- Jan, A., Abbas, A. and Ahmad, N. (2022). Monitoring and Controlling Software Project Scope Using Agile EVM. In Evolving Software Processes (eds A.A. Khan and D.-N. Le).
- Mousavi, S. M., Mohagheghi, V., & Vahdani, B. (2015). A New Uncertain Modeling of Production Project Time and Cost Based on Atanassov Fuzzy Sets. Journal of Quality Engineering and Production Optimization, 1(2), 57-70.
- Lipke, W., Zwikael, O., Henderson, K., Anbari, F. (2009). Prediction of project outcome – The application of statistical methods to earned value management and earned schedule performance indexes. International Journal of Project Management 27-2009, pp. 400 - 407.
- Mioara Bancescu (2016). Controlling Project Schedule Progress, Using Control Charts, Cybernetics and Systems, DOI: 10.1080/01969722.2016.1211883
- Aliverdi, R., L. M. Naeni, and A. Salehipour (2013). Monitoring project duration and cost in a construction project by applying statistical quality control charts. International Journal of Project Management 31:411–23. doi:10.1016/j.ijproman.2012.08.005
- Lauras, M., Marques, G., Gourc, D. (2010), Towards a Multidimensional Project Performance Measurement System, Decision Support Systems, 48(2): 342-353.
- Leu, S. S., and Lin, Y. C., (2008), Project performance evaluation based on statistical process control techniques, Journal of Construction Engineering and Management-ASCE, 134(10): 813-819.
- Navon, R., (2005), Automated Project Performance Control of Construction Projects, Automation in Construction, 14(4): 467-476.
- Cheung, S. O., Suen, H. C. H., and Cheung, K. K. W., (2004), PPMS: a Web-based construction project performance monitoring system, Automation in Construction, 13(3): 361-376.
- AlTabtabai, H., Kartam, N., Flood, I., and Alex, A. P., (1997), Construction Project Control using Artificial Neural Networks, Artificial Intelligence for Engineering Design and Manufacturing, 11(1):45-57
- Lipke, W., and Vaughn, J., (2000), Statistical Process Control Meets Earned Value, The Journal of Defense Software Engineering, Jun: 1620.
- Lipke, W. (2003), Achieving Normality for Cost, the Measurable News.
- Moon, J. (2020), An Investigation into the Use of Laney U Chart as a Visual Schedule Tracker to Graphically Monitor the Schedule Performance Index, Journal of Engineering, Project, and Production Management 2020, 10(1), 35-41
- Christensen, D. S., Conley, R. J., Kankey, R. D. (2003), Some Empirical Evidence on the Nonnormality of Cost Variance on Defense Contracts, Journal of Cost Analysis & Management, Winter:3-16
- Atashgar, Karim (2014) “advanced statistical quality control”, Defense Industry Training and Research Institute.
- Montgomery, D. C. (2019). Introduction to statistical quality control. John wiley & sons.
- de Mendonca, Y. L., Sarto, R., Titeca, H., Bethune, R., & Salmon, A. (2024). Use of statistical process control in quality improvement projects in abdominal surgery: a PRISMA systematic review. BMJ Open Quality, 13(1), e002328.
- Li, J. (2021). Application of statistical process control in engineering quality management. IOP Conference Series: Earth and Environmental Science,
- Sarkar, D. (2022). Advanced materials management for Indian construction industry by application of statistical process control tools. Materials Today: Proceedings, 62, 6934-6939.
- Akhavian, R., & Behzadan, A. H. (2012). An integrated data collection and analysis framework for remote monitoring and planning of construction operations. Advanced Engineering Informatics, 26(4), 749-761.
- Chen, P.-W., Cheng, C.-S., & Wang, C.-W. (2023). A Study on the Laney p′ Control Chart with Parameters Estimated from Phase I Data: Performance Evaluation and Applications. Mathematics, 11(15), 3411.
- González-Cruz, M.-C., Ballesteros-Pérez, P., Lucko, G., & Zhang, J.-X. (2022). Critical Duration Index: Anticipating Project Delays from Deterministic Schedule Information. Journal of Construction Engineering and Management, 148(11), 04022121.
- Haq, A., & Abbasi, A. A. (2023). New weighted adaptive CUSUM charts for monitoring the generalized variance of a bivariate normal process. Journal of Statistical Computation and Simulation, 93(4), 604-633.
- Haridy, S., & Benneyan, J. C. (2024). Shewhart-EWMA chart for monitoring binomial data subject to shifts of random amounts. Computers & Industrial Engineering, 110252.
- Jafarian-Namin, S., Fallahnezhad, M. S., Tavakkoli-Moghaddam, R., & Salmasnia, A. (2022). Desensitized control charts with operational importance for autocorrelated processes. Quality Technology & Quantitative Management, 19(6), 665-691.
- Khamrod, S., Areepong, Y., Sukparungsee, S., & Sunthornwat, R. (2023). Statistical design for monitoring process mean on modified ewma control chart based on autocorrelated data. WSEAS Transactions on Computer Research, 11, 450-464.
- Kim, Y., Roh, S., Kim, W., Lee, J., & Kwak, Y. (2019). Case study of risk management for high-rise buildings using a control chart: schedule management of the busan M tower residential apartment complex. International Journal of Sustainable Building Technology and Urban Development, 10(3), 136-146.
- Shojaee, M., Noori, S., Jafarian-Namin, S., & Johannssen, A. (2024a). Integration of production–maintenance planning and monitoring simple linear profiles via Hotelling's T2 control chart and particle swarm optimization. Computers & Industrial Engineering, 188, 109864.
- Shojaee, M., Noori, S., Jafarian-Namin, S., Hassanvand, F., & Johannssen, A. (2024b). Designing economic-statistical Hotelling’s T2 control charts for monitoring linear profiles under uncertainty of parameters. Journal of Statistical Computation and Simulation, 94(18), 4019-4036.
- Kumar, S., & Shrivastava, R. (2024). Myriad of quality challenges in the Koudiet Eddraouch GIS substation project in sub-Sahara Africa. Emerald Emerging Markets Case Studies, 14(2), 1-28.
- Li, L., Liu, Y., Shang, Y., & Liu, Z. (2023). A new phase Ⅱ risk-adjusted CUSUM chart for monitoring surgical performance. Computers & Industrial Engineering, 186, 109738.
- Madrid‐Alvarez, H. M., García‐Díaz, J. C., & Tercero‐Gómez, V. G. (2024). A CUSUM control chart for gamma distribution with guaranteed performance. Quality and Reliability Engineering International, 40(3), 1279-1301.
- Nimr, A. H. N., & Naimi, S. (2023). Improving performance of project through utilizing statistical control chart based on adaptive management and scientific engineering.
- Shojaie, M., & Imani, D. M. (2021). Development of U control chart by variable sample size and sampling interval to improve the statistical properties. Engineering Reports, 3(6), e12351.
- Li, J., & Liu, Y. (2021). Application of statistical process control in engineering quality management. IOP Conference Series: Earth and Environmental Science.
- Kim, Y., Roh, S., Kim, W., Lee, J., & Kwak, Y. (2019). Case study of risk management for high-rise buildings using a control chart: schedule management of the Busan M Tower residential apartment complex. International Journal of Sustainable Building Technology and Urban Development.
- Lampreia, S. P. G. F. D. S., Requeijo, J. F. G., Dias, J. A. M., Vairinhos, V. M., & Barbosa, P. I. S. (2018). Condition monitoring based on modified CUSUM and EWMA control charts. Journal of Quality in Maintenance Engineering, 24(1), 119-132.
- Jones, C. L., Abdel‐Salam, A. S. G., & Mays, D. A. (2023). Novel Bayesian CUSUM and EWMA control charts via various loss functions for monitoring processes. Quality and Reliability Engineering International, 39(1), 164-189.
- Shojaee, M., Noori, S., Jafarian-Namin, S., Johannssen, A., & Rasay, H. (2024c). Assessing the economic-statistical performance of an attribute SVSSI-np control chart based on genetic algorithms. Computers & Industrial Engineering, 197, 110401.
- Shojaee, M., Jafarian-Namin, S., Fatemi Ghomi, S. M. T., Imani, D. M., Faraz, A., & Fallahnezhad, M. S. (2022). Applying SVSSI sampling scheme to np-chart to decrease the time of detecting shifts using Markov chain approach and Monte Carlo simulation. Scientia Iranica, 29(6), 3369-3387.
- Yeong, W. C., Tan, Y. Y., Lim, S. L., Khaw, K. W., & Khoo, M. B. C. (2024). Variable sample size and sampling interval (VSSI) and variable parameters (VP) run sum charts for the coefficient of variation. Quality Technology & Quantitative Management, 21(2), 177-199.
- Fallahnezhad, M. S., Shojaie M., & Zare Mehrjerdi Y. (2018). Economic-statistical design of np control chart with variable sample size and sampling interval. International Journal of Engineering, 31 (4), 629-639.
- Antzoulakos, D. L., Fountoukidis, K. G., & Rakitzis, A. C. (2025). The variable sample size and sampling interval run sum Max chart. Quality Technology & Quantitative Management, 22(2), 321-344.
- Begum, M., & Dohi, T. (2018). Optimal release time estimation of software system using Box-Cox transformation and neural network. International Journal of Mathematical, Engineering and Management Sciences, 3(2), 177.
- Zhang, F., Keivanloo, I., & Zou, Y. (2017). Data transformation in cross-project defect prediction. Empirical Software Engineering, 22, 3186-3218.
- Jones, C. N. (2023). Using The Exponentially Weighted Moving Average Mean Chart for Change Point Analysis.
|