
تعداد نشریات | 163 |
تعداد شمارهها | 6,878 |
تعداد مقالات | 74,135 |
تعداد مشاهده مقاله | 137,878,665 |
تعداد دریافت فایل اصل مقاله | 107,237,394 |
Neural Network Feature Selection (NNFS) for Incomplete and High-Dimensional Data | ||
Journal of Algorithms and Computation | ||
مقاله 6، دوره 57، شماره 1، آبان 2025، صفحه 80-95 اصل مقاله (1.39 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2025.398084.1235 | ||
نویسندگان | ||
Negin Bagherpour* 1؛ Behrang Ebrahimi2 | ||
1Department of Engineering Sciences, University of Tehran | ||
2University Of Tehran | ||
چکیده | ||
Feature selection is a critical step in machine learning, especially when dealing with high-dimensional and incomplete data. Traditional methods often struggle with missing values, which are common in real-world applications. This paper introduces Neural Network Feature Selection (NNFS), a novel deep learning-based approach that effectively identifies important features even in the presence of missing data. We provide a variety of comparisons to evaluate the suggested algorithm over existing methods. We demonstrate the accuracy, speed and sensitivity to missed data. According to numerical results, the proposed algorithm outperforms existing methods especially for medium size datasets. Both random and real tests are presented to make the results more realistic. | ||
کلیدواژهها | ||
feature selection؛ high dimension؛ medium dimension؛ incomplete data؛ neural network | ||
آمار تعداد مشاهده مقاله: 113 تعداد دریافت فایل اصل مقاله: 61 |