
تعداد نشریات | 163 |
تعداد شمارهها | 6,877 |
تعداد مقالات | 74,134 |
تعداد مشاهده مقاله | 137,824,893 |
تعداد دریافت فایل اصل مقاله | 107,229,239 |
تخمین رسانندگی زمین لایهای با دادههای القای الکترومغناطیسی در محدوده عدد القای پایین با روش الگوریتم ژنتیک | ||
فیزیک زمین و فضا | ||
دوره 51، شماره 2، شهریور 1404، صفحه 289-307 اصل مقاله (1.62 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2025.385912.1007646 | ||
نویسندگان | ||
مجتبی بابایی* 1؛ سید منوچهر حسینی پیلانگرگی2 | ||
1گروه ژئوفیزیک، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران. | ||
2گروه مهندسی برق، دانشکده مهندسی، دانشگاه بوعلیسینا، همدان، ایران. | ||
چکیده | ||
تخمین پارامترهای الکترومغناطیسی سطح زیرین زمین برای تعیین ویژگیهای خاک مانند محتوای رس یا متغیرهای هیدرولوژیکی و در حوزه کشاورزی برای مدیریت منابع آب، بسیار مورد توجه هستند. در این راستا چندین روش ژئوفیزیکی، از جمله الکترومغناطیسی (EM) برای اندازهگیری رسانندگی لایههای زیر سطحی توسعه یافته است. در این مطالعه رسانندگی لایههای افقی زمین، در عمق قابل کاوش دستگاه EM-38 با استفاده از دادههای الکترومغناطیسی در محدوده عدد القای پایین برای مدل مصنوعی بهدست میآید. دادههای دستگاه EM-38 بسته به جهتگیری دوقطبیهای پیچههای فرستنده و گیرنده در سه مد افقی، قائم و ترکیبی از دادههای دو مد مذکور در پیچه گیرنده قابل دریافت هستند. در این تحقیق، با استفاده از هر سه دسته داده و کاربست دو روش کمترین مربعات معمولی و الگوریتم ژنتیک، پارامترهای رسانندگی زمین مدل محاسبه و نتایج جهت تعیین توانایی هر یک از سه مد پیچهها و دو روش بهکار رفته در دقت پارامترهای بهدستآمده مقایسه میشوند. نتایج تحقیق نشان داد برای مدل بهکار رفته، استفاده از الگوریتم ژنتیک و روش کمترینمربعات معمولی با دادههای مد ترکیبی، رسانندگی لایهها بهترتیب با خطای کمتر از 4 و 5 درصد بهدست میآورد. مسئله تخمین رسانندگی در این حوزه، یک مسئله وارون خطی بدوضع است. لذا از منظمسازی مرتبه صفر، اول و دوم تیخونوف برای تخمین پارامترها با دادههای هر سه مد نیز استفاده و نشان داده میشود که منظمسازی در این مسئله کمکی به بهبود کیفیت پارامترها نمیکند و اساساً منجر به بازتولید مدل اصلی نمیشود. | ||
کلیدواژهها | ||
القای الکترومغناطیسی؛ الگوریتم ژنتیک؛ رسانندگی الکتریکی ظاهری؛ عدد القای پایین؛ وارون خطی | ||
مراجع | ||
بابایی، م. و مسیبیان، س. ا. (1401). تفسیر دادههای القای الکترومغناطیسی با روش بهینهسازی ازدحام ذرات برای تعیین پارامترهای کره رسانا بهعنوان مدلی از مهمات منفجر نشده. مجله ژئوفیزیک ایران. 16 (2)، 231-240.
بابایی، م. و حسینی پیلانگرگی، س. م. (1403).تخمین پارامترهای هندسی مهمات منفجر نشده به روش القای الکترومغناطیس با استفاده از الگوریتم ژنتیک. مجله ژئوفیزیک ایران. 18 (5)، 67-82.
پرنو، س.؛ اسکویی، ب. و جیووانی، ف. (1399). برآورد عمق و مکان بیهنجاریهای حاصل از دادههای الکترومغناطیس زمینی حوزه فرکانس با استفاده از روش تصویر برداری عمق از نقاط بینهایت. نشریه پژوهشهای ژئوفیزیک کاربردی، 7(1)، 243-252.
رحیمیان، م.ح. و هاشمینژاد، ی. (1389). واسنجی دستگاه القاگر الکترومغناطیس (EM-38) برای ارزیابی شوری خاک. مجله پژوهشهای خاک (علوم خاک و آب)، 24(3)، 42-33.
زهرایی، ب.؛ حسینی، س. م. (1393). الگوریتم ژنتیک و بهینهسازی مهندسی. چاپ دوم. تهران. انتشارات گوتنبرگ.
Aster, R. C., Borchers, B., & Thurber, C. H. (2018). Parameter estimation and inverse problems: Elsevier. Beamish, D., 2011. Low induction number, ground conductivity meters: a correction procedure in the absence of magnetic effects. J. Appl. Geophys., 75, 244–253. Belmonte-Jiménez, S. I., Bortolotti-Villalobos, A., Campos-Enríquez, J. Ó., Pérez-Flores, M. A., Delgado-Rodríguez, O., & Ladrón de Guevara-Torres, M. de la Á. (2014). Electromagnetic methods application for characterizing a site contaminated by leachates. Revista Internacional de Contaminación Ambiental, 30(3), 317–329. Borchers, B., Uram, T., & Hendrickx, J. M. (1997). Tikhonov regularization of electrical conductivity depth profiles in field soils. Soil Science Society of America Journal, 61(4), 1004-1009. Cella, F., Paoletti, V., Florio, G., & Fedi, M. (2015). Characterizing elements of urban planning in Magna Graecia using geophysical techniques: the case of Tirena (Southern Italy). Archaeological Prospection, 22(3), 207-219. Christiansen, A. V., Pedersen, J. B., Auken, E., Søe, N. E., Holst, M. K., & Kristiansen, S. M. (2016). Improved geoarchaeological mapping with electromagnetic induction instruments from dedicated processing and inversion. Remote Sensing, 8(12), 1022. Da Conceição Batista, J., & Sampaio, E. E. S. (2019). Magnetotelluric inversion of one-and two-dimensional synthetic data based on hybrid genetic algorithms. Acta Geophysica, 67, 1365-1377. Deidda, G. P., Bonomi, E., & Manzi, C. (2003). Inversion of electrical conductivity data with Tikhonov regularization approach: some considerations. Annals of Geophysics, 46(3), 549-558. Dos Santos, V. R. N., & Porsani, J. L. (2011). Comparing performance of instrumental drift correction by linear and quadratic adjusting in inductive electromagnetic data. Journal of Applied Geophysics, 73(1), 1-7. Dumont, G., Robert, T., Marck, N., & Nguyen, F. (2017). Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites. Journal of Applied Geophysics, 145, 74-83. El-Qady, G., Metwaly, M., & Khozaym, A. (2014). Tracing buried pipelines using multi frequency electromagnetic. NRIAG Journal of Astronomy and Geophysics, 3(1), 101-107. Kaufman, A. & Keller, G. (1983). Frequency and Transient Soundings: Elsevier. Heil, K., & Schmidhalter, U. (2015). Comparison of the EM38 and EM38-MK2 electromagnetic induction-based sensors for spatial soil analysis at field scale. Computers and Electronics in Agriculture, 110, 267-280. Luo, W., Ge, J., Liu, H., Wu, S., Wang, H., Yuan, Z., Luan, X., Dong, H., & Fukushima, E. F. (2023). A fast tracking method for magnetic abnormalities using distributed Overhauser magnetometer system based on genetic algorithm. Review of Scientific Instruments, 94(6), 064501. McNeill, J. 1980, Electromagnetic terrain conductivity measurement at low induction numbers, Technical Note TN-6, Geonics Ltd. Parnow, S., Oskooi, B., & Florio, G. (2021). Improved linear inversion of low induction number electromagnetic data. Geophysical Journal International, 224(3), 1505-1522. Pérez-Flores, M. A., Antonio-Carpio, R. G., Gómez-Treviño, E., Ferguson, I., & Méndez-Delgado, S. (2012). Imaging of 3D electromagnetic data at low-induction numbers. Geophysics, 77(4), WB47-WB57. Ratshiedana, P. E., Abd Elbasit, M. A., Adam, E., Chirima, J. G., Liu, G., & Economon, E. B. (2023). Determination of soil electrical conductivity and moisture on different soil layers using electromagnetic techniques in irrigated arid environments in South Africa. Water, 15(10), 1911. Saey, T., De Smedt, P., Delefortrie, S., Van De Vijver, E., & Van Meirvenne, M. (2015). Comparing one-and two-dimensional EMI conductivity inverse modeling procedures for characterizing a two-layered soil. Geoderma, 241, 12-23. Saey, T., Simpson, D., Vermeersch, H., Cockx, L., & Van Meirvenne, M. (2009). Comparing the EM38DD and DUALEM‐21S sensors for depth‐to‐clay mapping. Soil Science Society of America Journal, 73(1), 7-12. Schultz, G. & Ruppel, C. (2005). Inversion of inductive electromagnetic data in highly conductive terrains. Geophysics, 70(1), G16-G28. Song, Y., & Kim, J.-H. (2008). An efficient 2.5 D inversion of loop-loop electromagnetic data. Exploration geophysics, 39(1), 68-77. Stanley, J. N., Lamb, D. W., Falzon, G., & Schneider, D. A. (2014). Apparent electrical conductivity (ECa) as a surrogate for neutron probe counts to measure soil moisture content in heavy clay soils (Vertosols). Soil research, 52(4), 373-378. Thiesson, J., Tabbagh, A., Dabas, M., & Chevalier, A. (2017). Characterization of buried cables and pipes using electromagnetic induction loop-loop frequency-domain devices. Geophysics, 83(1), E1-E10. Tikhonov, A. N., & Arsenin, V. Y. (1977). Solutions of ill-posed problems. VH Winston & Sons. In: Washington, DC: John Wiley & Sons, New York. Wait, J. (2012). Geo-electromagnetism: Elsevier. Ward, S.H. & Hohmann, G.W., 1988. Electromagnetic theory for geophysical applications. in Electromagnetic Methods in Applied Geophysics: Voume 1, Theory, 130–311, Society of Exploration Geophysicists. Watson, H. D., Neely, H. L., Morgan, C. L., McInnes, K. J., & Molling, C. C. (2017). Identifying subsoil variation associated with gilgai using electromagnetic induction. Geoderma, 295, 34-40. | ||
آمار تعداد مشاهده مقاله: 305 تعداد دریافت فایل اصل مقاله: 192 |