 

Mg 11346 8716 11963 20900 0.5 0.4 0.6 51 64 37 

Mn 235 245 255 950 0.2 0.3 0.3 86 46 45 

Mo 54 4 9 2 35.9 2.5 6.2 270 92 134 

Na 20397 13571 12263 28300 0.7 0.5 0.4 46 75 43 

Pb 35 21 14 13 2.7 1.6 1.1 735 109 82 

S 14540 364 553 260 55.9 1.4 2.1 78 81 63 

Sb 4 2 6 0 21.4 10.5 29.3 308 77 104 

Sr 607 353 297 375 1.6 0.9 0.8 29 45 57 

Zn 52 36 32 70 0.7 0.5 0.5 588 53 62 

Zr 7 10 14 165 0 0.1 0.1 116 93 74 

F = M(janja)/M(Earth) 

CV% = (SD(janja)/M(janja))*100 



 

 
Figure 4. The graph shows the values of the coefficients of variations in the concentrations of the 
investigated elements 
 

 
Figure 5. F function (enrichment index) values in the hypogene zone, mineralized diorite outcrops and 
overburden 
 
    The findings are consistent with the rotated component matrix derived from the second-stage 
factor analysis (Table 4), unveiling distinct geochemical signatures within the overburden and 
hypogene zones. Component F1, exhibiting loadings of 0.95–0.99 for Al, Mg, Na, Fe, K, and 
Ca, suggests a crustal origin, likely attributable to the natural weathering of regional lithologies. 
Component F2, with loadings ranging from 0.51 to 0.89 for Sb, As, Cd, Mo, Pb, Ag, and Zn, is 
indicative of supergene enrichment under oxidative and alkaline environments, corroborating 
the enhanced mobility of these elements in the overburden, in line with sulfide oxidation and 
dispersion within alluvial layers. Component F3, displaying loadings of 0.90–0.92 for Cu and 
Au, signifies primary mineralization proximate to porphyritic diorite outcrops, reflecting their 
limited mobility in the overburden. These geochemical trends, reinforced by elevated F-
function values for Cu and Au in outcrops and for F2 elements in the overburden, highlight the 
critical influence of surficial processes on element distribution and their pivotal role in mineral 
exploration strategies. 
    The GMPI index maps for the elements Au, Cu, Zn, Pb, Ag, Mo, Cd, S, and As in drill core 
samples are depicted in Figure 8. These maps reveal that anomalies associated with Au, Cu, 
and Zn are predominantly situated within diorite outcrops across the study area. In contrast, 
most anomalies are for the other elements. Examples are found in the overburden. The presence 
of anomalies for elements such as Ag, Mo, Cd, and S. These elements are often considered as 
mobile elements and are expected to be scarce in surface environments (weathered rocks). The 
overburden covering the mineral deposit may serve as a pattern for exploring concealed 
deposits beneath the overburden (Figure 9). 



 

Table 4. Rotated component matrix created by SFA (Second stage) 
Rotated Component Matrixa 

  Component 
Elements  F1 F2 F3 

Al 0.99 0.1 -0.03 
Mg 0.98 0.08 -0.04 
Na 0.98 0.01 -0.01 
Fe 0.98 0.13 -0.02 
K 0.97 0.14 0.04 
Ca 0.95 0.09 -0.1 
Sb 0.16 0.89 0.02 
As 0.05 0.82 -0.03 
Cd 0.3 0.8 0.17 
Mo 0.08 0.67 0.23 
Pb -0.19 0.55 0.25 
Ag 0.43 0.54 0.08 
Zn -0.05 0.51 0.37 
Cu -0.01 0.13 0.92 
Au -0.06 0.14 0.9 

 
    The Geochemical Mineralization Probability Index (GMPI) for drill core data, utilizing a 
threshold of 0.7, evaluates anomalies of the elements Au, Cu, Zn, Pb, Ag, Mo, Cd, S, and As, 
integrating two principal factors: the first factor encompasses Pb, Ag, Mo, Cd, As, Zn, and Sb, 
with their anomalies predominantly observed within the overburden; the second factor includes 
Cu and Au, along with some Zn, with their anomalies primarily detected in porphyritic diorite 
outcrops. By emphasizing the most pronounced anomalies, this index delineates regions with 
potential surficial mineralization in porphyritic diorite while concurrently accentuating 
overburden geochemical signatures for prospecting concealed subsurface deposits. Where both 
factors display either weak or strong anomalies, their data are harmonized to yield a holistic 
exploration map (Table 5). 
    The GMPI index maps for the elements Au, Cu, Zn, Pb, Ag, and Mo in drill core samples are 
illustrated in Figure 7. These maps demonstrate that anomalies associated with Au, Cu, and Zn 
are predominantly situated within diorite outcrops across the study area. In contrast, the 
majority of anomalies for the remaining elements, Pb, Ag, and Mo, are concentrated within the 
overburden. The occurrence of anomalies for elements such as Ag, Mo, Cd, and S in the 
overburden overlying the mineral deposit may establish a diagnostic pattern for prospecting 
concealed deposits beneath this cover (Figure 10). 

 
Transported Stream Sediments 
 
Geochemical data obtained from stream sediments are classified as compositional data, 
inherently forming a closed numerical system wherein individual variables exhibit 
interdependence (Carranza, 2011; Filzmoser et al., 2009). Consequently, factor analysis 
necessitates prior normalization of these datasets. In this investigation, the Centered Log-Ratio 
(CLR) transformation is utilized to adjust the multivariate geochemical values, preparing them 
for conventional factor analysis. Following this, Staged Factor Analysis (SFA) is implemented 
to derive principal components, uncover latent structures within the multivariate dataset, and 
diminish the number of variables. 
    Staged Factor Analysis (SFA) of stream sediment geochemical data effectively elucidates 
mineralization trends and inter-element associations. The rotated matrix from this analysis 
delineates three primary factors, characterized by high Kaiser-Meyer-Olkin (KMO) values 
ranging from 0.753 to 0.851 and a cumulative variance of 84.97%, signifying the robustness of 
the analytical approach. 



 

Table 5. GMPI (mineralization) conditional equation for stepwise factor analysis of exploration 
borehole data 

𝐺𝑀𝑃𝐼(୊ଶିଶ) 
𝐺𝑀𝑃𝐼(୔ୠି୅୥ି ୑୭ିେୢି஺௦ି௓௡ିௌ௕) =

𝑒ி௦(ౌౘషఽౝష ౉౥షిౚషಲೞషೋ೙షೄ್)

1 + 𝑒ி௦(ౌౘషఽౝష ౉౥షిౚషಲೞషೋ೙షೄ್)
 

 

𝐺𝑀𝑃𝐼(୊ଷିଶ) 
𝐺𝑀𝑃𝐼(େ୳ି୅୳) =

𝑒ி௦(ి౫షఽ౫)

1 + 𝑒ி௦(ి౫షఽ౫)
 

 

𝐺𝑀𝑃𝐼(𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)

𝐺𝑀𝑃𝐼(𝑃𝑏 − 𝐴𝑔 − 𝑀𝑜 − 𝐶𝑑 − 𝐴𝑠
− 𝑍𝑛 − 𝑆𝑏) 

𝑖𝑓 𝐺𝑀𝑃𝐼(𝑃𝑏 − 𝐴𝑔 − 𝑀𝑜 − 𝐶𝑑 − 𝐴𝑠 − 𝑍𝑛
− 𝑆𝑏)
≥ 0.7 𝑎𝑛𝑑 𝐺𝑀𝑃𝐼(𝐶𝑢
− 𝐴𝑢) < 0.7 

 

𝐺𝑀𝑃𝐼(𝐶𝑢 − 𝐴𝑢) 

𝑖𝑓 𝐺𝑀𝑃𝐼(𝐶𝑢 − 𝐴𝑢)
≥ 0.7 𝑎𝑛𝑑 𝐺𝑀𝑃𝐼(𝑃𝑏
− 𝐴𝑔 − 𝑀𝑜 − 𝐶𝑑 − 𝐴𝑠
− 𝑍𝑛 − 𝑆𝑏) < 0.7 

 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐺𝑀𝑃𝐼(𝑃𝑏 − 𝐴𝑔 − 𝑀𝑜

− 𝐶𝑑 − 𝐴𝑠 − 𝑍𝑛
− 𝑆𝑏), 𝐺𝑀𝑃𝐼(𝐶𝑢
− 𝐴𝑢)) 
 

𝑖𝑓 𝐺𝑀𝑃𝐼(𝑃𝑏 − 𝐴𝑔 − 𝑀𝑜 − 𝐶𝑑 − 𝐴𝑠 − 𝑍𝑛
− 𝑆𝑏)
≥ 0.7 𝑎𝑛𝑑 𝐺𝑀𝑃𝐼(𝐶𝑢
− 𝐴𝑢) ≥ 0.7 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐺𝑀𝑃𝐼(𝑃𝑏 − 𝐴𝑔 − 𝑀𝑜
− 𝐶𝑑 − 𝐴𝑠 − 𝑍𝑛
− 𝑆𝑏), 𝐺𝑀𝑃𝐼(𝐶𝑢
− 𝐴𝑢)) 
 

𝑖𝑓 𝐺𝑀𝑃𝐼(𝑃𝑏 − 𝐴𝑔 − 𝑀𝑜 − 𝐶𝑑 − 𝐴𝑠 − 𝑍𝑛
− 𝑆𝑏)
< 0.7 𝑎𝑛𝑑 𝐺𝑀𝑃𝐼(𝐶𝑢
− 𝐴𝑢) < 0.7 

 

 

 
Figure 6. Anomaly map of factors obtained from the SFA method using the GMPI method for 
exploration borehole data; a)F2-2 b) F3-2 



 

 
Figure 7. Elements anomaly map using the GMPI method for exploration borehole data; a)Ag  b)Au  
c)Cu  d)Mo e)Pb f)Zn 
 
    In the initial stage, Factor 1 (F1, 47.94%) exhibits a robust correlation with the elements Al, 
As, Ce, Cr, Mo, Sc, Th, and Yb (loadings > 0.8), indicative of lithogenic phases and the 
presence of highly mobile elements (As and Mo). Factor 2 (F2, 15.79%) encompasses the 
elements Fe, V, Co, Mn, La, and Zn, suggesting their adsorption onto iron and manganese 
oxides. Factor 3 (F3, 8.79%) is defined by elevated loadings for Cd (0.92), Pb (0.83), Ag (0.74), 
Zn (0.75), and Cu (0.73), signifying porphyry and vein-type sulfide mineralization. 
    Comparable patterns emerge in the second and third stages. Factor 3 in the second stage and 
Factor 2 in the third stage reaffirm the chalcophile elements (Cd, Pb, Ag, Zn, Cu). Furthermore, 
Factor 3 in the third stage is marked by high loadings for Mo (0.89), As (0.87), and S (0.72), 
highlighting these as highly mobile elements (Table 6). 
 

(a) (b) (c) 

(d) (e) (f) 



 

Table 6. The values of factor score in the SFA method for the first, second, and Third steps 
Rotated Component Matrixa 

 First stage Second stage Third stage 
 F1 F2 F3 F4 F5 F1 F2 F3 F1 F2 F3 

Ag 0.09 0.14 0.74 0.30 0.27 0.11 0.13 0.77 0.15 0.77 0.12 
Au 0.12 0.23 -0.04 -0.02 -0.26 - - - - - - 
Al 0.92 0.02 0.08 0.20 -0.07 0.94 -0.08 0.08 - - - 
As 0.89 0.15 0.15 0.00 -0.07 0.89 0.08 0.14 0.26 0.12 0.87 
Ca -0.87 -0.01 -0.03 0.37 -0.08 - - - - - - 
Cd -0.04 -0.09 0.92 -0.13 -0.07 -0.05 -0.10 0.91 -0.08 0.92 -0.03 
Ce 0.86 0.42 0.09 0.13 0.10 0.91 0.34 0.10 - - - 
Co 0.32 0.85 0.26 -0.13 0.20 0.38 0.85 0.27 0.91 0.25 0.21 
Cr 0.82 0.47 0.16 -0.15 0.11 0.83 0.44 0.15 - - - 
Cu 0.33 0.39 0.73 0.15 -0.13 0.40 0.30 0.72 0.41 0.70 0.33 
Fe 0.25 0.89 0.26 -0.17 0.00 0.30 0.89 0.26 0.94 0.22 0.15 
La 0.42 0.76 0.09 0.25 0.25 0.51 0.70 0.12 - - - 
Li -0.11 -0.10 -0.01 0.96 0.05 - - - - - - 
Mg -0.84 -0.06 -0.05 0.25 0.42 - - - - - - 
Mn 0.65 0.70 0.26 0.01 0.03 0.70 0.65 0.26 0.77 0.23 0.57 
Mo 0.85 0.23 0.11 0.26 0.04 0.88 0.15 0.11 0.31 0.09 0.89 
Ni -0.05 0.37 0.09 -0.01 0.83 - - - - - - 
P -0.88 0.07 -0.04 0.26 -0.07 - - - - - - 

Pb 0.19 0.25 0.83 -0.15 0.18 0.19 0.27 0.84 0.32 0.84 0.15 
S 0.54 -0.41 0.18 0.26 -0.04 0.56 -0.50 0.18 -0.39 0.16 0.72 

Sb 0.40 0.17 0.34 0.14 0.36 - - - - - - 
Sc 0.84 0.43 0.18 -0.12 -0.05 0.87 0.36 0.17 - - - 
Th 0.69 0.33 0.23 0.21 -0.02 0.74 0.24 0.24 - - - 
V -0.05 0.93 0.17 0.02 0.04 0.02 0.94 0.17 0.94 0.13 -0.10 

Yb 0.90 0.35 0.13 -0.13 -0.10 0.91 0.29 0.12 - - - 
Zn 0.24 0.57 0.75 -0.03 0.01 0.29 0.55 0.75 0.61 0.73 0.20 

KMO and 
Bartlett's Test 

0.851 0.833 0.753 

Variance (%) 47.94 15.79 8.79 6.78 4.07 56.59 16.37 11.43 52.54 16.72 15.70 

Cumulative  
variance  

47.94 63.73 72.52 79.30 83.37 56.59 72.96 84.39 52.54 69.27 84.97 

 
    These observations align with the arid environmental conditions prevalent in the region, 
where restricted chemical weathering promotes the mechanical dispersion of low-mobility 
elements, while oxidative processes enhance the transport of soluble species. (Mauad et al., 
2015; Mora et al., 2018; Tazikeh et al., 2018). Factor analysis delineates two distinct element 
assemblages: (1) the Cu, Pb, Zn, Ag, and Cd group, characterized by anomalies proximate to 
their source, ideal for direct detection of mineralization; and (2) the Mo, As, and S group, 
exhibiting wide dispersion halos, essential for tracing concealed deposits beneath alluvial cover. 
    Consequently, strategic stream sediment sampling, prioritizing Cu, Pb, and Zn to pinpoint 
near-source targets and Mo and As for regional exploration, can enhance exploration efficiency 
in this structurally intricate region (Figure 11, Table 7). 
    The geochemical behavior and mobility of key elements, including Cd, Pb, As, Zn, Cu, Mo, Ag, 
and S, within the stream sediments of the Janja porphyry deposit are influenced by mineralogical 
composition, arid climatic conditions, and weathering mechanisms. Situated in a desert landscape 
characterized by gentle topography and extensive Quaternary alluvial cover, the Janja region 
encompasses a porphyry mineralization system linked to diorite to granodiorite intrusions and 
polymetallic sulfide veins. Elements such as Cu, Pb, Zn, Ag, and Cd, predominantly hosted in 
sulfide minerals like chalcopyrite (CuFeS₂), galena (PbS), and sphalerite (ZnS), demonstrate low to 
moderate mobility owing to their adsorption onto secondary phases, including iron 
oxides/hydroxides (e.g., hematite and goethite) and clay minerals (e.g., illite and kaolinite).  



 

Table 7. GMPI (mineralization) conditional equation for stepwise factor analysis of stream sediment data 

𝐺𝑀𝑃𝐼(୊ଶିଷ) 𝐺𝑀𝑃𝐼(୔ୠି୅୥ି େୢି௓௡ି஼௨) =
𝑒ி௦(ౌౘషఽౝష ిౚషೋ೙ష಴ೠ)

1 + 𝑒ி௦(ౌౘషఽౝష ిౚషೋ೙ష಴ೠ)
 

𝐺𝑀𝑃𝐼(୊ଷିଷ) 𝐺𝑀𝑃𝐼(୅ୱି୑୭ି୑୬ିୗ) =
𝑒ி௦(ఽ౩ష౉౥ష౉౤ష౏)

1 + 𝑒ி௦(ఽ౩ష౉౥ష౉౤ష౏)
 

𝐺𝑀𝑃𝐼(𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 

𝐺𝑀𝑃𝐼(𝑃𝑏 − 𝐴𝑔 −  𝐶𝑑 − 𝑍𝑛 − 𝐶𝑢) 
𝑖𝑓 𝐺𝑀𝑃𝐼(𝑃𝑏 − 𝐴𝑔 −  𝐶𝑑 − 𝑍𝑛 − 𝐶𝑢)

≥ 0.7 𝑎𝑛𝑑 𝐺𝑀𝑃𝐼(𝐴𝑠
− 𝑀𝑜 − 𝑀𝑛 − 𝑆) < 0.7 

 

𝐺𝑀𝑃𝐼(𝐴𝑠 − 𝑀𝑜 − 𝑀𝑛 − 𝑆) 

𝑖𝑓 𝐺𝑀𝑃𝐼(𝐴𝑠 − 𝑀𝑜 − 𝑀𝑛 − 𝑆)
≥ 0.7 𝑎𝑛𝑑 𝐺𝑀𝑃𝐼(𝑃𝑏
− 𝐴𝑔 −  𝐶𝑑 − 𝑍𝑛 − 𝐶𝑢)
< 0.7 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐺𝑀𝑃𝐼(𝑃𝑏 − 𝐴𝑔 −  𝐶𝑑
− 𝑍𝑛
− 𝐶𝑢), 𝐺𝑀𝑃𝐼(𝐴𝑠
− 𝑀𝑜 − 𝑀𝑛
− 𝑆)) 

𝑖𝑓 𝐺𝑀𝑃𝐼(𝑃𝑏 − 𝐴𝑔 −  𝐶𝑑 − 𝑍𝑛 − 𝐶𝑢)
≥ 0.7 𝑎𝑛𝑑 𝐺𝑀𝑃𝐼(𝐴𝑠
− 𝑀𝑜 − 𝑀𝑛 − 𝑆) ≥ 0.7 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐺𝑀𝑃𝐼(𝑃𝑏 − 𝐴𝑔 −  𝐶𝑑
− 𝑍𝑛
− 𝐶𝑢), 𝐺𝑀𝑃𝐼(𝐴𝑠
− 𝑀𝑜 − 𝑀𝑛
− 𝑆)) 

𝑖𝑓 𝐺𝑀𝑃𝐼(𝑃𝑏 − 𝐴𝑔 −  𝐶𝑑 − 𝑍𝑛 − 𝐶𝑢)
< 0.7 𝑎𝑛𝑑 𝐺𝑀𝑃𝐼(𝐴𝑠
− 𝑀𝑜 − 𝑀𝑛 − 𝑆) < 0.7 

 

 

 
Figure 8. Anomaly map of factors obtained from the SFA method using the GMPI method for stream 
sediment data; a)F2-3, b) F3-3 

(a) 

(b) 



 

    In the arid, oxidative environment with neutral to alkaline pH driven by carbonate presence, 
these elements precipitate swiftly near their source, generating concentrated geochemical 
anomalies in stream sediments adjacent to the porphyry stock and mineralized veins. Their 
restricted dispersion is largely governed by mechanical erosion and transport through seasonal 
streams, further limited by minimal moisture and subdued chemical weathering processes 
(Figure 12). 
    In contrast, elements such as Mo, As, and S exhibit elevated mobility due to the oxidative 
weathering of sulfide minerals and their conversion into soluble forms. Molybdenum, present 
as molybdenite (MoS₂), oxidizes to molybdate (MoO₄²⁻), facilitating its transport via surface or 
groundwater and forming extensive dispersion halos in stream sediments. Arsenic, occurring in 
arsenopyrite (FeAsS) or as a trace constituent in other sulfides, transforms into arsenate 
(AsO₄³⁻) and, if not retained by iron oxides, is transported over greater distances, producing 
significant anomalies in distal sediments. Sulfur, originating from sulfide oxidation to sulfate 
(SO₄²⁻), disperses rapidly within the stream network. The pronounced mobility of Mo, As, and 
S positions them as critical geochemical tracers for regional exploration of concealed 
mineralization in alluvial-covered terrains, whereas low-mobility elements (Cu, Pb, Zn, Ag, 
and Cd) act as precise indicators of proximal sources. These contrasting mobility profiles, 
molded by the arid, oxidative conditions and dominant mechanical transport in the Janja region, 
offer a robust foundation for investigating porphyry systems in desert settings (Figure 12). 
 

 
Figure 9. Elements anomaly map using the GMPI method for stream sediment data; a)As  b)Ag  c)Cu  
d)Mo e)Pb f)Zn 

(a) (b) 

(c) (d) 

(e) (f) 



 

Conclusion 
 
This investigation establishes a robust and innovative geochemical exploration framework for 
the Janja porphyry copper deposit, situated within the Zabol–Zahedan–Saravan subzone of 
eastern Iran, effectively addressing the substantial challenges posed by its extensive alluvial 
cover. By leveraging advanced multivariate statistical methods  ,such as the Centered Log-Ratio 
(CLR) transformation, Staged Factor Analysis (SFA), and the Geochemical Mineralization 
Prediction Index (GMPI)  ,this study successfully delineates geochemical anomaly patterns 
linked to concealed porphyry and vein-type mineralization. The analysis of 153 stream 
sediment samples and 16,300 drill core samples from 74 boreholes yields a comprehensive 
dataset that elucidates distinct elemental behaviors under arid climatic conditions. 
     The findings highlight two primary geochemical signatures essential for exploration. Firstly, 
low-mobility elements, including Cu, Pb, Zn, Ag, and Cd, display concentrated anomalies 
adjacent to porphyritic diorite outcrops, with average Cu concentrations of 2,561.4 ppm in the 
hypogene zone and 1,211.53 ppm in the overburden. These elements, predominantly hosted in 
sulfide minerals such as chalcopyrite, galena, and sphalerite, function as direct indicators of 
near-source mineralization, exhibiting limited dispersion due to mechanical transport and 
adsorption onto secondary phases (e.g., iron oxides and clay minerals) within the arid, oxidative 
setting. Secondly, high-mobility elements, namely Mo, As, and S, develop extensive dispersion 
halos in stream sediments, with enrichment indices up to five times the Clarke values in the 
semi-transitional overburden (e.g., Mo up to 9 ppm, S up to 5%). Mobilized through oxidative 
weathering of sulfides into soluble forms (e.g., molybdate, arsenate, and sulfate), these elements 
serve as critical pathfinders for detecting concealed deposits beneath alluvial cover. 
     The CLR transformation effectively addresses the closure effect inherent in compositional 
geochemical data, enabling robust multivariate analysis. SFA enhances this process by 
distinguishing three elemental categories in stream sediment data: (1) lithogenic elements (Al, 
Fe, Mn), (2) sulfide-associated elements (Cu, Pb, Zn, Ag), and (3) mobile elements (Mo, As, 
S). These categories underscore the interplay among lithological influences, mineralization 
processes, and surficial dispersion dynamics. The GMPI, employing a threshold of 0.7, 
synthesizes these multi-element signatures into spatial anomaly maps, emphasizing regions 
with prominent anomalies in diorite outcrops for Cu and Au, while recognizing overburden 
anomalies for Ag, Mo, Cd, and S as markers of hidden mineralization. 
     These results carry significant implications for porphyry copper exploration in covered 
terrains globally. The recognition of Ag, Mo, Cd, and S as pathfinder elements in semi-
transported overburden provides a practical approach for targeting concealed deposits, 
particularly in arid regions where conventional exploration techniques prove less effective. The 
proposed framework, integrating CLR, SFA, and GMPI, offers a scalable and versatile 
methodology that boosts exploration efficiency by refining sampling strategies and reducing 
drilling costs in geologically complex settings. For example, focused stream sediment sampling 
targeting Cu, Pb, and Zn can identify near-source targets, whereas sampling for Mo and As can 
guide regional prospecting efforts. 
     Moreover, this study emphasizes the vital role of integrating geochemical, geological, and 
spatial data to model subsurface mineral systems. The observed disparities in element mobility 
between the hypogene and overburden zones, supported by elevated coefficients of variation 
and F-function values in the overburden, underscore the impact of surficial processes  such as 
erosion, sedimentation, and chemical weathering  on geochemical signatures. These insights 
enhance the understanding of element dynamics in desert environments, laying the groundwork 
for future investigations into the geochemical evolution of porphyry systems. 
     The large amount of data from exploratory drilling can be a criterion for validating the 
methods used in this research.  The geochemical patterns derived from 153 stream sediment 



 

samples were rigorously compared with results from 16,300 drill core samples to validate the 
mineralization model. Statistical analyses, including correlation coefficients and cross-
validation of elemental anomalies, confirmed a high degree of consistency between the datasets, 
supporting the reliability of the Staged Factor Analysis (SFA) and Geochemical Mineralization 
Probability Index (GMPI) methods in identifying the Janja Cu-Au porphyry deposit. 
     In summary, this research not only advances the exploration of the Janja porphyry copper 
deposit but also establishes a benchmark for geochemical studies in analogous covered terrains 
worldwide. By delivering a rigorous, data-informed strategy for identifying concealed 
mineralization, this study addresses the global demand for critical metals like Cu, Au, and Mo, 
fostering more sustainable and cost-efficient mineral exploration practices. Future research 
should prioritize the incorporation of geophysical techniques and machine learning approaches 
to further refine anomaly detection and improve the predictive precision of mineral 
prospectivity mapping in such challenging environments. 
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