- شیخ ربیعی، محمدرضا؛ پیروان، حمیدرضا؛ دانشکار آراسته، پیمان؛ اکبری، مهری و معتمدوزیری، بهارک. (1403). بررسی اثرات تغییرات اقلیم با استفاده از نتایج گزارش ششم هیات بین الدول بر میزان تولید رواناب و رسوب. مهندسی و مدیریت آبخیز، 16(4)، 550-570. doi: 10.22092/ijwmse.2024.365664.2062
- حیدری، حامد؛ موسوی بایگی، محمد؛ اسماعیلی، کاظم و گلکاریان، علی. (1399). اثر تغییر اقلیم بر رواناب و رسوب حوضه با استفاده از مدلهای SWAT و WEPP (مطالعه موردی: حوضه دهبار). تحقیقات آبوخاک ایران، 51(4)، 1027-1040. doi: 10.22059/ijswr.2020.287152.668293
- کاویان, عطاالله؛ گلشن، محمد؛ روحانی، حامد و اسمعلی عوری، اباذر. (1394). شبیهسازی رواناب و بار رسوب حوزه آبخیز رودخانه هراز مازندران با بهرهگیری از الگوی SWAT. پژوهشهای جغرافیای طبیعی، 47(2)، 197-211. doi: 10.22059/jphgr.2015.54459
- بابائیان، ایمان؛ مدیریان، راهله؛ خزانهداری، لیلی؛ کریمیان، مریم؛ کوزهگران، سعیده؛ کوهی، منصوره؛ فرامرزی، یاشار و ملبوسی، شراره. (۱۴۰۲). چشمانداز بارش ایران در قرن ۲۱ با بهکارگیری مقیاس کاهی آماری برونداد مدلهای منتخب CMIP۶ توسط نرمافزار CMHyd. فیزیک زمین و فضا، 49 (2)، 431-449. https://doi.org/10.22059/jesphys.2023.332410.1007436
- رشیدی قانع، محبوبه؛ متولی، صدرالدین؛ جانباز قبادی، غلامرضا، کوهی، منصوره. (۱۴۰۲). ارزیابی توانمندی سه روش آماری ریزمقیاس گردانی برونداد دما و بارش مدلهای CMIP6 در حوضه آبریز کشف رود. پژوهشهای اقلیمشناسی، 53 (1)، 117-132.
- کاظمی رشخواری، ایمان؛ اسدی وایقان، امیر و آذری، محمود. (1403). پیشبینی اثرات تغییر اقلیم و کاربری اراضی بر روی دبی حوضه آبریز رودخانه کشف رود با استفاده از مدل SWAT. نشریه علوم آبوخاک، 28(1)، 109-93. Doi:10.47176/jwss.28.1.58051
- زرین، آذر؛ داداشی رودباری، عباسعلی و صالحآبادی، نرگس. (۱۴۰۰). بررسی بیهنجاری و روند دمای ایران در پهنههای مختلف اقلیمی با استفاده از مدلهای جفت شده پروژه مقایسه متقابل مرحله ششم (CMIP6). مجله ژئوفیزیک ایران، 15 (1)، 35-54. https://doi.org/10.30499/ijg.2020.249997.1292
- زرین، آذر و داداشی رودباری، عباسعلی. (۱۴۰۰). پیشنگری دمای ایران در آینده نزدیک (۲۰۴۰-۲۰۲۱) بر اساس رویکرد همادی چند مدلی CMIP6. پژوهشهای جغرافیای طبیعی، 53 (1)، 75-90. https://doi.org/10.22059/jphgr.2021.308361.1007551.
- Arnold, J. G., & Fohrer, N. (2005). SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes: An International Journal, 19(3), 563-572. https://doi.org/10.1002/hyp.5611.
- Aryal, A., Shrestha, S., & Babel, M. S. (2019). Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Theoretical and Applied Climatology, 135, 193-209. https://doi.org/10.1007/s00704-017-2359-3.
- Babaian, I., Modirian, R., Khazanehdari, L., Karimian, M., Kozegaran, S., Kouhi, M., Faramarzi, Y., & Malboosi, Sh. (2019). Iran's precipitation outlook in the 21st century using statistical downscaling of selected CMIP6 models using CMHyd software. Physics of Earth and Space, 49 (2), 431-449. https://doi.org/10.22059/jesphys.2023.332410.1007436. [In Persian].
- Baker, N. C., & Huang, H. P. (2014). A comparative study of precipitation and evaporation between CMIP3 and CMIP5 climate model ensembles in semiarid regions. Journal of Climate, 27(10), 3731-3749. https://doi.org/10.1175/JCLI-D-13-00398.1.
- Chu, T. W., & Shirmohammadi, A. (2004). Evaluation of the SWAT model’s hydrology component in the piedmont physiographic region of Maryland. Transactions of the ASAE, 47(4), 1057-1073. doi: 10.13031/2013.16579.
- Delavar, M., Morid, S., Morid, R., Farokhnia, A., Babaeian, F., Srinivasan, R., & Karimi, P. (2020). Basin-wide water accounting based on modified SWAT model and WA+ framework for better policy making. Journal of Hydrology, 585, 124762. https://doi.org/10.1016/j.jhydrol.2020.124762.
- Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016.
- Guo, J., Yan, Y., Chen, D., Lv, Y., Han, Y., Guo, X., ... & Zhai, P. (2020). The response of warm-season precipitation extremes in China to global warming: an observational perspective from radiosonde measurements. Climate Dynamics, 54, 3977-3989. https://doi.org/10.1007/s00382-020-05216-3.
- Heidary, H., Mousavi, M., Esmaili, K., & Golkarian, A. (2020). The Impact of climate change on watershed runoff and sedimentation using SWAT and WEPP models (Case Study: Dehbar basin). Iranian Journal of Soil and Water Research, 51(4), 1027-1040. doi: 10.22059/ijswr.2020.287152.668293. [In Persian].
- Houshmand Kouchi, D., Esmaili, K., Faridhosseini, A., Sanaei Nejad, S. H., & Khalili, D. (2019). Simulation of climate change impacts using fifth assessment report models under RCP scenarios on water resources in the upper basin of Salman Farsi Dam. Iranian Journal of Irrigation & Drainage, 13(2), 243-258.
- Kataoka, T., Tatebe, H., Koyama, H., Mochizuki, T., Ogochi, K., Naoe, H., ... & Watanabe, M. (2020). Seasonal to decadal predictions with MIROC6: Description and basic evaluation. Journal of Advances in Modeling Earth Systems, 12(12), e2019MS002035. doi:10.1029/2019MS002035.
- Kavian, A., Golshan, M., Rouhani, H., & Esmaali Auri, A. (2015). Simulation of runoff and sediment load of the Haraz River watershed of Mazandaran using the SWAT model. Physical Geography Research, 47(2), 197-211. doi: 10.22059/jphgr.2015.54459. [In Persian].
- Kazemi Rashkhavari, I., Asadi Vaighan, A., & Azari, M. (2014). Predicting the effects of climate change and land use on the discharge of the Kashfarud River basin using the SWAT model. Journal of Soil and Water Sciences, 28(1), 109-93. doi:10.47176/jwss.28.1.58051. [In Persian].
- Kim, H. J., Cho, K., Kim, Y., Park, H., Lee, J. W., Kim, S. J., & Chae, Y. (2020). Spatial assessment of water-use vulnerability under future climate and socioeconomic scenarios within a River Basin. Journal of Water Resources Planning and Management, 146(7), 05020011. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001235.
- Kim, J. H., Sung, J. H., Chung, E. S., Kim, S. U., Son, M., & Shiru, M. S. (2021). Comparison of Projection in Meteorological and Hydrological Droughts in the Cheongmicheon Watershed for RCP4. 5 and SSP2-4.5. Sustainability, 13(4), 2066. https://doi.org/10.3390/su13042066.
- Lee, J. Y., & Wang, B. (2014). Future change of global monsoon in the CMIP5. Climate Dynamics, 42, 101-119.
- Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. doi: 10.13031/2013.23153.
- Nikakhtar, M., Rahmati, S. H., Massah Bavani, A. R., & Babaeian, I. (2024). Mitigating the adverse impacts of climate change on river water quality through adaptation strategies: A Case Study of the Ardak Catchment, Northeast Iran. Theoretical and Applied Climatology, 155(9), 9131-9147. https://doi.org/10.1007/s00704-024-05057-8.
- Papalexiou, S. M., & Montanari, A. (2019). Global and regional increase of precipitation extremes under global warming. Water Resources Research, 55(6), 4901-4914. https://doi.org/10.1029/2018WR024067.
- Rabezanahary Tanteliniaina, M. F., Rahaman, M. H., & Zhai, J. (2021). Assessment of the future impact of climate change on the hydrology of the Mangoky River, Madagascar using ANN and SWAT. Water, 13(9), 1239. https://doi.org/10.3390/w13091239.
- Raghavan, S. V., Liu, J., Nguyen, N. S., Vu, M. T., & Liong, S. Y. (2018). Assessment of CMIP5 historical simulations of rainfall over Southeast Asia. Theoretical and Applied Climatology, 132, 989-1002. https://doi.org/10.1007/s00704-017-2111-z.
- Rashidi Ghane, M., Motevalli, S., Janbaz Ghobadi, G. R., & Kouhi, M. (2023). Evaluation of the ability of three statistical methods to downscale the output of temperature and precipitation of CMIP6 models in the Kashfrud basin. Journal of Climate Research, 1402(53), 117-132. [In Persian].
- Rathjens, H., Bieger, K., Srinivasan, R., Chaubey, I., & Arnold, J. (2016). Documentation for preparing simulated climate change data for hydrologic impact studies. URL: http://swat. tamu. edu/software/cmhyd, 42.
- Rivera, J. A., & Arnould, G. (2020). Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901–2014). Atmospheric Research, 241, 104953. https://doi.org/10.1016/j.atmosres.2020.104953.
- Sheykh Rabiee, M. R., Peyrowan, H. R., Daneshkar Arasteh, P., Akbary, M. and Motamedvaziri, B. (2024). Investigating the effects of climate change using the results of the sixth report of the inter-state delegation on the amount of runoff and sediment yield. Watershed Engineering and Management, 16(4), 550-570. doi: 10.22092/ijwmse.2024.365664.2062. [In Persian].
- Sun, H., & Cornish, P. S. (2005). Estimating shallow groundwater recharge in the headwaters of the Liverpool Plains using SWAT. Hydrological Processes: An International Journal, 19(3), 795-807. https://doi.org/10.1002/hyp.5617.
- Sun, Y., Solomon, S., Dai, A., & Portmann, R. W. (2006). How often does it rain?. Journal of climate, 19(6), 916-934. https://doi.org/10.1175/JCLI3672.1.
- Tolson, B. A., & Shoemaker, C. A. (2004). Watershed modeling of the Cannonsville Basin using SWAT2000: Model. Cornell Library Technical Reports and Papers.
- Wang, B., Kim, H. J., Kikuchi, K., & Kitoh, A. (2011). Diagnostic metrics for evaluation of annual and diurnal cycles. Climate dynamics, 37, 941-955. https://doi.org/10.1007/s00382-010-0877-0.
- Wang, J., Hu, L., Li, D., & Ren, M. (2020). Potential impacts of projected climate change under CMIP5 RCP scenarios on streamflow in the Wabash River Basin. Advances in Meteorology, (1), 9698423. https://doi.org/10.1155/2020/9698423.
- Yan, Y., Lu, R., & Li, C. (2019). Relationship between the future projections of Sahel rainfall and the simulation biases of present South Asian and Western North Pacific rainfall in summer. Journal of Climate, 32(4), 1327-1343. https://doi.org/10.1175/JCLI-D-17-0846.1.
- Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., ... & Ishii, M. (2019). The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: Description and basic evaluation of the physical component. Journal of the Meteorological Society of Japan. Ser. II, 97(5), 931-965. https://doi.org/10.2151/jmsj.2019-051.
- Zarrin, A., Dadashi-Roudbari, A., Salehabadi, N. (2021). Investigation of Iran's temperature anomalies and trends in different climatic zones using coupled models of the Climate Change Intercomparison Project Phase 6 (CMIP6). Iranian Journal of Geophysics, 15 (1), 35-54. https://doi.org/10.30499/ijg.2020.249997.1292. [In Persian].
- Zarrin, A., & Dadashi-Roudbari, A. (2021). Projected changes in temperature over Iran by 2040 based on CMIP6 multi-model ensemble. Physical Geography Research, 53(1), 75-90. https://doi.org/10.22059/jphgr.2021.308361.1007551. [In Persian].
- Zazulie, N., Rusticucci, M., & Raga, G. B. (2018). Regional climate of the Subtropical Central Andes using high-resolution CMIP5 models. Part II: future projections for the twenty-first century. Climate dynamics, 51, 2913-2925. https://doi.org/10.1007/s00382-017-4056-4.
- Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix, M., ... & Srbinovsky, J. (2020). The Australian earth system model: ACCESS-ESM1. 5. Journal of Southern Hemisphere Earth Systems Science, 70(1), 193-214. https://doi.org/https://doi.org/10.1071/ES19035.
|