
تعداد نشریات | 163 |
تعداد شمارهها | 6,877 |
تعداد مقالات | 74,134 |
تعداد مشاهده مقاله | 137,824,765 |
تعداد دریافت فایل اصل مقاله | 107,229,116 |
بررسی خواص مکانیکی و فیزیکی بایوکامپوزیتهای میسلیومی قارچ Fomes fomentarius با استفاده از بسترهای لیگنوسلولزی مختلف | ||
نشریه جنگل و فرآورده های چوب | ||
دوره 78، شماره 2، شهریور 1404، صفحه 133-145 اصل مقاله (1.4 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfwp.2025.392475.1342 | ||
نویسندگان | ||
راضیه شمسی* 1؛ علی بیات کشکولی1؛ سعید رضا فرخ پیام1؛ علی عبدالخانی2؛ محسن شهریاری مقدم3 | ||
1گروه صنایع چوب و کاغذ، دانشکدة منابع طبیعی، دانشگاه زابل، زابل، ایران. | ||
2گروه علوم و صنایع چوب و کاغذ، دانشکدة منابع طبیعی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران. | ||
3گروه محیط زیست، دانشکدة منابع طبیعی، دانشگاه زابل، زابل، ایران. | ||
چکیده | ||
کامپوزیت های میسلیومی به عنوان جایگزینی سازگار با محیطزیست، تجزیه پذیر و کمهزینه برای کامپوزیت های سنتی، مورد توجه صنعت و پژوهش قرار گرفته اند. این مطالعه، با هدف تحلیل تأثیر سه بستر لیگنوسلولزی متفاوت شامل ساقة پنبه، کاه گندم و ضایعات چوب راش بر خواص فیزیکی و مکانیکی بایوکامپوزیت های تولیدشده با قارچFomes fomentarius انجام شد. فرآیند تولید شامل تلقیح بسترها با میسیلیوم قارچ، انکوباسیون در شرایط کنترلشده و پرس گرم و سرد برای ایجاد ساختار متراکم بود. آزمون های فیزیکی (جذب آب، واکشیدگی ضخامت) و مکانیکی (مقاومت خمشی، مدول الاستیسیتة خمشی، چسبندگی داخلی) مطابق استانداردهای EN انجام شد. نتایج نشان داد بایوکامپوزیت خردهساقة پنبه با دارا بودن بالاترین ضریب کشیدگی (54/78) و سطح ویژة بالاتر ذرات، شبکة پیوسته تری از ریسههای قارچ تشکیل داد که منجر به ایجاد مقاومت خمشی (6/26 مگاپاسکال)، مدول الاستیسیتة خمشی (1/31 گیگاپاسکال) و چسبندگی داخلی (0/21 مگاپاسکال) مناسب شد. در مقابل، بایوکامپوزیت چوب راش بهدلیل ضخامت بالای ذرات و حفرات ساختاری بزرگ، کمترین مقاومت مکانیکی را نشان داد. جذب آب و واکشیدگی ضخامت نیز تحت تأثیر ماهیت آبدوستی بسترها و تراکم ساختاری قرار گرفت و بایوکامپوزیت کاه گندم با جذب آب 92/77 درصدی، بالاترین و بایوکامپوزیت چوب راش با 54/44درصدی، کمترین مقدار را ثبت کردند. واکشیدگی ضخامت نیز روند مشابهی داشت. یافته ها تأکید می کنند انتخاب بستر با ویژگیهای فیزیکی-شیمیایی مطلوب، نقش کلیدی در بهینه سازی عملکرد کامپوزیت های میسیلیومی دارد. با وجود نتایج امیدوارکننده، تحقیقات بین رشته ای بیشتری برای بهبود مقاومت ها و گسترش کاربردهای صنعتی این مواد زیست تخریب پذیر نیاز است. | ||
کلیدواژهها | ||
بایوکامپوزیت میسیلیومی؛ بستر لیگنوسلولزی؛ خواص مکانیکی و فیزیکی؛ Fomes fomentarius؛ میسیلیوم قارچ | ||
مراجع | ||
[1] Sydor, M., Bonenberg, A., Doczekalska, B. & Cofta, G. (2021). Mycelium-based composites in art, architecture, and interior design: a review. Polymers, 14(1), 145-159. [2] Van Empelen, J.C. (2018). A Study into More Sustainable, Alternative Building Materials as A Substitute for Concrete in Tropical Climates. Delft University of Technology, Delft, Netherlands, 1-26. [3] Shao, G., Zhang, L., Xu, D., Jin, Y., Wu, F., Yang, N. & Xu, X. (2025). Green and sustainable bioboards: Biomanufacturing of mycelium-based composite boards with tunable properties. Chemical Engineering Journal, 503, 158382. [4] Liu, R., Li, X., Long, L., Sheng, Y., Xu, J. & Wang, Y. (2020). Improvement of mechanical properties of mycelium/cotton stalk composites by water immersion. Composite Interfaces, 27(10), 953-966. [5] Seethapathy, P., Subramani, T., Ayrilmis, N. & Patil, H. (2025). Therapeutic and Environmental Potential of Mushrooms in Ancient and Modern Contexts: A Review. International Journal of Medicinal Mushrooms, 27, 1-19. [6] Gow, N. A., Latge, J.P. & Munro, C.A. (2017). The fungal cell wall: structure, biosynthesis, and function. Microbiology Spectrum, 5(3), 10-1128. [7] Van den Brandhof, J.G. & Wösten, H.A. 2022. Risk assessment of fungal materials. Fungal biology and Biotechnology, 9(1), 3-12. [8] Větrovský, T., Voříšková, J., Šnajdr, J., Gabriel, J. & Baldrian, P. (2011). Ecology of coarse wood decomposition by the saprotrophic fungus Fomes fomentarius. Biodegradation, 22, 709-718. [9] Zhang, M., Xue, J., Zhang, R., Zhang, W., Peng, Y., Wang, M., & Cao, J. (2023). Mycelium composite with hierarchical porous structure for thermal management. Small, 19(46), 2302827. [10] De Paula, R.G., Antoniêto, A.C.C., Ribeiro, L.F.C., Srivastava, N., O'Donovan, A., Mishra, P.K., Gupta, V.K. & Silva, R.N. (2019). Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnology Advances, 37(6), 107347. [11] Lustenhouwer, N., Maynard, D.S., Bradford, M.A., Lindner, D.L., Oberle, B., Zanne, A.E. & Crowther, T.W. (2020). A trait-based understanding of wood decomposition by fungi. Proceedings of the National Academy of Sciences, 117(21), 11551-11558. [12] Shin, H. J., Ro, H. S., Kawauchi, M. & Honda, Y. (2025). Review on mushroom mycelium-based products and their production process: from upstream to downstream. Bioresources and Bioprocessing, 12(1), 1-21. [13] Heisel, F., Lee, J., Schlesier, K., Rippmann, M., Saeidi, N., Javadian, A., Nugroho, A.R., Van Mele, T., Block, P. & Hebel, D.E. (2017). Design, cultivation and application of load-bearing mycelium components: The MycoTree at the 2017 Seoul Biennale of architecture and urbanism. International Journal of Sustainable Energy, 6(1), 296-303. [14] Voutetaki, M.E. & Mpalaskas, A.C. (2024). Natural fiber-reinforced mycelium composite for innovative and sustainable construction materials. Fibers, 12(7), 57-69. [15] Sun, W., Tajvidi, M., Hunt, C.G., Cole, B.J., Howell, C., Gardner, D.J. & Wang, J. (2022). Fungal and enzymatic pretreatments in hot-pressed lignocellulosic bio-composites: A critical review. Journal of Cleaner Production, 353, 131659. [16] Balaeș, T., Radu, B.M. & Tănase, C. (2023). Mycelium-composite materials—a promising alternative to plastics?. Journal of Fungi, 9(2), 210-219. [17] Womer, S., Huynh, T. & John, S. (2023). Hybridizations and reinforcements in mycelium composites: A review. Bioresource Technology Reports, 101456. [18] Doğan, N. & Doğan, C. (2022). Development of the non-grain spawn for edible mushroom (Pleurotus ostreatus): D-optimal mixture design approach. Ege Üniversitesi Ziraat Fakültesi Dergisi, 59(2), 265-274. [19] Jones, M., Mautner, A., Luenco, S., Bismarck, A. & John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials and Design, 187, 108397. [20] Girometta, C., Picco, A.M., Baiguera, R.M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M. & Savino, E. (2019). Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: A review. Sustainability, 11(1), 281-292. [21] Arabi, M., Haftkhani, A.R. & Pourbaba, R. (2023). Investigating the effect of particle slenderness ratio on optimizing the mechanical properties of particleboard using the response surface method. BioResources, 18(2), 2800-2814. [22] Bagheriehnajjar, G., Yousefpour, H. & Rahimnejad, M. (2023). Multi-objective optimization of mycelium-based bio-composites based on mechanical and environmental considerations. Construction and Building Materials, 407, 133346. [23] Attias, N., Danai, O., Tarazi, E., Pereman, I. & Grobman, Y. J. (2019). Implementing bio-design tools to develop mycelium-based products. The Design Journal, 22(sup1), 1647-1657. [24] Kraisornkachit, P., Naito, M., Kang, C. & Sato, C. (2024). Multi-Objective Optimization of Adhesive Joint Strength and Elastic Modulus of Adhesive Epoxy with Active Learning. Materials, 17(12), 2866-2875. [25] Manan, S., Ullah, M.W., Ul-Islam, M., Atta, O.M. & Yang, G. (2021). Synthesis and applications of fungal mycelium-based advanced functional materials. Journal of Bioresources and Bioproducts, 6, 1-10. [26] Rigobello, A. & Ayres, P. (2023). Design strategies for mycelium-based composites. In Fungi and Fungal Products in Human Welfare and Biotechnology (pp. 605-635). Singapore: Springer Nature Singapore. [27] Somal, M., Chauhan, S.S. & Kumar, R. (2024). Mycelium-Based Lignocellulosic Composites: Sustainable Innovations in Green Materials. In Encyclopedia of Green Materials (pp. 1-9). Singapore: Springer Nature Singapore. [28] Jin, Y., De, G., Wilson, N., Qin, Z. & Dong, B. (2025). Towards Carbon-Neutral Built Environment: A Critical Review of Mycelium-Based Composites. Energy and Built Environment. [29] Voutetaki, M. E., & Mpalaskas, A. C. (2024). Natural fiber-reinforced mycelium composite for innovative and sustainable construction materials. Fibers, 12(7), 57-69. [30] Liu, R., Long, L., Sheng, Y., Xu, J.F., Qiu, H.Y., Li, X.Y., Wang, Y.X. & Wu, H.G. (2019). Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Industrial Crops and Products, 141, 111732. [31] Aiduang, W., Kumla, J., Srinuanpan, S., Thamjaree, W., Lumyong, S. & Suwannarach, N. (2022). Mechanical, physical, and chemical properties of mycelium-based composites produced from various lignocellulosic residues and fungal species. Journal of Fungi, 8(11), 1125-1132. [32] Weiland, K., Jones, M. P., Zinsser, F., Kontturi, E., Mautner, A. & Bismarck, A. (2021). Grow it yourself composites: Delignification and hybridisation of lignocellulosic material using animals and fungi. Green Chemistry, 23(19), 7506-7514. [33] Cheng, Y., Long, C., Zhang, M., Wang, W. & Sun, W. (2024). Investigation of mycelium film as the adhesive for poplar veneer bonding: insight into interfacial bonding mechanisms. Wood Material Science & Engineering, 1-10. [34] Gezer, E.D. & Kuştaş, S. (2024). Acoustic and thermal properties of mycelium-based insulation materials produced from desilicated wheat straw–Part B. BioResources, 19(1), 1348. [35] Girometta, C., Dondi, D., Baiguera, R. M., Bracco, F., Branciforti, D.S., Buratti, S., Lazzaroni, S. & Savino, E. (2020). Characterization of mycelia from wood-decay species by TGA and IR spectroscopy. Cellulose, 27, 6133-6148. [36] Kalpokaitė-Dičkuvienė, R., Pitak, I., Sholokhova, A., Kriūkienė, R. & Baltušnikas, A. (2024). Surface-modified wheat straw for the production of cement-free geopolymer composite: effects of wheat variety and pre-treatment method. Journal of Composites Science, 8(4), 116-124. [37] Elsacker, E., Vandelook, S., Brancart, J., Peeters, E. & De Laet, L. (2019). Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS One, 14(7), e0213954. [38] Peng, L., Yi, J., Yang, X., Xie, J. & Chen, C. (2023). Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts. Journal of Bioresources and Bioproducts, 8(1), 78-89. [39] Sun, F.F., Wang, L., Hong, J., Ren, J., Du, F., Hu, J., Zhang, Z. & Zhou, B. (2015). The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresource Technology, 187, 354-361. [40] Chulikavit, N., Huynh, T., Khatibi, A., Das, R. & Kandare, E. (2023). Thermal degradation and flame spread characteristics of epoxy polymer composites incorporating mycelium. Scientific Reports, 13(1), 17812. [41] Sisti, L., Gioia, C., Totaro, G., Verstichel, S., Cartabia, M., Camere, S. & Celli, A. (2021). Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Industrial Crops & Products, 170, 113742. [42] Pena, R., Lang, C., Naumann, A. & Polle, A. (2014). Ectomycorrhizal identification in environmental samples of tree roots by Fourier-transform infrared (FTIR) spectroscopy. Frontiers in Plant Science, 5, 229. [43] Răut, I., Călin, M., Vuluga, Z., Oancea, F., Paceagiu, J., Radu, N., Doni, M., Alexandrescu, E., Purcar, V., Gurban, A.M. & Petre, I. (2021). Fungal based biopolymer composites for construction materials. Materials, 14(11), 2906-2919. | ||
آمار تعداد مشاهده مقاله: 197 تعداد دریافت فایل اصل مقاله: 25 |