
تعداد نشریات | 163 |
تعداد شمارهها | 6,877 |
تعداد مقالات | 74,134 |
تعداد مشاهده مقاله | 137,824,738 |
تعداد دریافت فایل اصل مقاله | 107,229,093 |
بررسی تأثیر ملاتونین در بادرشبویه (Dracocephalum moldavica L.) در سطوح مختلف آبیاری | ||
به زراعی کشاورزی | ||
دوره 27، شماره 3، مهر 1404، صفحه 467-484 اصل مقاله (1001.21 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2025.386525.2908 | ||
نویسندگان | ||
مینا امانی1؛ محسن سبزی نوجه ده* 2 | ||
1دانشجوی دکتری تخصصی علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران | ||
2دانشیار گروه علوم و مهندسی باغبانی، دانشکده کشاورزی و منابع طبیعی اهر، دانشگاه تبریز، تبریز، ایران. | ||
چکیده | ||
هدف: تنش کمآبی میتواند تأثیرات قابلتوجهی بر گیاهان از طریق تخریب کارکردهای فیزیولوژیکی و متابولیکی آنها دارد. از طرف دیگر، ملاتونین با تعدیل فرایندهای مختلف فیزیولوژیکی، پاسخهای زیستی گیاهان را تنظیم کرده و در نهایت مقاومت آنها را در برابر شرایط تنش افزایش میدهد. بنابراین، هدف بررسی تأثیر ملاتونین بر بهبود خصوصیات فیزیولوژیکی و بیوشیمیایی بادرشبویه تحت سطوح مختلف آبیاری است. روش پژوهش: در این پژوهش، تأثیر غلظتهای مختلف ملاتونین (شاهد، 50 و 100 میکرومولار) بر ویژگیهای فیزیولوژیکی گیاه بادرشبویه در شرایط تنش کمآبی (25، 50، 75 و 100 درصد ظرفیت زراعی) بهصورت فاکتوریل در قالب طرح بلوکهای کامل تصادفی و سه تکرار تکرار در گلخانه و آزمایشگاه دانشکده کشاورزی و منابع طبیعی اهر، دانشگاه تبریز در سال 1401 موردمطالعه قرار گرفت. یافتهها: نتایج این پژوهش نشان داد که محلولپاشی گیاهان با غلظت 100 میکرومولار ملاتونین تأثیر قابلتوجهی در بهبود پارامترهای رنگیزههای فتوسنتزی دارد. این بهبود از طریق افزایش متابولیتهای ثانویه، شامل ترکیبات فنولی و فلاونوئیدها و همچنین آنزیمهای آنتیاکسیدان، به ویژه فنیل آلانین آمونیالیاز، مشاهده شد. این تأثیر مثبت بهویژه در شرایط تنش کمآبی متوسط و شدید بارزتر بود و نشاندهنده توانایی ملاتونین در بهبود مقاومت گیاهان در برابر تنشهای محیطی است. بهطور خاص، در تیمارهایی که با 100 میکرومولار ملاتونین محلولپاشی شده بودند، بیشترین میزان فنول (952/51 میلیگرم اسیدگالیک بر گرم وزن تر برگ) و فلاونوئید (424/11 میلیگرم کوئرستین بر گرم وزن تر برگ) ثبت شد. همچنین، مقادیر بالایی از مالوندیآلدهید (128/1 میکرومول بر گرم وزن خشک) و فعالیت آنزیم فنیل آلانین آمونیالیاز (84/17 میکرومول سینامیکاسید در دقیقه در میلیگرم پروتئین) نیز در این تیمار تحت شرایط تنش شدید (25 درصد ظرفیت زراعی) مشاهده گردید. نتیجهگیری: این نتایج بهوضوح نشان میدهد که ملاتونین میتواند بهعنوان یک عامل مؤثر در کاهش آسیبهای ناشی از تنش کمآبی عمل کند و به گیاه بادرشبویه کمک کند تا در شرایط نامساعد محیطی بهتر عمل کند. با توجه به یافتههای این پژوهش، میتوان نتیجه گرفت که استفاده از ملاتونین در شرایط تنش کمآبی نهتنها به کاهش شدت آسیبهای ناشی از تنش کمک میکند، بلکه همچنین میتواند به بهبود کیفیت و عملکرد گیاهان بادرشبویه منجر شود. نتایج این پژوهش نشان میدهد که تنش کمآبی میتواند تأثیرات منفی قابلتوجهی بر عملکرد فیزیولوژیکی گیاه بادرشبویه داشته باشد. با اینحال، استفاده از ملاتونین بهعنوان یک محرک طبیعی میتواند بهطور مؤثری این تأثیرات منفی را کاهش دهد و به بهبود کیفیت و عملکرد گیاه در شرایط تنش کمک کند. بهویژه، محلولپاشی با غلظت 100 میکرومولار ملاتونین منجر به افزایش قابلتوجهی در میزان رنگیزههای فتوسنتزی، متابولیتهای ثانویه و فعالیت آنزیمهای آنتیاکسیدان شد. این نتایج نشاندهنده توانایی ملاتونین در تقویت مقاومت گیاهان در برابر تنشهای محیطی و بهبود پایداری آنها در شرایط کمآبی است. | ||
کلیدواژهها | ||
آسیب اکسیداتیو؛ ترکیبات فنولی؛ رنگیزههای فتوسنتزی؛ هورمون شبه ااکسین؛ مالوندیآلدهید | ||
مراجع | ||
اسدی کاوان، ژیکا؛ قربانلی، مهلقا و ساطعی، آرین (1388). اثر تنش خشکی و آسکوربات خارجی بر روی رنگیزههای فتوسنتزی، فلاونوئیدها، ترکیبهای فنلی و میزان پراکسیداسیون لیپیدی در گیاه انیسون )Pimpinella anisum L.). تحقیقات گیاهان دارویی و معطر ایران، 25(4)، 469-456.
امانی، مینا؛ سبزی نوجهده، محسن؛ علیزاده سالطه، سعیده، یونسی حمزه خانلو، مهدی؛ فرمانی، بیوک آقا؛ هاتف هریس، حسین؛ محمدیان، شیوا و پیرطریقت، سودا (1402). بهبود فعالیتهای آنتیاکسیدانی گیاه دارویی ریحان تحت تأثیر گونههای مختلف قارچ میکوریزا در شرایط تنش کمآبی. علوم باغبانی، 37(2)، 389-377.
شوهانی، فریبا؛ فاضلی، آرش و حسینی سرقین، سیاوش (1401). کاربرد اسید سالیسیلیک و سیلیکون بر برخی شاخصهای فیزیولوژیکی و ریختشناسی در دو اکوتیپ گیاه گل سازویی (Scrophularia striata L.) در شرایط تنش خشکی. زیست شناسی گیاهی ایران، 14(52)، 42-21.
محمدی، مریم؛ ابراهیمی، امین و عامریان، محمد رضا (1400). افزایش تظاهر برخی از ژنهای دخیل در مسیر بیوسنتز دایوسجنین در شنبلیله (Trigonella foenum-graecum L.) تیمارشده با سطوح مختلف ملاتونین تحت تنش شوری. علوم گیاهان زراعی ایران، 52(4)، 247-235.
Altaf, M. A., Shahid, R., Ren, M. X., Naz, S., Altaf, M. M., Khan, L. U., & Ahmad, P. (2022). Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants, 11(2), 309. https://doi.org/10.3390/antiox11020309
Amani, M., Sabzi-Nojadeh, M., Alizadeh-Salteh, S., Younessi Hamzekhanlu, M., Farmani, B., Hatef Heris, H., Mohammadian, S., & Piretarighat, S. (2023). Improving the Antioxidant activities of sweet basil (Ocimum basilicum L.) under the influence of different species of mycorrhiza under water stress. Journal of Horticultural Science, 37(2), 377-389. (In Persian). https://doi.org/10.22067/jhs.2022.76064.1157
Amiri, R., Nikbakht, A., & Etemadi, N. (2015). Alleviation of drought stress on rose geranium [Pelargonium graveolens (L.) Herit.] in terms of antioxidant activity and secondary metabolites by mycorrhizal inoculation. Scientia Horticulturae, 197, 373-380. https://doi.org/10.1016/j.scienta.2015.09.062
Arnao, M. B., & Hernández‐Ruiz, J. (2015). Functions of melatonin in plants: a review. Journal of Pineal Research, 59(2), 133-150. https://doi.org/10.1111/jpi.12253
Arnao, M. B., & Hernández-Ruiz, J. (2018). Melatonin and its relationship to plant hormones. Annals of Botany, 121(2), 195-207. https://doi.org/10.1093/aob/mcx114
Asadi Kavan, Z., Ghorbanli, M., & Sateei, A. (2010). The effect of drought stress and exogenous ascorbate on photosynthetic pigments, flavonoids, phenol compounds and lipid peroxidation in Pimpinella anisum L. Iranian Journal of Medicinal and Aromatic Plants Research, 25(4), 456-469. (In Persian). https://doi.org/10.22092/ijmapr.2010.6999
Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell & Environment, 40(1), 4-10. https://doi.org/10.1111/pce.12800
Bose, S. K., & Howlader, P. (2020). Melatonin plays multifunctional role in horticultural crops against environmental stresses: A review. Environmental and Experimental Botany, 176, 104063. https://doi.org/10.1016/j.envexpbot.2020.104063
Campos, C. N., Ávila, R. G., de Souza, K. R. D., Azevedo, L. M., & Alves, J. D. (2019). Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L. plants. Agricultural Water Management, 211, 37-47. https://doi.org/10.1016/j.agwat.2018.09.025
Chan, Z., & Shi, H. (2015). Improved abiotic stress tolerance of bermudagrass by exogenous small molecules. Plant Signaling & Behavior, 10(3), e991577. https://doi.org/10.4161/15592324.2014.991577
Chang, C.C., Yang, M.H., Wen, H.M., & Chern, J.C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178-182. https://doi.org/10.38212/2224-6614.2748
Debnath, B., Islam, W., Li, M., Sun, Y., Lu, X., Mitra, S., & Qiu, D. (2019). Melatonin mediates enhancement of stress tolerance in plants. International Journal of Molecular Sciences, 20(5), 1040-1051. https://doi.org/10.3390/ijms20051040
Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113(2), 557-562. https://doi.org/10.1016/j.foodchem.2008.08.025
Farouk, S., & Al-Amri, S. M. (2019). Ameliorative roles of melatonin and/or zeolite on chromium-induced leaf senescence in marjoram plants by activating antioxidant defense, osmolyte accumulation, and ultrastructural modification. Industrial Crops and Products, 142, 111823. https://doi.org/10.1016/j.indcrop.2019.111823
Ferrazzano, G. F., Amato, I., Ingenito, A., Zarrelli, A., Pinto, G., & Pollio, A. (2011). Plant polyphenols and their anti-cariogenic properties: a review. Molecules, 16(2), 1486-1507. https://doi.org/10.3390/molecules16021486
Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169(2), 313-321. https://doi.org/10.1016/j.plantsci.2005.02.023
Ibrahim, M. F., Elbar, O. H. A., Farag, R., Hikal, M., El-Kelish, A., El-Yazied, A. A., & El-Gawad, H. G. A. (2020). Melatonin counteracts drought induced oxidative damage and stimulates growth, productivity and fruit quality properties of tomato plants. Plants, 9(10), 1276. https://doi.org/10.3390/plants9101276
Jahan, M. S., Guo, S., Baloch, A. R., Sun, J., Shu, S., Wang, Y., & Roy, R. (2020). Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicology and Environmental Safety, 197, 110593. https://doi.org/10.1016/j.ecoenv.2020.110593
Li, J., Zeng, L., Cheng, Y., Lu, G., Fu, G., Ma, H., & Li, C. (2018). Exogenous melatonin alleviates damage from drought stress in Brassica napus L. (rapeseed) seedlings. Acta Physiologiae Plantarum, 40, 1-11. https://doi.org/10.1007/s11738-017-2601-8
Liang, G., Bu, J., Zhang, S., Jing, G., Zhang, G., & Liu, X. (2018). Effects of drought stress on the photosynthetic physiological parameters of Populus×euramericana “Neva”. Journal of Forestry Research, 30, 409-416. https://doi.org/10.1007/s11676-018-0667-9
Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591-602.
Liu, L., Li, D., Ma, Y., Shen, H., Zhao, S., & Wang, Y. (2020). Combined application of arbuscular mycorrhizal fungi and exogenous melatonin alleviates drought stress and improves plant growth in tobacco seedlings. Journal of Plant Growth Regulation, 40(3), 1074-1087. https://doi.org/10.1007/s00344-020-10165-6
Liu, M., Li, X., Liu, Y., & Cao, B. (2013). Regulation of flavanone 3-hydroxylase gene involved in the flavonoid biosynthesis pathway in response to UV-B radiation and drought stress in the desert plant, Reaumuria soongorica. Plant Physiology and Biochemistry, 73, 161-167. https://doi.org/10.1016/j.plaphy.2013.09.016
Ma, X., Zhang, J., Burgess, P., Rossi, S., & Huang, B. (2018). Interactive effects of melatonin and cytokinin on alleviating drought-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Environmental and Experimental Botany, 145, 1-11. https://doi.org/10.1016/j.envexpbot.2017.10.010
Marček, T., Hamow, K. A., Végh, B., Janda, T., & Darko, E. (2019). Metabolic response to drought in six winter wheat genotypes. PLoS one, 14(2), e0212411. https://doi.org/10.1371/journal.pone.0212411
Mohamadi, M., Ebrahimi, A., & Amerian, M. (2021). The Expression enhancement of some genes involved in the diosgenin biosynthesis pathway in fenugreek treated with different levels of melatonin under salinity stress. Iranian Journal of Field Crop Science, 52(4), 235-247. (In Persian). https://doi.org/10.22059/ijfcs.2020.312584.654767
Naghizadeh, M., Kabiri, R., Hatami, A., Oloumi, H., Nasibi, F., & Tahmasei, Z. (2019). Exogenous application of melatonin mitigates the adverse effects of drought stress on morpho-physiological traits and secondary metabolites in Moldavian balm (Dracocephalum moldavica). Physiology and Molecular Biology of Plants, 25, 881-894. https://doi.org/10.1007/s12298-019-00674-4
Nahar, K., Hasanuzzaman, M., Alam, M. M., & Fujita, M. (2015). Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environmental and Experimental Botany, 112, 44-54. https://doi.org/10.1016/j.envexpbot.2014.12.001
Omidbaigi, R., Hassani, A., & Sefidkon, F. (2003). Essential oil content and composition of sweet basil (Ocimum basilicum) at different irrigation regimes. Journal of Essential oil Bearing Plants, 6(2), 104-108. https://doi.org/10.1080/0972-060X.2003.10643335
Pinheiro, C., & Chaves, M. M. (2011). Photosynthesis and drought: can we make metabolic connections from available data?. Journal of Experimental Botany, 62(3), 869-882. https://doi.org/10.1093/jxb/erq340
Quamruzzaman, M., Manik, S. N., Shabala, S., & Zhou M. (2021). Improving performance of salt-grown crops by exogenous application of plant growth regulators. Biomolecules, 11(6), 788. https://doi.org/10.3390/biom11060788
Radwan, A., Kleinwächter, M., & Selmar, D. (2017). Impact of drought stress on specialised metabolism: Biosynthesis and the expression of monoterpene synthases in sage (Salvia officinalis). Phytochemistry, 141, 20-26. https://doi.org/10.1016/j.phytochem.2017.05.005
Rahimi, Y., Taleei, A., & Ranjbar, M. (2019). Biochemical changes of peppermint under drought stress condition. Iranian Journal of Field Crop Science, 50(2), 59-75. http://dx.doi.org/10.22059/ijfcs.2018.239868.654367
Sharma, A., & Zheng, B. (2019). Melatonin mediated regulation of drought stress: Physiological and molecular aspects. Plants, 8(7), 190. https://doi.org/10.3390/plants8070190
Sheikhalipour, M., Gohari, G., Esmaielpour, B., Panahirad, S., Milani, M. H., Kulak M., & Janda, T. (2022). Melatonin and TiO2 NPs application-induced changes in growth, photosynthesis, antioxidant enzymes activities and secondary metabolites in stevia (Stevia rebaudiana Bertoni) under drought stress conditions. Journal of Plant Growth Regulation, 42(3), 2023-2040. https://doi.org/10.1007/s00344-022-10679-1
Shohani, F., Fazeli, A., & Hosseini, S. (2022). The effects of using salicylic acid and Silicon on some physiological and anatomical indices in two ecotypes of Scrophularia striata L. Medicinal Plant under drought stress. Iranian Journal of Plant Biology, 14(2), 33-54. (In Persian). https://doi.org/10.22108/ijpb.2023.137115.1315 Wang, L., Feng, C., Zheng, X., Guo, Y., Zhou, F., Shan, D., Liu, X., & Kong, J. (2017). Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. Journal of Pineal Research, 63(3), e12429. https://doi.org/10.1111/jpi.12429
Zamani, Z., Amiri, H., & Ismaili, A. (2020). Improving drought stress tolerance in fenugreek (Trigonella foenumgraecum) by exogenous melatonin. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 1-13. https://doi.org/10.1080/11263504.2019.1674398
Zhan, M., Ma, M., Mo, X., Zhang, Y., Li, T., Yang, Y., & Dong, L. (2024). Dracocephalum moldavica L.: An updated comprehensive review of its botany, traditional uses, phytochemistry, pharmacology, and application aspects. Fitoterapia, 172, 105732. https://doi.org/10.1016/j.fitote.2023.105732 Zhang, M., He, S., Zhan, Y., Qin, B., Jin, X., Wang, M. & Wu, Y. (2019). Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis in soybean. PloS One 14(12), e0226542. https://doi.org/10.1371/journal.pone.0226542 Zheng, X.L., Tian, S.P., Xu, Y., & Li, B.Q. (2005). Effects of exogenous oxalic acid on ripening and decay incidence in mango fruit during storage at controlled atmosphere. Journal of Fruit Science, 22(4), 351-355. https://doi.org/10.1016/j.postharvbio.2007.01.016 Zucker, M. (1965). Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiology, 40, 779-784. https://doi.org/10.1104/pp.40.5.779 | ||
آمار تعداد مشاهده مقاله: 215 تعداد دریافت فایل اصل مقاله: 21 |