
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,885,142 |
تعداد دریافت فایل اصل مقاله | 107,253,618 |
Enhancing Personalized Medicine for GBM Patients through Medical Image Analysis Using Generative Models and Deep Learning | ||
Journal of Algorithms and Computation | ||
مقاله 4، دوره 57، شماره 1، آبان 2025، صفحه 41-58 اصل مقاله (1.17 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2025.393906.1227 | ||
نویسندگان | ||
Toktam Khatibi* 1؛ Niloufar Naddafi2؛ Pooya Mazloomi3 | ||
1School of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran | ||
2Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran | ||
3Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran | ||
چکیده | ||
Glioblastoma multiforme (GBM) represents about 45.6% of primary malignant brain tumors and is marked by rapid growth and resistance to treatment, resulting in a poor prognosis for patients. This study aims to propose a personalized medicine model tailored for patients with GBM with analyzing MRI images and clinical data from 23 patients. Our research encompassed three primary scenarios. In Scenario 1, we constructed a hybrid model combining VIT and Auto-Encoder approaches applied to patient MRI data, achieving an impressive accuracy rate of 96% in determining optimal treatment dosages. For Scenario 2, we introduced Gaussian noise to the MRI images, reflecting real-world conditions, resulting in a drop in model accuracy to 72%. In Scenario 3, we restored the noisy images using advanced techniques, which led to an improved accuracy of 94%. It demonstrates that our proposed scenarios can effectively identify optimal radiotherapy dosages for GBM patients. | ||
کلیدواژهها | ||
glioblastoma multiforme؛ radiotherapy؛ magnetic resonance imaging؛ deep learning؛ image noise reduction | ||
آمار تعداد مشاهده مقاله: 130 تعداد دریافت فایل اصل مقاله: 62 |