- Sharma, S., Malik, P., & Sinha, S. (2024). The impact of soiling on temperature and sustainable solar PV power generation: A detailed analysis. Renewable Energy, 237, 121864. https://doi.org/10.1016/j.renene.2024.121864
- Anderson, C. B., Picotti, G., Cholette, M. E., Leslie, B., Steinberg, T. A., & Manzolini, G. (2023). Heliostat-field soiling predictions and cleaning resource optimization for solar tower plants. Applied Energy, 352, 121963. https://doi.org/10.1016/j.apenergy.2023.121963
- Fotsing Metegam, I. F., Wolff, E., Tchinda, R., Huart, M., & Chara-Dackou, V. S. (2025). Evaluation of On-Grid and Off-Grid Solar photovoltaic Sites in Cameroon Using Geographic Information Systems, Fuzzy Logic, and Multi-Criteria Analysis. Energy, 134614. https://doi.org/10.1016/j.energy.2025.134614
- Chen, J., Chen, K., Zhang, W., Su, J. M., Zhao, B., Hu, M., & Pei, G. (2025). Numerical study of a solar district heating system with photovoltaic-thermal collectors and pit thermal energy storage. Energy, 317, 134705. https://doi.org/10.1016/j.energy.2025.134705
- Yakubu, S., Samikannu, R., Gawusu, S., Wetajega, S. D., Okai, V., Shaibu, A.-K. S., & Workneh, G. A. (2025). A holistic review of the effects of dust buildup on solar photovoltaic panel efficiency. Solar Compass, 13, 100101. https://doi.org/10.1016/j.solcom.2024.100101
- Kayri, İ., & Bayar, M. T. (2024). A new approach to determine the long-term effect of efficiency losses due to different dust types accumulation on PV modules with artificial neural networks. Journal of Cleaner Production, 434, 140282. https://doi.org/10.1016/j.jclepro. 2023.140282
- Alkharusi, T., Alzahrani, M. M., Pandey, C., Yildizhan, H., & Markides, C. N. (2024). Experimental investigation of nonuniform PV soiling. Solar Energy, 272, 112493. https://doi.org/10.1016/j.solener.2024.112493
- Tseng, M.-L., Eshaghi, N., Gassoumi, A., Dehkalani, M. M., & Gorji, N. E. (2023). Experimental measurements of soiling impact on current and power output of photovoltaic panels. Modern Physics Letters B, 37(34), 2350182. https://doi.org/10.1142/S0217984923501828
- Zereg, K., Gama, A., Aksas, M., Rathore, N., Yettou, F., & Panwar, N. L. (2022). Dust impact on concentrated solar power: A review. Environmental Engineering Research, 27(6). https://doi.org/10.4491/eer.2021.345
- Picotti, G., Borghesani, P., Cholette, M. E., & Manzolini, G. (2018). Soiling of solar collectors – Modelling approaches for airborne dust and its interactions with surfaces. Renewable and Sustainable Energy Reviews, 81, 2343–2357. https://doi.org/10.1016/j.rser.2017.06.043
- Rashak, Z. M., & Hassan, K. H. (2024). The Impact of Soiling on Photovoltaic Performance in Iraq: Review. Basrah Journal for Engineering Sciences, 24(2). Retrieved from https://www.iasj.net/iasj/article/322630
- Laarabi, B., Tevi, G. J., Sinke, W. C., Maiga, A. S., Rajasekar, N., & Barhdadi, A. (2024). Comprehensive literature review on the modeling and prediction of soiling effects on solar energy power plants. Digital Technologies for Solar Photovoltaic Systems, 243–287. https://doi.org/10.1049/PBPO228E_ch9
- Ilse, K. K., Figgis, B. W., Naumann, V., Hagendorf, C., & Bagdahn, J. (2018). Fundamentals of soiling processes on photovoltaic modules. Renewable and Sustainable Energy Reviews, 98, 239–254. https://doi.org/10.1016/j.rser.2018.09.015
- Smestad, G. P., Germer, T. A., Alrashidi, H., Fernández, E. F., Dey, S., Brahma, H., Sarmah, N., Ghosh, A., Sellami, N., Hassan, I. A. I., Desouky, M., Kasry, A., Pesala, B., Sundaram, S., Almonacid, F., Reddy, K. S., Mallick, T. K., & Micheli, L. (2020). Modelling photovoltaic soiling losses through optical characterization. Scientific Reports, 10(1), 58. https://doi.org/10. 1038/ s41598-019-56868-z
- Varga, H. F., & Wiesner, M. R. (2021). Effect of Dust Composition on the Reversibility of Photovoltaic Panel Soiling. Environmental Science & Technology, 55(3), 1984–1991. https://doi.org/10.1021/acs.est.0c06196
- Kazmerski, L. L., Diniz, A. S. A. C., Maia, C. B., Viana, M. M., Costa, S. C., Brito, P. P., Campos, C. D., Neto, L. V. M., de Morais Hanriot, S., & de Oliveira Cruz, L. R. (2016). Fundamental Studies of Adhesion of Dust to PV Module Surfaces: Chemical and Physical Relationships at the Microscale. IEEE Journal of Photovoltaics, 6(3), 719–729. Presented at the IEEE Journal of Photovoltaics. https://doi.org/10.1109/JPHOTOV.2016.2528409
- Sadat, S. A., Hoex, B., & Pearce, J. M. (2022). A Review of the Effects of Haze on Solar Photovoltaic Performance. Renewable and Sustainable Energy Reviews, 167, 112796. https://doi.org/10.1016/j.rser.2022.112796
- Song, Z., Cao, S., & Yang, H. (2024). Quantifying the air pollution impacts on solar photovoltaic capacity factors and potential benefits of pollution control for the solar sector in China. Applied Energy, 365, 123261. https://doi.org/10.1016/j.apenergy.2024.123261
- Yao, F., & Palmer, P. I. (2022). Source Sector Mitigation of Solar Energy Generation Losses Attributable to Particulate Matter Pollution. Environmental Science & Technology, 56(12), 8619–8628. https://doi.org/10.1021/acs.est.2c01175
- Stenchikov, G., Mostamandi, S., Shevchenko, I., Ukhov, A., & Osipov, S. (2023). Coarse Dust Soiling and Fine Dust Dimming Effects on PV Panels Over the Arabian Peninsula. In 2023 Middle East and North Africa Solar Conference (MENA-SC) (pp. 1–3). Presented at the 2023 Middle East and North Africa Solar Conference (MENA-SC). https://doi.org/10.1109/MENA-SC54044.2023.10374528
- Sisodia, A. K. (2025). Impact of small particulate deposition on solar photovoltaic (PV) module performance. International Journal of Science and Research Archive, 14(1), 924–929. https://doi.org/10.30574/ijsra.2025.14.1.0036
- Elamim, A., Sarikh, S., Hartiti, B., Benazzouz, A., Elhamaoui, S., & Ghennioui, A. (2024). Experimental studies of dust accumulation and its effects on the performance of solar PV systems in Mediterranean climate. Energy Reports, 11, 2346–2359. https://doi.org/10. 1016/j.egyr.2024.01.078
- Chala, G. T., Sulaiman, S. A., & Al Alshaikh, S. M. (2024). Effects of Climatic Conditions of Al Seeb in Oman on the Performance of Solar Photovoltaic Panels. Heliyon, e30944. https://doi.org/10.1016/j.heliyon.2024.e30944
- Borah, P., Micheli, L., & Sarmah, N. (2023). Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches. Sustainability, 15(24), 16669. https://doi.org/10.3390/su152416669
- Stankov, B., Terziev, A., Vassilev, M., & Ivanov, M. (2024). Influence of Wind and Rainfall on the Performance of a Photovoltaic Module in a Dusty Environment. Energies, 17(14), 3394. https://doi.org/10.3390/en1714 3394
- Norde Santos, F., Wilbert, S., Ruiz Donoso, E., El Dik, J., Campos Guzman, L., Hanrieder, N., Fernández García, A., Alonso García, C., Polo, J., Forstinger, A., Affolter, R., & Pitz-Paal, R. (2024). Cleaning of Photovoltaic Modules through Rain: Experimental Study and Modeling Approaches. Solar RRL, 8(24), 2400551. https://doi.org/10.1002/solr.2024005 51
- Brahma, H., Pant, S., Micheli, L., Smestad, G. P., & Sarmah, N. (2023). Effect of Environmental Factors on Photovoltaic Soiling: Experimental and Statistical Analysis. Energies, 16(1), 45. https://doi.org/10.3390/en16010045
- Yao, W., Kong, X., Xu, A., Xu, P., Wang, Y., & Gao, W. (2023). New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions. Renewable and Sustainable Energy Reviews, 173, 113119. https://doi.org/10.1016/rser.2022.113119
- Aïssa, B., Scabbia, G., & Figgis, B. W. (2024). Field Assessment of the DustIQ Optical Soiling Sensor Performance Under the Harsh Conditions of Desert Environments. In 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC) (pp. 0024–0026). Presented at the 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC). https://doi.org/10.1109/PVSC57443. 2024.10749590
- De, S., Shiradkar, N., & Kottantharayil, A. (2024). Spatial Variability of Soiling Loss in Large-Scale PV Installations. In 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC) (pp. 0059–0063). Presented at the 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC). https://doi.org/10.1109/PVSC57443. 2024.10749529
- Fuke, P., De, S., Shiradkar, N., & Kottantharayil, A. (2024). Effect of Soiling on the PV Module Temperature and Soiling Loss Estimation. In 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC) (pp. 1328–1331). Presented at the 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC). https://doi.org/1109/PVSC57443.2024.10749369
- Maghami, M. R., Hizam, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajighorbani, S. (2016). Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews, 59, 1307–1316. https://doi.org/1016/j.rser.2016.01.044
- Raina, G., & Sinha, S. (2023). Experimental investigations of front and rear side soiling on bifacial PV module under different installations and environmental conditions. Energy for Sustainable Development, 72, 301–313. https://doi.org/10.1016/j.esd.2023.01.001
- Paul Ndeto, M., Wafula Wekesa, D., Njoka, F., & Kinyua, R. (2022). Correlating dust deposits with wind speeds and relative humidity to overall performance of crystalline silicon solar cells: An experimental study of Machakos County, Kenya. Solar Energy, 246, 203–215. https://doi.org/10.1016/j.solener.2022.09.050
- Etyemezian, V., Nikolich, G., & Gillies, J. A. (2017). Mean flow through utility scale solar facilities and preliminary insights on dust impacts. Journal of Wind Engineering and Industrial Aerodynamics, 162, 45–56. https://doi.org/10.1016/j.jweia.2017.01.001
- Ilse, K., Figgis, B., Khan, M. Z., Naumann, V., & Hagendorf, C. (2019). Dew as a Detrimental Influencing Factor for Soiling of PV Modules. IEEE Journal of Photovoltaics, 9(1), 287–294. Presented at the IEEE Journal of Photovoltaics. https://doi.org/10.1109/JPHOTOV.2018.2882649
- Chiteka, K., Arora, R., & Sridhara, S. N. (2019). A method to predict solar photovoltaic soiling using artificial neural networks and multiple linear regression models. Energy Systems. https://doi.org/10.1007/s12667-019-00348-w
- Jiang, Y., & Lu, L. (2016). Experimentally Investigating the Effect of Temperature Differences in the Particle Deposition Process on Solar Photovoltaic (PV) Modules. Sustainability, 8(11), 1091. https://doi.org/10. 3390/su8111091
- Li, F., Yuan, Z., & Wu, W. (2024). Experimental investigation of soiling losses on photovoltaic in high-density urban environments. Applied Energy, 369, 123572. https://doi.org/10.1016/j.apenergy.2024.123572
- Alkharusi, T., Huang, G., & Markides, C. N. (2024). Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance. Renewable Energy, 220, 119422. https://doi.org/10.1016/j.renene. 2023.119422
- Bellmann, P., Wolfertstetter, F., Conceição, R., & Silva, H. G. (2020). Comparative modeling of optical soiling losses for CSP and PV energy systems. Solar Energy, 197, 229–237. https://doi.org/10.1016/j.solener.2019.12.045
- Hachicha, A. A., Al-Sawafta, I., & Ben Hamadou, D. (2019). Numerical and experimental investigations of dust effect on CSP performance under United Arab Emirates weather conditions. Renewable Energy, 143, 263–276. https://doi.org/10.1016/j.renene. 2019.04.144
- Ammari, N., Mehdi, M., Alami Merrouni, A., El Gallassi, H., Chaabelasri, E., & Ghennioui, A. (2022). Experimental study on the impact of soiling on the modules temperature and performance of two different PV technologies under hot arid climate. Heliyon, 8(11), e11395. https://doi.org/10.1016/j.heliyon.2022.e11395
- AlZahrani, K. S. (2023). Experimental investigation of soiling impact on PV module performance in Yanbu Al Sinaiyah, Saudi Arabia. Renewable Energy, 216, 119117. https://doi.org/10.1016/j.renene.2023.119117
- Sharma, S., Singh, A., & Sinha, S. (2024). Enhancing Techno-Economical Viability of Solar PV Plants through Strategic Cleaning Schedules in Indian Composite Climate Conditions. In 2024 IEEE 4th International Conference on Sustainable Energy and Future Electric Transportation (SEFET) (pp. 1–6). Presented at the 2024 IEEE 4th International Conference on Sustainable Energy and Future Electric Transportation (SEFET). https://doi. org/10.1109/SEFET61574.2024.10717981
- Redondo, M., Platero, C. A., Moset, A., Rodríguez, F., & Donate, V. (2023). Soiling Modelling in Large Grid-Connected PV Plants for Cleaning Optimization. Energies, 16(2), 904. https://doi.org/10.3390/en16020904
- Alvarez, D. L., Al-Sumaiti, A. S., & Rivera, S. R. (2020). Estimation of an Optimal PV Panel Cleaning Strategy Based on Both Annual Radiation Profile and Module Degradation. IEEE Access, 8, 63832–63839. https://doi.org/1109/ACCESS.2020.2983322
- Laarabi, B., Sankarkumar, S., Rajasekar, N., El Baqqal, Y., & Barhdadi, A. (2022). Modeling investigation of soiling effect on solar photovoltaic systems: New findings. Sustainable Energy Technologies and Assessments, 52, 102126. https://doi.org/1016/j.seta.2022.102126
- You, S., Lim, Y. J., Dai, Y., & Wang, C.-H. (2018). On the temporal modelling of solar photovoltaic soiling: Energy and economic impacts in seven cities. Applied Energy, 228, 1136–1146. https://doi.org/10.1016/j.apenergy.2018.07.020
- Younis, A., & Alhorr, Y. (2021). Modeling of dust soiling effects on solar photovoltaic performance: A review. Solar Energy, 220, 1074–1088. https://doi.org/10.1016/j.solener.2021.04.011
- Fregosi, D., & Bolen, M. (2022). An Evaluation of Empirical Models for use in Normalizing PV Plant Performance Data. In 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC) (pp. 0116–0120). Presented at the 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC). https://doi.org/10.1109/PVSC48317. 2022.9938822
- Shakirov, V., Ivanova, I., & Tuguzova, T. (2023). Development of empirical solar radiation models with genetic algorithm and extended validation procedure. International Journal of Green Energy, 20(10), 1101–1118. https://doi.org/10.1080/15435075.2022.2145482
- Nwokolo, S. C., Obiwulu, A. U., Amadi, S., & Ogbulezie, J. (2023). Assessing the Impact of Soiling, Tilt Angle, and Solar Radiation on the Performance of Solar PV Systems. Trends in Renewable Energy. https://doi.org/10.17737/tre.2023.9.2.00156
- Dehghan, M., Rashidi, S., & Waqas, A. (2022). Modeling of soiling losses in solar energy systems. Sustainable Energy Technologies and Assessments, 53, 102435. https://doi.org/1016/j.seta.2022.102435
- García, M., Marroyo, L., Lorenzo, E., & Pérez, M. (2011). Soiling and other optical losses in solar-tracking PV plants in navarra. Progress in Photovoltaics: Research and Applications, 19(2), 211–217. https://doi.org/10.1002/1004
- Boyle, L., Flinchpaugh, H., & Hannigan, M. (2016). Assessment of PM dry deposition on solar energy harvesting systems: Measurement–model comparison. Aerosol Science and Technology, 50(4), 380–391. https://doi.org/1080/02786826.2016.1153797
- Conceição, R., Silva, H. G., & Collares-Pereira, M. (2018). CSP mirror soiling characterization and modeling. Solar Energy Materials and Solar Cells, 185, 233–239. https://doi.org/10.1016/solmat.2018.05.035
- Sengupta, S., Sengupta, S., & Saha, H. (2020). Comprehensive Modeling of Dust Accumulation on PV Modules Through Dry Deposition Processes. IEEE Journal of Photovoltaics, 10(4), 1148–1157. Presented at the IEEE Journal of Photovoltaics. https://doi.org/10.1109/JPHOTOV.2020.2992352
- Bessa, J. G., Micheli, L., Almonacid, F., & Fernández, E. F. (2021). Monitoring photovoltaic soiling: assessment, challenges, and perspectives of current and potential strategies. iScience, 24(3), 102165. https://doi.org/10.1016/j.isci.2021.102165
- Haddad, A. G., & Dhaouadi, R. (2018). Modeling and analysis of PV soiling and its effect on the transmittance of solar radiation. In 2018 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1–5). Presented at the 2018 Advances in Science and Engineering Technology International Conferences (ASET). https://doi. org/10.1109/ICASET.2018.8376787
- Javed, W., Guo, B., & Figgis, B. (2017). Modeling of photovoltaic soiling loss as a function of environmental variables. Solar Energy, 157, 397–407. https://doi.org/10.1016/j. solener.2017.08.046
- Almufarrej, A., & Erfani, T. (2023). Modelling the regional effect of transmittance loss on photovoltaic systems due to dust. International Journal of Energy and Environmental Engineering, 14(3), 379–386. https://doi.org/1007/s40095-022-00510-8
- Micheli, L., Caballero, J. A., Fernandez, E. F., Smestad, G. P., Nofuentes, G., Mallick, T. K., & Almonacid, F. (2019). Correlating photovoltaic soiling losses to waveband and single-value transmittance measurements. Energy, 180, 376–386. https://doi.org/1016/j.energy.2019.05.097
- Paudyal, B. R., Shakya, S. R., Paudyal, D. P., & Das Mulmi, D. (2017). Soiling-induced transmittance losses in solar PV modules installed in Kathmandu Valley. Renewables: Wind, Water, and Solar, 4(1), 5. https://doi.org/10.1186/s40807-017-0042-z
- Elminir, H. K., Ghitas, A. E., Hamid, R. H., El-Hussainy, F., Beheary, M. M., & Abdel-Moneim, K. M. (2006). Effect of dust on the transparent cover of solar collectors. Energy Conversion and Management, 47(18–19), 3192–3203. https://doi.org/10.1016/j.enconman.2006.02.014
- Hegazy, A. A. (2001). Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors. Renewable Energy, 22(4), 525–540. https://doi.org/10. 1016/S0960-1481(00)00093-8
- Zhou, L., Schwede, D., Appel, K. W., Mangiante, M. J., Wong, D., Napelenok, S., Whung, P., & Zhang, B. (2019). The impact of air pollutant deposition on solar energy system efficiency: An approach to estimate PV soiling effects with the Community Multiscale Air Quality (CMAQ) model. The Science of the total environment, 651 Pt 1, 456–465. https://doi.org/10.1016/j.scitotenv.2018.09.194
- Song, Z., Wang, M., & Yang, H. (2022). Quantification of the Impact of Fine Particulate Matter on Solar Energy Resources and Energy Performance of Different Photovoltaic Technologies. ACS Environmental Au, 2(3), 275–286. https://doi.org/10.1021/acsenvironau. 1c00048
- Tamoor, M., Hussain, M. I., Bhatti, A. R., Miran, S., Arif, W., Kiren, T., & Lee, G. H. (2022). Investigation of dust pollutants and the impact of suspended particulate matter on the performance of photovoltaic systems. Frontiers in Energy Research, 10. https://doi.org/3389/fenrg.2022.1017293
- Coello, M., & Boyle, L. (2019). Simple Model for Predicting Time Series Soiling of Photovoltaic Panels. IEEE Journal of Photovoltaics, 9(5), 1382–1387. Presented at the IEEE Journal of Photovoltaics. https://doi.org/1109/JPHOTOV.2019.2919628
- Bessa, J. G., Solas, Á. F., Cruz, F. A., Fernández, E. F., & Micheli, L. (2022). Results of Environmental-Based PV Soiling Models after Extreme Dust Events: The Case of Saharan Dust Intrusions in Southern Spain. In 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC) (pp. 1294–1294). Presented at the 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC). https://doi.org/10.1109/PVSC48317. 2022.9938938
- Lara-Fanego, V., Gueymard, C. A., & Micheli, L. (2023). Soiling Model for PV Applications: Improved Parameterizations. In 2023 IEEE 50th Photovoltaic Specialists Conference (PVSC) (pp. 1–3). Presented at the 2023 IEEE 50th Photovoltaic Specialists Conference (PVSC). https://doi.org/10.1109/PVSC48320.2023.10359694
- Guo, B., Javed, W., Figgis, B. W., & Mirza, T. (2015). Effect of dust and weather conditions on photovoltaic performance in Doha, Qatar: 1st Workshop on Smart Grid and Renewable Energy, SGRE 2015. 2015 1st Workshop on Smart Grid and Renewable Energy, SGRE 2015. https://doi.org/10.1109/SGRE.2015.7208718
- Guo, B., Javed, W., Khan, S., Figgis, B., & Mirza, T. (2016). Models for Prediction of Soiling-Caused Photovoltaic Power Output Degradation Based on Environmental Variables in Doha, Qatar. Presented at the ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/ES2016-59390
- Kaiss, E.-C. A., & Hassan, N. M. (2023). Numerical Modeling of Dust Deposition Rate on Ground-Mounted Solar Photovoltaic Panels. Journal of Solar Energy Engineering, 145(4), 041003. https://doi.org/10.1115/1.4056217
- Picotti, G., Borghesani, P., Manzolini, G., Cholette, M. E., & Wang, R. (2018). Development and experimental validation of a physical model for the soiling of mirrors for CSP industry applications. Solar Energy, 173, 1287–1305. https://doi.org/10.1016/j.solener.2018.08.066
- Polo, J., Martín-Chivelet, N., Sanz-Saiz, C., Alonso-Montesinos, J., López, G., Alonso-Abella, M., Battles, F. J., Marzo, A., & Hanrieder, N. (2021). Modeling soiling losses for rooftop PV systems in suburban areas with nearby forest in Madrid. Renewable Energy, 178, 420–428. https://doi.org/10.1016/j.renene. 2021.06.085
- Sengupta, S., Chanda, C. K., Saha, H., & Sengupta, S. (2023). Physics based modeling of dust accumulation on a bifacial solar PV module for generation loss estimation due to soiling. Solar Energy Advances, 3, 100046. https://doi.org/10.1016/j.seja.2023.100046
- Picotti, G., Cholette, M. E., Anderson, C. B., Steinberg, T. A., & Manzolini, G. (2023). Stochastic soiling loss models for heliostats in Concentrating Solar Power plants. Solar Energy, 263, 111945. https://doi.org/10.1016/j. solener.2023.111945
- Gharibzadeh, M., & Massah, M. (2024). Investigation of aerosol deposition using an improved advection-diffusion Eulerian deposition model. E3S Web of Conferences, 575, 03005. https://doi.org/10.1051/e3sconf/ 202457503005
- Bergin, M. H., Ghoroi, C., Dixit, D., Schauer, J. J., & Shindell, D. T. (2017). Large Reductions in Solar Energy Production Due to Dust and Particulate Air Pollution. Environmental Science & Technology Letters, 4(8), 339–344. https://doi.org/10.1021/acs.estlett.7b00197
- Bessa, J. G., Micheli, L., Montes-Romero, J., Almonacid, F., & Fernández, E. F. (2022). Estimation of Photovoltaic Soiling Using Environmental Parameters: A Comparative Analysis of Existing Models. Advanced Sustainable Systems, 6(5), 2100335. https://doi. org/10.1002/adsu.202100335
- Toth, S., Hannigan, M., Vance, M., & Deceglie, M. (2020). Predicting Photovoltaic Soiling From Air Quality Measurements. IEEE Journal of Photovoltaics, 10(4), 1142–1147. Presented at the IEEE Journal of Photovoltaics. https://doi.org/10.1109/JPHOTOV.2020.2983990
- Jiang, H., Lu, L., & Sun, K. (2011). Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmospheric Environment, 45(25), 4299–4304. https://doi.org/10.1016/j.atmosenv.2011.04.084
- Sanz Saiz, C., Polo Martínez, J., & Martín Chivelet, N. (2020). Influence of Pollen on Solar Photovoltaic Energy: Literature Review and Experimental Testing with Pollen. Applied Sciences, 10(14), 4733. https://doi.org/10.3390/ app10144733
- Yang, H., & Wang, H. (2022). Numerical simulation of the dust particles deposition on solar photovoltaic panels and its effect on power generation efficiency. Renewable Energy, 201, 1111–1126. https://doi.org/10.1016/j.renene.2022.11.043
- Zhou, Q., Dong, P., Li, M., & Wang, Z. (2023). Analyzing the interactions between photovoltaic system and its ambient environment using CFD techniques: A review. Energy and Buildings, 296, 113394. https://doi.org/10.1016/j.enbuild. 2023.113394
- Raillani, B., Salhi, M., Chaatouf, D., Bria, A., Amraqui, S., & Mezrhab, A. (2023). A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height. Applied Energy, 331, 120403. https://doi.org/1016/j.apenergy.2022.120403
- Chiteka, K., Arora, R., & Jain, V. (2021). CFD Prediction of dust deposition and installation parametric optimisation for soiling mitigation in non-tracking solar PV modules. International Journal of Ambient Energy, 42(11), 1307–1320. https://doi.org/10.1080/01430750.2019.1594373
- Peng, H., Lu, H., Chang, X., Zheng, C., & Wang, Y. (2022). 3D CFD modelling of dust deposition characteristics and influences on building-mounted photovoltaic system. Case Studies in Thermal Engineering, 35, 102138. https://doi.org/10.1016/j.csite.2022.102138
- Abdolahzadeh, M., Parsa Mofrad, N., & Tayebi, A. (2023). Numerical simulation of dust deposition on rooftop of photovoltaic parking lots supporting electric vehicles charging. Journal of Wind Engineering and Industrial Aerodynamics, 239, 105444. https://doi.org/1016/j.jweia.2023.105444
- Al-Gaheeshi, A. M. R., Rashid, F. L., Al-Obaidi, M. A., Hammoodi, K. A., & Agyekum, E. B. (2024). CFD modelling of Darcian flow of water in porous media: Effects of sand grain size. International Journal of Thermofluids, 24, 100990. https://doi.org/10.1016/j.ijft.2024.100990
- Shukla, K. N., Rangnekar, S., & Sudhakar, K. (2015). Comparative study of isotropic and anisotropic sky models to estimate solar radiation incident on tilted surface: A case study for Bhopal, India. Energy Reports, 1, 96–103. https://doi.org/10.1016/j.egyr.2015.03.003
- Khalid, H. M., Rafique, Z., Muyeen, S. M., Raqeeb, A., Said, Z., Saidur, R., & Sopian, K. (2023). Dust accumulation and aggregation on PV panels: An integrated survey on impacts, mathematical models, cleaning mechanisms, and possible sustainable solution. Solar Energy, 251, 261–285. https://doi.org/10.1016/j.solener. 2023.01.010
- Roumpakias, E., & Stamatelos, T. (2020). Surface Dust and Aerosol Effects on the Performance of Grid-Connected Photovoltaic Systems. Sustainability, 12(2), 569. https://doi.org/10.3390/su12020569
- Hassan, Q., Jaszczur, M., & Przenzak, E. (2017). Mathematical model for the power generation from arbitrarily oriented photovoltaic panel. E3S Web of Conferences, 14, 01028. https://doi.org/10.1051/e3sconf/20171401028
- Fan, S., Wang, Y., Cao, S., Sun, T., & Liu, P. (2021). A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system. Energy, 234, 121112. https://doi.org/10.1016/j.energy.2021.121112
- Al-Addous, M., Dalala, Z., Alawneh, F., & Class, C. B. (2019). Modeling and quantifying dust accumulation impact on PV module performance. Solar Energy, 194, 86–102. https://doi.org/10.1016/j.solener.2019.09.086
- Garud, K. S., Jayaraj, S., & Lee, M.-Y. (2021). A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models. International Journal of Energy Research, 45(1), 6–35. https://doi.org/10.1002/er.5608
- Tina, G. M., Ventura, C., Ferlito, S., & De Vito, S. (2021). A State-of-Art-Review on Machine-Learning Based Methods for PV. Applied Sciences, 11(16), 7550. https://doi.org/3390/app11167550
- Chauhan, R., Sharma, S., & Pachauri, R. (2024). Performance Prediction of Conventional and Modified Solar Stills Using Levenberg Marquardt Algorithm-Based Artificial Neural Network Model: An Experimental and Stochastic Evaluation. Journal of Solar Energy Research, 9(3), 1966–1980. https://doi.org/22059/jser.2024.380006.1449
- Barhmi, K., Heynen, C., Golroodbari, S., & van Sark, W. (2024). A Review of Solar Forecasting Techniques and the Role of Artificial Intelligence. Solar, 4(1), 99–135. https://doi.org/10.3390/solar4010005
- Ebrie, A. S., & Kim, Y. J. (2024). Reinforcement learning-based optimization for power scheduling in a renewable energy connected grid. Renewable Energy, 230, 120886. https://doi.org/10.1016/j.renene.2024.120886
- Srivastava, R. K., & Gupta, A. (2024). Short Term Forecasting of Solar Irradiance Using Ensemble CNN-BiLSTM-MLP Model Combined with Error Minimization and CEEMDAN Pre-Processing Technique. Journal of Solar Energy Research, 9(1), 1763–1779. https://doi.org/10.22059/jser.2024.369290.1363
- Zhang, W., Liu, S., Gandhi, O., Rodríguez-Gallegos, C. D., Quan, H., & Srinivasan, D. (2021). Deep-Learning-Based Probabilistic Estimation of Solar PV Soiling Loss. IEEE Transactions on Sustainable Energy, 12, 2436–2444. https://doi.org/10.1109/tste.2021.3098677
- Yang, M., Javed, W., Guo, B., & Ji, J. (2024). Estimating PV Soiling Loss Using Panel Images and a Feature-Based Regression Model. IEEE Journal of Photovoltaics, 14(4), 661–668. https://doi.org/10.1109/JPHOTOV.2024.3388168
- Chatterjee, S., Khan, P. W., & Byun, Y.-C. (2024). Recent advances and applications of machine learning in the variable renewable energy sector. Energy Reports, 12, 5044–5065. https://doi.org/10.1016/j.egyr.2024.09.073
- Kumar, A., Dubey, A. K., Segovia Ramírez, I., Muñoz del Río, A., & García Márquez, F. P. (2024). Artificial Intelligence Techniques for the Photovoltaic System: A Systematic Review and Analysis for Evaluation and Benchmarking. Archives of Computational Methods in Engineering, 31(8), 4429–4453. https://doi.org/1007/s11831-024-10125-3
- Aouidad, H. I., & Bouhelal, A. (2024). Machine learning-based short-term solar power forecasting: a comparison between regression and classification approaches using extensive Australian dataset. Sustainable Energy Research, 11(1), 28. https://doi.org/10.1186/ s40807-024-00115-1
- Lopez-Lorente, J., Polo, J., Martín-Chivelet, N., Norton, M., Livera, A., Makrides, G., & Georghiou, G. E. (2023). Characterizing soiling losses for photovoltaic systems in dry climates: A case study in Cyprus. Solar Energy, 255, 243–256. https://doi.org/10.1016/j.solener.2023.03.034
- Fang, M., Qian, W., Qian, T., Bao, Q., Zhang, H., & Qiu, X. (2024). DGImNet: A deep learning model for photovoltaic soiling loss estimation. Applied Energy, 376, 124335. https://doi.org/10.1016/j.apenergy.2024.124335
- Suhaimi, M. A. A. M., Dahlan, N. Y., Asman, S. H., Rajasekar, N., & Mohamed, H. (2024). Modelling soil deposition predictions on solar photovoltaic panels using ANN under Malaysia’s meteorological condition. International Journal of Advances in Applied Sciences, 13(4), 796–805. https://doi.org/11591/ijaas.v13.i4.pp796-805
- Sharma, J., Khattar, S., & Verma, T. (2024). Design and Development of Soil Detection Framework From Solar Panel Using Deep Learning. In 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0 (pp. 1–7). Presented at the 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0. https://doi.org/10.1109/OTCON60325.2024.10688333
- Rinesh, S., Deepa, S., Nandan, R. T., Sachin, R. S., Thamil, S. V., Akash, R., Arun, M., Prajitha, C., & Kumar, A. P. S. (2024). Prediction and classification of solar photovoltaic power generation using extreme gradient boosting regression model. International Journal of Low-Carbon Technologies, 19, 2420–2430. https://doi.org/1093/ijlct/ctae197
- Redekar, A., Dhiman, H. S., Deb, D., & Muyeen, S. M. (2024). On reliability enhancement of solar PV arrays using hybrid SVR for soiling forecasting based on WT and EMD decomposition methods. Ain Shams Engineering Journal, 15(6), 102716. https://doi. org/10.1016/j.asej.2024.102716
- Kappler, T., Starosta, A. S., Schwarz, B., Munzke, N., & Hiller, M. (2024). Inclusion of Shading and Soiling With Physical and Data-Driven Algorithms for Solar Power Forecasting. PV-Symposium Proceedings, 1. https://doi.org/52825/pv-symposium.v1i.1063
- Zhang, W., Archana, V., Gandhi, O., Rodríguez-Gallegos, C. D., Quan, H., Yang, D., Tan, C.-W., Chung, C. Y., & Srinivasan, D. (2024). SoilingEdge: PV Soiling Power Loss Estimation at the Edge Using Surveillance Cameras. IEEE Transactions on Sustainable Energy, 15(1), 556–566. Presented at the IEEE Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2023.3320690
- Brenner, A., Kahn, J., Hirsch, T., Röger, M., & Pitz-Paal, R. (2023). Soiling determination for parabolic trough collectors based on operational data analysis and machine learning. Solar Energy, 259, 257–276. https://doi.org/1016/j.solener.2023.05.008
- Araujo Costa Silva, L., Baca Ruiz, L. G., Criado-Ramón, D., Gabriel Bessa, J., Micheli, L., & Pegalajar Jiménez, M. del C. (2023). Assessing the impact of soiling on photovoltaic efficiency using supervised learning techniques. Expert Systems with Applications: An International Journal, 231(C). https://doi.org/1016/j.eswa.2023.120816
- Rezk, M., Chikte, R., Aljasmi, N., & Baloch, A. A. B. (2023). PV Module Classification Based on Spatial Distribution of Soiling Using Deep Learning Model. In 2023 Middle East and North Africa Solar Conference (MENA-SC) (pp. 1–4). Presented at the 2023 Middle East and North Africa Solar Conference (MENA-SC). https://doi.org/10.1109/MENA-SC54044. 2023.10374510
- Evstatiev, B. I., Trifonov, D. T., Gabrovska-Evstatieva, K. G., Valov, N. P., & Mihailov, N. P. (2024). PV Module Soiling Detection Using Visible Spectrum Imaging and Machine Learning. Energies, 17(20), 5238. https:// doi.org/10.3390/en17205238
- Mishra, E., Sreejith, S., & Patil, G. H. (2024). Soiling Losses Estimation in Solar Panels Using Different Analytical Methods. In 2024 3rd International conference on Power Electronics and IoT Applications in Renewable Energy and its Control (PARC) (pp. 189–194). Presented at the 2024 3rd International conference on Power Electronics and IoT Applications in Renewable Energy and its Control (PARC). https://doi.org/10.1109/PARC59193.2024.10486761
- Fösel, T., Tighineanu, P., Weiss, T., & Marquardt, F. (2018). Reinforcement Learning with Neural Networks for Quantum Feedback. Physical Review X, 8(3), 031084. https://doi.org/10.1103/PhysRevX.8.031084
- Pulipaka, S., Mani, F., & Kumar, R. (2016). Modeling of soiled PV module with neural networks and regression using particle size composition. Solar Energy, 123, 116–126. https://doi.org/10.1016/j.solener.2015.11.012
- Mani, F., Pulipaka, S., & Kumar, R. (2015). Modeling of soiled photovoltaic modules with neural networks using particle size composition of soil. In 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (pp. 1–4). Presented at the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). https://doi.org/1109/PVSC.2015.7355991
- Sharma, S., Raina, G., Yadav, S., & Sinha, S. (2023). A comparative evaluation of different PV soiling estimation models using experimental investigations. Energy for Sustainable Development, 73, 280–291. https://doi.org/10.1016/j.esd.2023.02.008
- S, S., V, D., P S, R. P., & Subramani, K. (2023). Detection of Soiling on PV Module using Deep Learning. International Journal of Electrical and Electronics Engineering, 10(7), 93–101. https://doi.org/10.14445/23488379/ IJEEE-V10I7P108
- Muller, M., & Rashed, F. (2023). Considering the Variability of Soiling in Long-Term PV Performance Forecasting. IEEE Journal of Photovoltaics, 13(6), 825–829. Presented at the IEEE Journal of Photovoltaics. https://doi.org/1109/JPHOTOV.2023.3300369
- Voukelatos, A., Anastasiou, A., Sattler, J. C., Alexopoulos, S., Dutta, S., & Kioutsioukis, I. (2022). Design and Implementation of a Soiling Forecasting Tool for Parabolic Through Collector Mirrors. SolarPACES Conference Proceedings, 1. https://doi.org/10.52825/solarpaces.v1i.722
- Al Arni, S., Mahdi, J. M., Abed, A. M., Hammoodi, K. A., Hasan, H. A., Homod, R. Z., & Khedher, N. B. (2024). Novel multi-layer nano-modified PCM configuration for efficient thermal management of photovoltaic-thermal systems. Journal of Energy Storage, 103, 114352. https://doi.org/10.1016/j.est.2024.114352
- Jasim, A. K., Alwan, S. H., Nemah, A. K., Hussein, H. Q., & Hammoodi, K. A. (2024). A Numerical Study to Improve Heat Transfer in a Rectangular Cell Filled with Phase Change Materials Using Several Types of Rods. International Journal of Heat and Technology, 42(6), 2108–2114. https://doi.org/10.18280/420629
- Hashemian, N., & Noorpoor, A. (2019). Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: Thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Conversion and Management, 195, 788–797. https://doi.org/10.1016/j.enconman.2019.05.039
- Ilse, K., Micheli, L., Figgis, B. W., Lange, K., Daßler, D., Hanifi, H., Wolfertstetter, F., Naumann, V., Hagendorf, C., Gottschalg, R., & Bagdahn, J. (2019). Techno-Economic Assessment of Soiling Losses and Mitigation Strategies for Solar Power Generation. Joule, 3(10), 2303–2321. https://doi.org/10.1016/j. joule.2019.08.019
- Baras, A., Jones, R. K., Alqahtani, A., & Alodan, M. (2016). Measured soiling loss and its economic impact for PV plants in central Saudi Arabia. In 2016 Saudi Arabia Smart Grid (SASG) (pp. 1–7). Presented at the 2016 Saudi Arabia Smart Grid (SASG). https://doi.org/1109/SASG.2016.7849657
- Micheli, L., Fernández, E. F., & Almonacid, F. (2021). Tracking Soiling Losses and Cleaning Profits Trends. In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC) (pp. 0144–0146). Presented at the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). https://doi.org/10.1109/PVSC43889. 2021.9518866
- Jung, D., Gareis, G. H., Staiger, A., & Salmon, A. (2022). Effects of soiling on agrivoltaic systems: Results of a case study in Chile. AIP Conference Proceedings, 2635(1), 020001. https://doi.org/10.1063/5.0107943
- Montecchi, M., & Sutter, F. (2023). Soiling model for spectral reflectance of solar mirrors. Solar Energy, 259, 356–363. https://doi.org/1016/j.solener.2023.05.017
|