
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,881,256 |
تعداد دریافت فایل اصل مقاله | 107,242,383 |
Vector Basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-Cordial Labeling of Ln ⊙ mK1 and T(Pn) ⊙ mK1 | ||
Journal of Algorithms and Computation | ||
مقاله 3، دوره 57، شماره 1، آبان 2025، صفحه 30-40 اصل مقاله (732.86 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2025.391907.1226 | ||
نویسندگان | ||
R Ponraj* 1؛ R Jeya2 | ||
1Department of Mathematics Sri Parakalyani College Alwarkurichi -627 412, India | ||
2Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India | ||
چکیده | ||
Let $G$ be a $(p,q)$ graph. Let $V$ be an inner product space with basis $S$. We denote the inner product of the vectors $\omega_{1}$ and $\omega_{2}$ by $<\omega_{1},\omega_{2}>$. Let $\chi: V(G) \rightarrow S$ be a function. For edge $uv$ assign the label $<\chi(u),\chi(v)>$. Then $\chi$ is called a vector basis $S$-cordial labeling of $G$ if $|\chi_{\omega_{1}}-\chi_{\omega_{2}}|\leq 1$ and $|\delta_i-\delta_j |\leq 1$ where $\chi_{\omega_{i}}$ denotes the number of vertices labeled with the vector $\omega_{i}$ and $\delta_i$ denotes the number of edges labeled with the scalar $i$. A graph which admits a vector basis $S$-cordial labeling is called a vector basis $S$-cordial graph . In this paper, we prove that the graphs $L_{n}\odot mK_{1}$ and $T(P_{n})\odot mK_{1}$ are the vector basis $\{(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)\}$-cordial. | ||
کلیدواژهها | ||
path؛ ladder؛ complete graph؛ cycle؛ total graph | ||
آمار تعداد مشاهده مقاله: 95 تعداد دریافت فایل اصل مقاله: 85 |